JPH10317136A - Both side simultaneous coating forming method and device therefor - Google Patents

Both side simultaneous coating forming method and device therefor

Info

Publication number
JPH10317136A
JPH10317136A JP14322297A JP14322297A JPH10317136A JP H10317136 A JPH10317136 A JP H10317136A JP 14322297 A JP14322297 A JP 14322297A JP 14322297 A JP14322297 A JP 14322297A JP H10317136 A JPH10317136 A JP H10317136A
Authority
JP
Japan
Prior art keywords
film
spectacle lens
processing chamber
sputtering
substrate holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14322297A
Other languages
Japanese (ja)
Other versions
JP4005172B2 (en
Inventor
Hitoshi Kamura
斉 嘉村
Masaaki Yoshihara
雅章 葭原
Hajime Kamiya
肇 神谷
Shigeji Matsumoto
繁治 松本
Kazuo Kikuchi
和夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Shincron Co Ltd
Original Assignee
Hoya Corp
Shincron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp, Shincron Co Ltd filed Critical Hoya Corp
Priority to JP14322297A priority Critical patent/JP4005172B2/en
Publication of JPH10317136A publication Critical patent/JPH10317136A/en
Application granted granted Critical
Publication of JP4005172B2 publication Critical patent/JP4005172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To form thin coating such as antireflection coating on both sides of a spectacle lens without requiring a complicated inverting mechanism. SOLUTION: This is a method for simultaneously forming coating on both sides of a spectacle lens by sputtering, in which a spectacle lens is loaded onto a planar substrate holder 31 and is introduced into a vacuum treating chamber 11, and, in the vacuum treating chamber, the following (i) sputtering stage and (ii) converting stage are repeated, by which metallic compound thin coating with desired coating thickness is simultaneously formed on both sides of the spectacle lens: (i) the sputtering stage in which a target is sputtered onto the spectacle lens by using sputtering devices 41 provided on both sides of the spectacle lens to form metallic ultrathin coating composed of metal or metallic imperfect reactants respectively on both sides of the spectacle lens and (ii) the converting stage in which the metallic ultrathin coating is brought to react with a reactive gas, which is converted into ultrathin coating of metallic compounds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、眼鏡レンズの両面
に薄膜を同一真空室内で同時に成膜する方法および装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for simultaneously forming thin films on both surfaces of a spectacle lens in the same vacuum chamber.

【0002】[0002]

【従来の技術】眼鏡レンズには反射防止膜、保護膜など
の薄膜が形成されており、その場合に両面に反射防止膜
等の薄膜を形成する必要がある。反射防止膜等の薄膜の
形成方法としては、真空蒸着法、スパッタ法などがある
が、いずれの場合においても、まず片面に薄膜を形成
し、ついでその裏面に再度薄膜を形成することになる。
一般的な方法としては、片面に薄膜を形成後に一旦真空
室から取り出し、再度、裏面に膜形成がされるように眼
鏡レンズ(基板)を裏返してセットしなおし、再び真空
室内で膜成形を行なう方法があるが、操作が頻雑であ
り、生産性も悪い。また、眼鏡レンズの片面に薄膜形成
後に、真空室内で眼鏡レンズを反転させて真空雰囲気を
破ることなく両面に真空蒸着する装置も知られている。
しかしながら、この反転蒸着装置は、反転機構が複雑と
なり、装置コストの上昇や生産性の低下を招く。
2. Description of the Related Art A spectacle lens is formed with a thin film such as an antireflection film and a protective film. In this case, it is necessary to form a thin film such as an antireflection film on both surfaces. As a method of forming a thin film such as an anti-reflection film, there are a vacuum deposition method and a sputtering method. In any case, a thin film is first formed on one side, and then a thin film is formed again on the back side.
As a general method, once a thin film is formed on one side, the film is once taken out of the vacuum chamber, the spectacle lens (substrate) is turned over and set again so that a film is formed on the back side, and the film is formed again in the vacuum chamber. There is a method, but the operation is complicated and productivity is poor. Further, there is also known an apparatus in which a thin film is formed on one side of an eyeglass lens, and then the eyeglass lens is inverted in a vacuum chamber to perform vacuum deposition on both sides without breaking a vacuum atmosphere.
However, this reversal vapor deposition apparatus has a complicated reversal mechanism, resulting in an increase in apparatus cost and a decrease in productivity.

【0003】[0003]

【発明が解決しようとする課題】本発明は、反転機構を
必要とすることなく、眼鏡レンズの両面に反射防止膜等
の薄膜を同時にスパッタリングにより形成することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to simultaneously form a thin film such as an antireflection film on both surfaces of an eyeglass lens by sputtering without requiring an inversion mechanism.

【0004】[0004]

【課題を解決するための手段】本発明の両面同時成膜方
法は、スパッタにより、眼鏡レンズの両面に同時に成膜
する方法であって、眼鏡レンズを平板状の基板ホルダー
に搭載して真空処理室内に導入し、該真空処理室内にお
いて、以下の(i)スパッタ工程と(ii)変換工程と
を繰り返すことにより、所望の膜厚の金属化合物薄膜を
眼鏡レンズの両面に同時に形成することを特徴とする。 (i)眼鏡レンズの両面側に設けられたスパッタ装置を
用いてターゲットを眼鏡レンズにスパッタし、眼鏡レン
ズの両面にそれぞれ金属ないしは金属の不完全反応物か
らなる金属系超薄膜を形成するスパッタ工程 (ii)金属系超薄膜と反応性ガスとを反応せしめて金
属化合物の超薄膜に変換せしめる変換工程
The double-sided simultaneous film forming method according to the present invention is a method for simultaneously forming a film on both surfaces of an eyeglass lens by sputtering, wherein the eyeglass lens is mounted on a flat substrate holder and subjected to vacuum processing. A metal compound thin film having a desired film thickness is simultaneously formed on both surfaces of the spectacle lens by introducing the film into a chamber and repeating the following (i) sputtering step and (ii) conversion step in the vacuum processing chamber. And (I) A sputtering process in which a target is sputtered on the spectacle lens using a sputtering device provided on both sides of the spectacle lens, and a metal-based ultrathin film made of a metal or an incompletely reacted metal is formed on each side of the spectacle lens. (Ii) a conversion step of reacting a metal-based ultrathin film with a reactive gas to convert it into a metal compound ultrathin film

【0005】また、本発明の両面同時成膜装置は、スパ
ッタにより、眼鏡レンズの両面に同時に成膜する装置で
あって、真空処理室と、真空処理室内に配設され、眼鏡
レンズを搭載して水平方向に回転する円板状の基板ホル
ダーと、基板ホルダーの両面側にそれぞれ設けられたス
パッタ装置および反応性ガス供給源とを具え、上記基板
ホルダーを回転することにより、眼鏡レンズをスパッタ
源と反応性ガス供給源との間に交互に繰返し搬送し、眼
鏡レンズの両面に対してスパッタ装置によって金属ない
し金属の不完全反応物からなる金属系超薄膜をスパッタ
により形成し、ついで、反応性ガス供給源により、金属
性超薄膜と反応性ガスとを反応せしめて金属化合物の超
薄膜に変換せしめ、基板ホルダーの回転により上記金属
系超薄膜の形成と金属化合物の超薄膜への変換を繰り返
すことによって所望の膜厚の薄膜を形成するようにした
ことを特徴とする。
The double-sided simultaneous film forming apparatus of the present invention is an apparatus for simultaneously forming a film on both sides of a spectacle lens by sputtering, and is provided in a vacuum processing chamber and a vacuum processing chamber, wherein the spectacle lens is mounted. A disk-shaped substrate holder that rotates in the horizontal direction, and a sputtering device and a reactive gas supply source provided on both sides of the substrate holder, respectively. And a reactive gas supply source alternately and repeatedly, and a metal-based ultrathin film made of a metal or an incompletely reacted metal is formed on both surfaces of the spectacle lens by sputtering with a sputtering device. The gas supply source reacts the ultra-thin metallic film with the reactive gas to convert it into an ultra-thin metal compound film. Characterized in that so as to form a desired film thickness of the thin film by repeating the conversion of ultra thin films of group compound.

【0006】[0006]

【発明の実施の形態】図1は、本発明で用いられる装置
の実施例を示す縦断面図、図2は図1の線A−Aに沿っ
た断面図(平面図)である。なお、頻雑を避けるために
遮蔽板51等の一部の部材は図2で省略してある。ま
た、図3は、基板ホルダー31および眼鏡レンズ33に
対してターゲット43ならびに誘導結合型プラズマ発生
装置61の位置関係を示す斜視図である。なお、煩雑を
避けるために基板ホルダー31の下面側の上記各部材の
みを示し、他は省略してある。さらに、図4はこの実施
例における基板ホルダーの回転機構を、図5は基板ホル
ダーおよび膜厚補正板の搬送機構を示す。両面同時成膜
装置は、導入室83、真空処理室11、予備処理室85
とから構成される。図1、図2および図3に示すよう
に、基板としての眼鏡レンズ33を多数搭載した基板ホ
ルダー31が真空処理室11内で処理され、眼鏡レンズ
33に反射防止膜が形成される。
FIG. 1 is a longitudinal sectional view showing an embodiment of an apparatus used in the present invention, and FIG. 2 is a sectional view (plan view) along line AA of FIG. Note that some members such as the shielding plate 51 are omitted in FIG. 2 to avoid complexity. FIG. 3 is a perspective view showing the positional relationship between the target 43 and the inductively coupled plasma generator 61 with respect to the substrate holder 31 and the spectacle lens 33. In order to avoid complication, only the above members on the lower surface side of the substrate holder 31 are shown, and the others are omitted. FIG. 4 shows a rotation mechanism of the substrate holder in this embodiment, and FIG. 5 shows a transport mechanism of the substrate holder and the film thickness correction plate. The double-sided simultaneous film forming apparatus includes an introduction chamber 83, a vacuum processing chamber 11, and a preliminary processing chamber 85.
It is composed of As shown in FIGS. 1, 2, and 3, a substrate holder 31 on which a number of spectacle lenses 33 as substrates are mounted is processed in the vacuum processing chamber 11, and an antireflection film is formed on the spectacle lenses 33.

【0007】眼鏡レンズ33(基板)を搭載した円板状
の基板ホルダー31は回転機構21により回転され、ス
パッタ装置による眼鏡レンズ33に対する金属系超薄膜
の形成と、誘導結合型プラズマ発生装置61(反応性ガ
ス供給源)による酸化物薄膜等への金属化合物薄膜への
変換が繰り返されて超薄膜が繰り返して堆積され、所望
の膜厚の薄膜が形成される。まず、眼鏡レンズを搭載し
た基板ホルダー31はキャリア81に乗せられて導入室
83に入れられ、この導入室83が真空排気される。つ
いで、ゲートバルブ17を開とし、同じく真空排気され
た真空処理室11に基板ホルダー31がキャリア81と
共に、搬送ローラ13により搬送される。
The disc-shaped substrate holder 31 on which the spectacle lens 33 (substrate) is mounted is rotated by the rotating mechanism 21 to form a metal-based ultra-thin film on the spectacle lens 33 by a sputtering device and to form an inductively coupled plasma generator 61 ( The conversion of the metal compound thin film into an oxide thin film or the like by the reactive gas supply source) is repeated, and an ultrathin film is repeatedly deposited to form a thin film having a desired thickness. First, the substrate holder 31 on which the spectacle lens is mounted is placed on the carrier 81 and put into the introduction chamber 83, and the introduction chamber 83 is evacuated. Then, the gate valve 17 is opened, and the substrate holder 31 is transported by the transport roller 13 together with the carrier 81 into the vacuum processing chamber 11 which is also evacuated.

【0008】基板ホルダー31は、図4に示すように真
空処理室11内で回転機構21により保持される。回転
機構21は、油圧シリンダー等により上下に駆動される
上側支持部材23と下側支持部材25とにより基板ホル
ダー31を保持し、モータ29により回転する。基板ホ
ルダー31の位置決めは、基板ホルダー31の中心穴に
チャッキング突起27を嵌入することにより行なう。2
7’は、キャリア81に搭載された基板ホルダー31が
導入室83から真空処理室11に搬入されてくる際のチ
ャッキング突起の位置(高さ)、または、キャリアに搭
載された基板ホルダー31が真空処理室11から予備真
空室85に搬出される際のチャッキング突起の位置を示
す。一方、27”および31”は、回転機構21により
基板ホルダー31を支持後にキャリア81が導入室83
に戻る際の位置、あるいは、薄膜形成後に基板ホルダー
31を回収すべくキャリア81が予備真空室85から搬
入される際の、チャッキング突起および基板ホルダーの
位置を示す。
The substrate holder 31 is held by the rotating mechanism 21 in the vacuum processing chamber 11 as shown in FIG. The rotation mechanism 21 holds the substrate holder 31 by an upper support member 23 and a lower support member 25 driven up and down by a hydraulic cylinder or the like, and is rotated by a motor 29. The positioning of the substrate holder 31 is performed by fitting the chucking projection 27 into the center hole of the substrate holder 31. 2
7 ′ is the position (height) of the chucking projection when the substrate holder 31 mounted on the carrier 81 is carried into the vacuum processing chamber 11 from the introduction chamber 83, or the substrate holder 31 mounted on the carrier is The position of the chucking projection when being carried out from the vacuum processing chamber 11 to the preliminary vacuum chamber 85 is shown. On the other hand, at 27 ″ and 31 ″, the carrier 81 is supported by the rotation mechanism 21 after the substrate holder 31 is supported.
Or the positions of the chucking projections and the substrate holder when the carrier 81 is carried in from the preliminary vacuum chamber 85 to collect the substrate holder 31 after forming the thin film.

【0009】真空排気された真空処理室11内において
は、前述の通り超薄膜の繰り返し堆積が行なわれ、この
詳細な技術内容については、特公平8−19518号公
報、特開平8−176821号公報に記載されている。
スパッタ装置は、スパッタ電極41、ターゲット43、
スパッタ電源45、マスフロー47、スパッタガスボン
ベ49、遮蔽板51とから構成されている。一方、誘導
結合型プラズマ発生装置61は、高周波(RF)放電室
63、高周波(RF)コイル65、内部磁場コイル6
6、マッチングボックス67、高周波(RF)電源6
9、遮蔽板71から構成されている。遮蔽板51,71
は、ターゲット43をスパッタするためにアルゴンを導
入して真空度、ガス分圧をするスパッタ雰囲気と、酸素
ガスなどの反応性ガスの導入により得られるプラズマ雰
囲気とを分離し、個別に制御する目的で設置されてい
る。特に、ターゲット43のアルゴン雰囲気に酸素が混
入することにより酸素分圧が高まると、ターゲット43
の表面層で酸化膜が形成され、ターゲット43表面での
異常放電が多くなる。このためスパッタ動作が不安定に
なり、かつ、薄膜へのダメージを生じることになるが、
上記の遮蔽板51,71は、スパッタ雰囲気とプラズマ
雰囲気とを、ガスの種類、ガス分圧、ガス圧力(真空
度)に関して雰囲気的に区切り、個別に制御することに
より上記の不都合を防止する。
In the evacuated vacuum processing chamber 11, an ultra-thin film is repeatedly deposited as described above. The detailed technical contents are described in Japanese Patent Publication No. Hei 8-19518 and Japanese Patent Laid-Open Publication No. Hei 8-176821. It is described in.
The sputtering apparatus includes a sputtering electrode 41, a target 43,
It comprises a sputter power supply 45, a mass flow 47, a sputter gas cylinder 49, and a shielding plate 51. On the other hand, the inductively coupled plasma generator 61 includes a high frequency (RF) discharge chamber 63, a high frequency (RF) coil 65, and an internal magnetic field coil 6.
6, matching box 67, high frequency (RF) power supply 6
9. It is composed of a shielding plate 71. Shielding plates 51, 71
Is intended to separate and separately control a sputtering atmosphere in which argon is introduced to sputter the target 43 and a degree of vacuum and a partial pressure of gas are obtained, and a plasma atmosphere obtained by introducing a reactive gas such as oxygen gas. It is installed in. In particular, when oxygen partial pressure is increased by mixing oxygen into the argon atmosphere of the target 43, the target 43
An oxide film is formed on the surface layer of the target 43, and abnormal discharge on the surface of the target 43 increases. For this reason, the sputtering operation becomes unstable, and damage to the thin film occurs.
The above shielding plates 51 and 71 prevent the above-mentioned inconvenience by separating the sputtering atmosphere and the plasma atmosphere from each other in terms of gas type, gas partial pressure, and gas pressure (degree of vacuum) and controlling them individually.

【0010】回転機構21により基板ホルダー31が回
転するとスパッタ装置の前面でターゲット43がスパッ
タされ、基板ホルダー31の眼鏡レンズ33上に超薄膜
が形成される。このとき、マスフロー47を介してスパ
ッタガスボンベよりアルゴンガスなどのスパッタガスが
導入され、スパッタ雰囲気が調整される。ここで、最終
的にSiO2 薄膜を形成する場合を例に挙げて説明する
と、金属Siをターゲット43としてSiの超薄膜を眼
鏡レンズ(基板)上に形成する。ついで、この眼鏡レン
ズは回転機構21により回転・移動され誘導結合型プラ
ズマ発生装置61の前面で、反応性ガスボンベ75から
マスフロー73を介して導入した酸素のプラズマに曝さ
れ、金属SiがSiO2 に変換され、SiO2 の超薄膜
が形成される。基板ホルダー31を回転してこの操作を
繰り返すことにより、SiO2 の超薄膜が複数層堆積さ
れ、最終的に所望の膜厚のSiO2 薄膜が得られる。な
お、本発明における「超薄膜」とはこのように、超薄膜
が複数回堆積されて最終的な薄膜となることから、この
最終的な薄膜との混同を防止するために用いた用語であ
り、最終的な薄膜よりも十分に薄いという意味である。
[0010] When the substrate holder 31 is rotated by the rotating mechanism 21, the target 43 is sputtered on the front surface of the sputtering apparatus, and an ultrathin film is formed on the spectacle lens 33 of the substrate holder 31. At this time, a sputtering gas such as an argon gas is introduced from a sputtering gas cylinder through the mass flow 47, and the sputtering atmosphere is adjusted. Here, a case where a SiO 2 thin film is finally formed will be described as an example. An ultra-thin Si film is formed on a spectacle lens (substrate) using metal Si as a target 43. Next, the spectacle lens is rotated and moved by the rotation mechanism 21 and is exposed to the plasma of oxygen introduced from the reactive gas cylinder 75 through the mass flow 73 on the front surface of the inductively coupled plasma generator 61 to convert the metal Si into SiO 2 . It is converted to form an ultra thin film of SiO 2 . By rotating the substrate holder 31 and repeating this operation, a plurality of ultra-thin SiO 2 thin films are deposited, and finally a SiO 2 thin film having a desired thickness is obtained. The term “ultra-thin film” in the present invention is a term used to prevent confusion with the final thin film because the ultra-thin film is deposited a plurality of times to form a final thin film. , Meaning that it is much thinner than the final thin film.

【0011】本発明ではこのように、SiO2 ではなく
金属Siとしてスパッタできるので、スパッタ速度を速
めることができ、効率的である。また、ターゲット43
としてSiO2 をスパッタした場合でも、スパッタによ
り形成された薄膜はSiOx(x<2)と酸素の欠損が
見られるが、本発明によればプラズマ源からの反応性ガ
スにより酸素の欠損が補なわれ、安定したSiO2 薄膜
を形成できる。また、図1および図2では、基板ホルダ
ー31の両面側にそれぞれ1個のターゲット43,43
を設けた場合を示したが、ターゲット43を基板ホルダ
ー31の両面側にそれぞれ複数個設けることができる。
この具体例としては、チタン(Ti)、Zr(ジルコニ
ウム)、Ta(タンタル)などのターゲットをSiター
ゲットと併用して、SiO2 膜とTiO2 膜、ZrO2
膜またはTa2 5 膜との積層膜を形成して多層反射防
止膜を製造する場合が挙げられる。
According to the present invention, since sputtering can be performed as metal Si instead of SiO 2 , the sputtering speed can be increased and the efficiency is improved. In addition, target 43
Even when SiO 2 is sputtered as above, the thin film formed by the sputtering shows SiO x (x <2) and oxygen deficiency, but according to the present invention, the oxygen deficiency is compensated for by the reactive gas from the plasma source. Thus, a stable SiO 2 thin film can be formed. 1 and 2, one target 43, 43 is provided on each side of the substrate holder 31.
Is shown, but a plurality of targets 43 can be provided on both sides of the substrate holder 31 respectively.
As a specific example, a target such as titanium (Ti), Zr (zirconium) or Ta (tantalum) is used in combination with a Si target, and a SiO 2 film, a TiO 2 film, and a ZrO 2 film are used.
A case where a multilayer antireflection film is manufactured by forming a film or a laminated film with a Ta 2 O 5 film is exemplified.

【0012】誘導結合型プラズマ発生装置61は、酸素
ガス、窒素ガスなどの反応性ガスをマスフロー73を介
して反応性ガスボンベ75から真空処理室11内に導入
して酸素ガスのプラズマを発生するものである。本発明
では、このようなプラズマ発生源に替えて、イオン銃の
ようなイオン源を用いて反応性ガスを発生せしめること
もできる。また、誘導結合型プラズマ発生装置61の開
口部に配置された内部磁場コイル66は、プラズマ源の
軸に対して軸対称かつ基板面に発散するような磁速密度
分布を持たせることにより、基板面での酸化反応などの
反応領域の広さをコントロールすることができる。さら
に、誘導結合型プラズマ発生装置61は、基板ホルダー
31の上面と下面で対向して配設することでもできる
し、位置的にずらして設置することもできる。基板ホル
ダー31の上面側と下面側のターゲット43についても
同様である。以上のように本発明では、眼鏡レンズの両
面に同時に成膜することができる。
The inductively-coupled plasma generator 61 generates a plasma of an oxygen gas by introducing a reactive gas such as an oxygen gas or a nitrogen gas from a reactive gas cylinder 75 into a vacuum processing chamber 11 through a mass flow 73. It is. In the present invention, a reactive gas can be generated using an ion source such as an ion gun instead of such a plasma generation source. The internal magnetic field coil 66 disposed in the opening of the inductively coupled plasma generator 61 has a magnetic velocity density distribution that is axially symmetric with respect to the axis of the plasma source and diverges on the substrate surface. It is possible to control the size of a reaction region such as an oxidation reaction on the surface. Furthermore, the inductively coupled plasma generator 61 can be disposed facing the upper surface and the lower surface of the substrate holder 31 or can be disposed so as to be shifted in position. The same applies to the targets 43 on the upper and lower sides of the substrate holder 31. As described above, according to the present invention, films can be simultaneously formed on both surfaces of the spectacle lens.

【0013】成膜終了後に、基板ホルダーは図4の3
1”の位置に移動し、真空排気された予備真空室85内
に予め待機していたキャリア81が、ゲートバルブ15
を介して搬送ローラ13により真空処理室11に搬入さ
れて、基板ホルダー31を搭載し、予備真空室85内に
移送して外部に取り出される。本発明では、このよう
に、真空処理室11を大気に曝することなく成膜でき
る。本発明においては、同一の真空処理室11内で同一
の基板ホルダー31に多数の眼鏡レンズ33を搭載して
スパッタにより薄膜を形成するために、これら多数の眼
鏡レンズ33に対して均一の薄膜を形成すること、すな
わち膜厚補正することが必要となる。膜厚補正をする方
法としては種々の方法があるが、以下の3つの方法が代
表的である。
After the completion of the film formation, the substrate holder 3 shown in FIG.
The carrier 81, which has been moved to the position “1” and has been waiting in the pre-evacuated preliminary vacuum chamber 85, is moved to the gate valve 15.
The substrate is carried into the vacuum processing chamber 11 by the transport rollers 13 via the, the substrate holder 31 is mounted, and is transferred into the preliminary vacuum chamber 85 and taken out. In the present invention, a film can be formed without exposing the vacuum processing chamber 11 to the atmosphere. In the present invention, since a large number of spectacle lenses 33 are mounted on the same substrate holder 31 in the same vacuum processing chamber 11 and a thin film is formed by sputtering, a uniform thin film is formed on the large number of spectacle lenses 33. It is necessary to form the film, that is, to correct the film thickness. Although there are various methods for correcting the film thickness, the following three methods are typical.

【0014】(1)図2および図3に見られるように、
基板ホルダー31に搭載された眼鏡レンズ33において
は、回転軸側と外周側とでは線速度が異なる。したがっ
て、回転軸側と外周側とで眼鏡レンズ33とターゲット
43とが対向している時間を同一にするように、円板状
の基板ホルダー31を、その中心軸を中心として真空処
理室11内で水平方向に回転せしめ、基板ホルダー31
の中心から外周部に向かって面積が拡がるような台形な
いし扇形のターゲット43をスパッタする。これによ
り、基板ホルダー31の中心軸側と外周側とに搭載され
た眼鏡レンズ33がスパッタされる時間が均一化され、
形成される薄膜の膜厚が均一となる。
(1) As seen in FIGS. 2 and 3,
In the spectacle lens 33 mounted on the substrate holder 31, the linear velocity differs between the rotation axis side and the outer peripheral side. Therefore, the disk-shaped substrate holder 31 is placed in the vacuum processing chamber 11 around the center axis thereof so that the time when the spectacle lens 33 and the target 43 face each other is the same on the rotation axis side and the outer circumference side. And rotate it horizontally.
Is sputtered on a trapezoidal or fan-shaped target 43 whose area increases from the center toward the outer periphery. Thereby, the time during which the spectacle lenses 33 mounted on the central axis side and the outer peripheral side of the substrate holder 31 are sputtered is made uniform,
The thickness of the formed thin film becomes uniform.

【0015】(2)ターゲット43の下に設置される磁
石の強度および配置を調整する。これにより、スパッタ
されるターゲットの部位に対する基板の膜厚の分布を調
整できる。したがって、ターゲット43を眼鏡レンズ3
3とが対向する時間が中心軸側と外周側とで異なって
も、形成される薄膜の膜厚を均一化することができる。
具体的には、磁石によってターゲット上に形成される磁
場の状態を調整して、電子の閉じ込め領域を制御し、ス
パッタされるターゲット面の位置およびスパッタ速度分
布を調整する。図6は、この磁石配置の一例を示し、タ
ーゲットの下面に磁石(S極)44および磁石(N極)
46を配置している。42はヨークを示す。
(2) Adjust the strength and arrangement of the magnet installed below the target 43. Thus, the distribution of the film thickness of the substrate with respect to the target portion to be sputtered can be adjusted. Therefore, the target 43 is set to the spectacle lens 3
Even if the time at which 3 faces each other is different between the central axis side and the outer peripheral side, the thickness of the formed thin film can be made uniform.
Specifically, the state of the magnetic field formed on the target by the magnet is adjusted to control the electron confinement region, and the position of the target surface to be sputtered and the sputtering speed distribution are adjusted. FIG. 6 shows an example of this magnet arrangement, in which a magnet (S-pole) 44 and a magnet (N-pole) are provided on the lower surface of the target.
46 are arranged. Reference numeral 42 denotes a yoke.

【0016】(3)膜厚補正板87を用いる。膜厚補正
板87によりターゲット43と眼鏡レンズ33との間を
部分的に覆い、覆った部分の薄膜形成速度を低下させる
ことにより、基板ホルダー31の直径方向における膜厚
分布を均一とする。通状の角形のターゲットを用いると
すれば、線速度が遅い中心軸側を、膜厚補正板87,8
9により、より大きくマスキングする。図7は、台形の
ターゲット43を用いることにより、基板ホルダー31
を直径方向の膜厚分布を調整し、さらに膜厚補正板8
7,89により補正する状態を示す斜視図であり、煩雑
を避けるために、膜厚補正に関する部材以外は省略して
ある。なお、膜厚補正板87,89は、図7に示すよう
に異なった形でもよいし、同一の形でもよい。
(3) A film thickness correction plate 87 is used. The film thickness correction plate 87 partially covers the space between the target 43 and the spectacle lens 33 and reduces the thin film forming speed in the covered portion, thereby making the film thickness distribution in the diameter direction of the substrate holder 31 uniform. If a generally rectangular target is used, the central axis side where the linear velocity is slow is set to the thickness correction plates 87 and 8.
9 makes the mask larger. FIG. 7 shows a substrate holder 31 using a trapezoidal target 43.
The thickness distribution in the diameter direction is adjusted, and
It is a perspective view showing a state to be corrected by 7, 89, and in order to avoid complication, members other than those relating to film thickness correction are omitted. Note that the film thickness correction plates 87 and 89 may have different shapes as shown in FIG. 7, or may have the same shape.

【0017】また、スパッタを繰り返すことによりター
ゲット43の消耗状態が変化し、これによりスパッタさ
れるターゲット43の量が変化し、本来達成されていた
膜厚分布(付着膜厚の均一化)が変動する場合がある。
このような場合は図5に示すように、ゲートバルブ15
を開とし、予じめ真空排気した予備真空室85に膜厚補
正板87,89回収し、新たな状況に適合した膜厚補正
板と交換し、この新たな膜厚補正板87,89をローラ
13により真空処理室11を導入する。このようにする
ことによって、真空処理室11を大気に曝すことなく、
膜厚補正板87,89の交換を行なうことができる。
Further, the repetition of the sputtering changes the consumption state of the target 43, thereby changing the amount of the target 43 to be sputtered, and changing the originally achieved film thickness distribution (uniform deposition film thickness). May be.
In such a case, as shown in FIG.
Is opened, the film thickness compensating plates 87, 89 are collected in the pre-evacuated preliminary vacuum chamber 85, and replaced with a film compensating plate suitable for a new situation. The vacuum processing chamber 11 is introduced by the rollers 13. By doing so, without exposing the vacuum processing chamber 11 to the atmosphere,
The thickness correction plates 87 and 89 can be exchanged.

【0018】図8は、具体的なシーケンスを示すフロー
チャートである。膜厚補正板87,89の交換に際して
は、真空処理室11における成膜作業を一旦停止し、ゲ
ートバルブ15を開として、予じめ真空排気されている
予備真空室85に膜厚補正板87,89を移送する。そ
して、膜厚補正板87,89が完全に予備真空室85に
移送されたことを位置センサー93,93で確認し(図
5参照)、ゲートバルブ15を閉とし、予備真空室85
を大気に開放する。ついで、新たな膜厚補正板87,8
9を予備真空室85に入れ、予備真空室85を真空排気
したのち、ゲートバルブ15を開とし、新たな膜厚補正
板87,89を真空処理室11内に移送する。そして、
位置センサー91,91により膜厚補正板87,89が
真空処理室11内の所定位置に配置されたのちゲートバ
ルブ15を閉とし、再び成膜処理を再開する。このよう
にして、真空処理室11を大気に曝することなく、膜厚
分布の均一化を維持して成膜を連続的に行なうことがで
きる。
FIG. 8 is a flowchart showing a specific sequence. When replacing the film thickness compensating plates 87 and 89, the film forming operation in the vacuum processing chamber 11 is temporarily stopped, the gate valve 15 is opened, and the film thickness compensating plates 87 are preliminarily evacuated to the preliminary vacuum chamber 85. , 89 are transferred. Then, it is confirmed by the position sensors 93 and 93 that the film thickness correction plates 87 and 89 have been completely transferred to the preliminary vacuum chamber 85 (see FIG. 5), and the gate valve 15 is closed.
To the atmosphere. Next, new film thickness correction plates 87, 8
After the vacuum chamber 9 is evacuated, the gate valve 15 is opened, and new film thickness compensating plates 87 and 89 are transferred into the vacuum processing chamber 11. And
After the film thickness compensating plates 87 and 89 are disposed at predetermined positions in the vacuum processing chamber 11 by the position sensors 91 and 91, the gate valve 15 is closed and the film forming process is restarted. In this manner, film formation can be performed continuously while maintaining uniform film thickness without exposing the vacuum processing chamber 11 to the atmosphere.

【0019】[0019]

【発明の効果】本発明によれば、複雑な反転機構を必要
とすることなく、眼鏡レンズの両面に反射防止膜等の薄
膜を形成することができる。
According to the present invention, a thin film such as an antireflection film can be formed on both surfaces of a spectacle lens without requiring a complicated reversing mechanism.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いられる装置の実施例を示す縦断面
である。
FIG. 1 is a longitudinal section showing an embodiment of an apparatus used in the present invention.

【図2】図1の線A−Aに沿った断面図(平面図)であ
る。
FIG. 2 is a cross-sectional view (plan view) taken along line AA of FIG.

【図3】基板ホルダーとターゲットおよび誘導結合型プ
ラズマ発生装置との位置関係を示す説明斜視図である。
FIG. 3 is an explanatory perspective view showing a positional relationship between a substrate holder, a target, and an inductively coupled plasma generator.

【図4】基板ホルダーの回転機構を示す説明図である。FIG. 4 is an explanatory view showing a rotation mechanism of a substrate holder.

【図5】基板ホルダーおよび膜厚補正板の搬送機構を示
す説明図である。
FIG. 5 is an explanatory view showing a transport mechanism of a substrate holder and a film thickness correction plate.

【図6】ターゲット背面の磁石配置を示す配明図であ
り、(A)が平面図、(B)が(A)のB−B断面図で
ある。
FIGS. 6A and 6B are layout views showing the arrangement of magnets on the back surface of the target, where FIG. 6A is a plan view and FIG. 6B is a cross-sectional view taken along line BB of FIG.

【図7】ターゲット、基板ホルダー、膜厚補正板の位置
関係を示す説明斜視図である。
FIG. 7 is an explanatory perspective view illustrating a positional relationship among a target, a substrate holder, and a film thickness correction plate.

【図8】膜厚補正板の交換操作のシーケンスを示すフロ
ーチャートである。
FIG. 8 is a flowchart showing a sequence of a replacement operation of a film thickness correction plate.

【符号の説明】[Explanation of symbols]

11 真空処理室 13 搬送ローラ 15,17 ゲートバルブ 21 回転機構 23 上側支持部材 25 下側支持部材 27 チャッキング突起 29 モータ 31 基板ホルダー 33 眼鏡レンズ(基板) 41 スパッタ電極 42 ヨーク 43 ターゲット 44 磁石(S極) 45 スパッタ電源 46 磁石(N極) 47 マスフロー 49 スパッタガスボンベ 51 遮蔽板 61 誘導結合型プラズマ発生装置 63 高周波(RF)放電室 65 高周波(RF)コイル 66 内部磁場コイル 67 マッチングボックス 69 高周波(RF)電源 71 遮蔽板 73 マスフロー 75 反応性ガスボンベ 81 キャリア 83 導入室 85 予備真空室 87,89 膜厚補正板 91 位置センサ 93 位置センサ Reference Signs List 11 vacuum processing chamber 13 transport rollers 15, 17 gate valve 21 rotation mechanism 23 upper support member 25 lower support member 27 chucking projection 29 motor 31 substrate holder 33 eyeglass lens (substrate) 41 sputter electrode 42 yoke 43 target 44 magnet (S Pole) 45 Sputter power supply 46 Magnet (N pole) 47 Mass flow 49 Sputter gas cylinder 51 Shielding plate 61 Inductively coupled plasma generator 63 High frequency (RF) discharge chamber 65 High frequency (RF) coil 66 Internal magnetic field coil 67 Matching box 69 High frequency (RF) ) Power supply 71 Shielding plate 73 Mass flow 75 Reactive gas cylinder 81 Carrier 83 Introducing chamber 85 Preliminary vacuum chamber 87, 89 Film thickness compensating plate 91 Position sensor 93 Position sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神谷 肇 東京都新宿区中落合2丁目7番5号 ホー ヤ株式会社内 (72)発明者 松本 繁治 東京都品川区南大井3丁目2番6号 株式 会社シンクロン内 (72)発明者 菊池 和夫 東京都品川区南大井3丁目2番6号 株式 会社シンクロン内 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hajime Kamiya 2-7-5 Nakaochiai, Shinjuku-ku, Tokyo Inside Hoya Corporation (72) Inventor Shigeharu Matsumoto 3-2-6 Minamioi, Shinagawa-ku, Tokyo Inside Syncron Co., Ltd. (72) Inventor Kazuo Kikuchi 3-2-6 Minamioi, Shinagawa-ku, Tokyo Inside Syncron Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 スパッタにより、眼鏡レンズの両面に同
時に成膜する方法であって、 眼鏡レンズを平板状の基板ホルダーに搭載して真空処理
室内に導入し、 該真空処理室内において、以下の(i)スパッタ工程と
(ii)変換工程とを繰り返すことにより、所望の膜厚
の金属化合物薄膜を眼鏡レンズの両面に同時に形成する
ことを特徴とする両面同時成膜方法。 (i)眼鏡レンズの両面側に設けられたスパッタ装置を
用いてターゲットを眼鏡レンズにスパッタし、眼鏡レン
ズの両面にそれぞれ金属ないしは金属の不完全反応物か
らなる金属系超薄膜を形成するスパッタ工程 (ii)金属系超薄膜と反応性ガスとを反応せしめて金
属化合物の超薄膜に変換せしめる変換工程
1. A method for simultaneously forming a film on both surfaces of a spectacle lens by sputtering, wherein the spectacle lens is mounted on a flat substrate holder and introduced into a vacuum processing chamber. A double-sided simultaneous film forming method, wherein a metal compound thin film having a desired thickness is simultaneously formed on both sides of an eyeglass lens by repeating i) a sputtering step and (ii) a converting step. (I) A sputtering process in which a target is sputtered on the spectacle lens using a sputtering device provided on both sides of the spectacle lens, and a metal-based ultrathin film made of a metal or an incompletely reacted metal is formed on each side of the spectacle lens. (Ii) a conversion step of reacting a metal-based ultrathin film with a reactive gas to convert it into a metal compound ultrathin film
【請求項2】 前記変換工程を、反応性ガスのプラズマ
に曝すことにより行なう請求項1に記載の両面同時成膜
方法。
2. The double-sided simultaneous film forming method according to claim 1, wherein the conversion step is performed by exposing the substrate to a reactive gas plasma.
【請求項3】 前記変換工程を、反応性ガスのイオンビ
ームを照射することにより行なう請求項1に記載の両面
同時成膜方法。
3. The double-sided simultaneous film forming method according to claim 1, wherein the conversion step is performed by irradiating an ion beam of a reactive gas.
【請求項4】 前記基板ホルダーを円板状としその中心
を軸として真空処理室内で水平方向に回転せしめ、基板
ホルダーの中心から外周部に向かって面積が拡がるよう
な略台形ないし扇形のターゲットをスパッタすることに
より、眼鏡レンズに形成する薄膜の膜厚分布が均一にな
るようにした請求項1に記載の両面同時成膜方法。
4. A substantially trapezoidal or fan-shaped target in which the substrate holder is formed in a disk shape and is rotated in a horizontal direction in a vacuum processing chamber with its center as an axis, so that the area increases from the center of the substrate holder toward the outer peripheral portion. 2. The simultaneous double-sided film forming method according to claim 1, wherein the film thickness distribution of the thin film formed on the spectacle lens is made uniform by sputtering.
【請求項5】 前記スパッタ工程と変換工程とのガス分
圧を雰囲気個々に制御する遮蔽板を、真空処理室内に設
けて、スパッタ工程および変換工程を施す請求項1に記
載の両面同時成膜方法。
5. The simultaneous double-sided film formation according to claim 1, wherein a shielding plate for controlling the gas partial pressures of the sputtering step and the conversion step for each atmosphere is provided in the vacuum processing chamber to perform the sputtering step and the conversion step. Method.
【請求項6】 前記基板ホルダーを円板状としその中心
を軸として真空処理室内で水平方向に回転せしめ、基板
ホルダーに搭載された眼鏡レンズとターゲットとの間
に、眼鏡レンズに形成される薄膜の膜厚分布を均一とす
るためのマスキング部材として膜厚補正板を設け、 さらに、真空処理室に連設して、真空処理室を大気に曝
すことなく真空処理室と連通可能な予備真空室を設け、
この予備真空室と真空処理室との間で膜厚補正板の交換
を行なう請求項1に記載の両面同時成膜方法。
6. A thin film formed on a spectacle lens between a spectacle lens mounted on the substrate holder and a target, wherein the substrate holder is formed in a disc shape and is rotated in a horizontal direction about a center thereof in a vacuum processing chamber. A film thickness compensating plate is provided as a masking member to make the film thickness distribution uniform, and a preliminary vacuum chamber connected to the vacuum processing chamber and capable of communicating with the vacuum processing chamber without exposing the vacuum processing chamber to the atmosphere. Is established,
2. The double-sided simultaneous film forming method according to claim 1, wherein the film thickness correction plate is exchanged between the preliminary vacuum chamber and the vacuum processing chamber.
【請求項7】 スパッタにより、眼鏡レンズの両面に同
時に成膜する装置であって、 真空処理室と、 真空処理室内に配設され、眼鏡レンズを搭載して水平方
向に回転する円板状の基板ホルダーと、 基板ホルダーの両面側にそれぞれ設けられたスパッタ装
置および反応性ガス供給源とを具え、上記基板ホルダー
を回転することにより、眼鏡レンズをスパッタ源と反応
性ガス供給源との間に交互に繰返し搬送し、眼鏡レンズ
の両面に対してスパッタ装置によって金属ないし金属の
不完全反応物からなる金属系超薄膜をスパッタにより形
成し、ついで、反応性ガス供給源により、金属性超薄膜
と反応性ガスとを反応せしめて金属化合物の超薄膜に変
換せしめ、基板ホルダーの回転により上記金属系超薄膜
の形成と金属化合物の超薄膜への変換を繰り返すことに
よって所望の膜厚の薄膜を形成するようにしたことを特
徴とする両面同時成膜装置。
7. An apparatus for simultaneously forming a film on both surfaces of a spectacle lens by sputtering, comprising: a vacuum processing chamber; and a disk-shaped apparatus which is disposed in the vacuum processing chamber and has a spectacle lens mounted thereon and rotates in a horizontal direction. A substrate holder, comprising a sputtering device and a reactive gas supply source respectively provided on both surface sides of the substrate holder, and rotating the substrate holder to move the spectacle lens between the sputter source and the reactive gas supply source. It is alternately and repeatedly conveyed, and a metal-based ultrathin film made of a metal or an incomplete reactant of metal is formed on both surfaces of the spectacle lens by sputtering with a sputtering device. By reacting with the reactive gas and converting it to an ultrathin metal compound, the substrate holder is rotated to form the ultrathin metal-based film and convert the metal compound to an ultrathin film. A double-sided simultaneous film forming apparatus characterized in that a thin film having a desired film thickness is formed by turning back.
【請求項8】 前記反応性ガス供給源としてプラズマ源
を用いる請求項7に記載の両面同時成膜装置。
8. The simultaneous double-sided film forming apparatus according to claim 7, wherein a plasma source is used as the reactive gas supply source.
【請求項9】 前記反応性ガス供給源としてイオンビー
ム発生源を用いる請求項7に記載の両面同時成膜装置。
9. The double-sided simultaneous film forming apparatus according to claim 7, wherein an ion beam generating source is used as the reactive gas supply source.
【請求項10】 前記スパッタ装置のターケットを、対
向する基板ホルダーの中心から外周部に向かって面積が
拡がるような台形ないし扇形のターゲットとした請求項
7に記載の両面同時成膜装置。
10. The double-sided simultaneous film forming apparatus according to claim 7, wherein the turret of the sputtering apparatus is a trapezoidal or fan-shaped target whose area increases from the center of the opposing substrate holder toward the outer peripheral portion.
【請求項11】 前記スパッタ源と反応性ガス供給源と
の間に遮蔽板を設け、スパッタ源におけるスパッタのガ
ス分圧と、反応性ガス供給源による反応、変換時のガス
分圧とを個別に制御するようにしたことを特徴とする請
求項7に記載の両面同時成膜装置。
11. A shielding plate is provided between the sputter source and the reactive gas supply source, and the partial pressure of the sputter gas in the sputter source and the gas partial pressure during the reaction and conversion by the reactive gas supply source are individually set. The double-sided simultaneous film forming apparatus according to claim 7, wherein the control is performed in the following manner.
【請求項12】 さらに、前記真空処理室に連設して、
真空処理室を大気に曝することなく連通可能な予備真空
室と;基板ホルダーとケーゲットとの間に設けられ、眼
鏡レンズに形成される薄膜の膜厚分布を均一とするため
のマスキング部材としての膜厚補正板と;膜厚補正板を
真空処理室と予備真空室との間で移送する移送手段とを
設け;真空処理室を大気に曝すことなく、膜厚補正板の
交換を可能とした請求項7に記載の両面同時成膜装置。
12. Further, the vacuum processing chamber is connected to the vacuum processing chamber,
A preparatory vacuum chamber capable of communicating without exposing the vacuum processing chamber to the atmosphere; provided between the substrate holder and the casing, as a masking member for uniforming the film thickness distribution of the thin film formed on the spectacle lens. A film thickness correction plate; and a transfer means for transferring the film thickness correction plate between the vacuum processing chamber and the preliminary vacuum chamber; enabling replacement of the film thickness correction plate without exposing the vacuum processing chamber to the atmosphere. The double-sided simultaneous film forming apparatus according to claim 7.
JP14322297A 1997-05-16 1997-05-16 Double-sided simultaneous film formation method and apparatus Expired - Fee Related JP4005172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14322297A JP4005172B2 (en) 1997-05-16 1997-05-16 Double-sided simultaneous film formation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14322297A JP4005172B2 (en) 1997-05-16 1997-05-16 Double-sided simultaneous film formation method and apparatus

Publications (2)

Publication Number Publication Date
JPH10317136A true JPH10317136A (en) 1998-12-02
JP4005172B2 JP4005172B2 (en) 2007-11-07

Family

ID=15333740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14322297A Expired - Fee Related JP4005172B2 (en) 1997-05-16 1997-05-16 Double-sided simultaneous film formation method and apparatus

Country Status (1)

Country Link
JP (1) JP4005172B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256429A (en) * 2001-02-28 2002-09-11 Tomonobu Hata Sputtering apparatus
JP2004137598A (en) * 2002-09-27 2004-05-13 Matsushita Electric Ind Co Ltd Film-deposition apparatus and method for exchanging film-control device
JP2007507618A (en) * 2003-10-07 2007-03-29 デポジション・サイエンシイズ・インコーポレイテッド Apparatus and method for depositing rutile titanium dioxide at high speed
US7198699B2 (en) 2002-05-06 2007-04-03 Guardian Industries Corp. Sputter coating apparatus including ion beam source(s), and corresponding method
KR100972045B1 (en) * 2008-01-31 2010-07-22 조영상 both side multilayer thin flim laminating device of boards using reactive sputtering process
JP2011102436A (en) * 2010-12-24 2011-05-26 Shincron:Kk Thin film deposition method and thin film deposition system
JP2018172765A (en) * 2017-03-31 2018-11-08 芝浦メカトロニクス株式会社 Plasma treatment apparatus
CN111020523A (en) * 2019-12-12 2020-04-17 安徽顺彤包装材料有限公司 Environment-friendly packaging film coating machine and using method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256429A (en) * 2001-02-28 2002-09-11 Tomonobu Hata Sputtering apparatus
JP4573450B2 (en) * 2001-02-28 2010-11-04 朋延 畑 Sputtering equipment
US7198699B2 (en) 2002-05-06 2007-04-03 Guardian Industries Corp. Sputter coating apparatus including ion beam source(s), and corresponding method
JP2004137598A (en) * 2002-09-27 2004-05-13 Matsushita Electric Ind Co Ltd Film-deposition apparatus and method for exchanging film-control device
JP2007507618A (en) * 2003-10-07 2007-03-29 デポジション・サイエンシイズ・インコーポレイテッド Apparatus and method for depositing rutile titanium dioxide at high speed
KR100972045B1 (en) * 2008-01-31 2010-07-22 조영상 both side multilayer thin flim laminating device of boards using reactive sputtering process
JP2011102436A (en) * 2010-12-24 2011-05-26 Shincron:Kk Thin film deposition method and thin film deposition system
JP2018172765A (en) * 2017-03-31 2018-11-08 芝浦メカトロニクス株式会社 Plasma treatment apparatus
CN111020523A (en) * 2019-12-12 2020-04-17 安徽顺彤包装材料有限公司 Environment-friendly packaging film coating machine and using method thereof

Also Published As

Publication number Publication date
JP4005172B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP3700793B2 (en) Vacuum processing apparatus, method for processing substrate in vacuum processing apparatus, and lock for vacuum processing apparatus
TWI499682B (en) Plasma processing chambers and methods of depositing thin films
KR0146410B1 (en) Method for forming ti-tin laminates and magnetron cathode
US6899795B1 (en) Sputter chamber as well as vacuum transport chamber and vacuum handling apparatus with such chambers
JP2001043530A (en) Formation of protective film for information recording disk and apparatus for forming thin film for information recording disk
EP0699245B1 (en) Process for coating substrates
JP2002088471A (en) Sputtering system
US6187159B1 (en) Mechanism for setting optical lens base material on holder
JP2000054131A (en) Device for coating substrate in vacuum chamber
JPH08176821A (en) Formation of thin film and device therefor
JPH10317136A (en) Both side simultaneous coating forming method and device therefor
JP2004204304A (en) Thin film manufacturing method and sputtering apparatus
JP4345869B2 (en) Film thickness correction mechanism for sputter deposition
JPH0649937B2 (en) Magnetic film forming equipment
JP2002256428A (en) Sputtering apparatus
JP3213029B2 (en) Plasma processing apparatus for disk substrate and processing method thereof
JP2002294446A (en) Sputter source and film forming apparatus
JP2637171B2 (en) Multi-source sputtering equipment
JP2004043880A (en) Film deposition method, film deposition apparatus, optical element, and projection aligner
JP2006022389A (en) Thin-film-forming method
JP2002088470A (en) Sputtering system
JP7132060B2 (en) Deposition equipment
JP2001247963A (en) Ecr sputter film forming apparatus
JPH05271924A (en) Simultaneous formation of films by sputtering on plural substrates and device therefor and system for simultaneously forming films on plural substrates
WO2020137145A1 (en) Film forming device and film forming method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070823

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees