JPH1029841A - Production of artificial aggregate - Google Patents

Production of artificial aggregate

Info

Publication number
JPH1029841A
JPH1029841A JP18645096A JP18645096A JPH1029841A JP H1029841 A JPH1029841 A JP H1029841A JP 18645096 A JP18645096 A JP 18645096A JP 18645096 A JP18645096 A JP 18645096A JP H1029841 A JPH1029841 A JP H1029841A
Authority
JP
Japan
Prior art keywords
mixture
artificial aggregate
fly ash
firing
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18645096A
Other languages
Japanese (ja)
Inventor
Koji Kawamoto
孝次 川本
Itaru Hayakawa
至 早川
Shingo Sudo
真悟 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP18645096A priority Critical patent/JPH1029841A/en
Publication of JPH1029841A publication Critical patent/JPH1029841A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique by which fly ash that is obtained by collecting dust scattered into a flue gas at the time of incinerating municipal waste, is not disposed as waste but handled as a resource and effectively utilized as artificial aggregate. SOLUTION: In this production, fly ash is mixed with bentonite used as a binder and a blending material used as a composition adjuster to obtain a mixture and then, the mixture is fired. At this time, the mixing ratios are adjusted so that the chemical composition of the mixture after firing contains 20 to 80wt.% silica and 10 to 35wt.% calcium oxide and the fired mixture thus obtained is pulverized into a pulverized material having a <=15μm average particle size. Then, water is added to the resultant pulverized material to form formed bodies and thereafter, if necessary, the formed bodies are dried and then, the resulting formed bodies are fired to produce the objective artificial aggregate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみの焼却時
に排ガス中に飛散する飛灰の資源化に関し、特に当該飛
灰から建築、土木用等の骨材を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the recycling of fly ash scattered in exhaust gas during incineration of municipal solid waste, and more particularly to a method for producing aggregates for buildings and civil engineering from the fly ash.

【0002】[0002]

【従来の技術】本明細書で、飛灰は、都市ごみの焼却時
に排ガス中に飛散した粉塵を捕集したものをいう。
2. Description of the Related Art In the present specification, fly ash refers to a substance obtained by collecting dust scattered in exhaust gas at the time of incineration of municipal waste.

【0003】飛灰の大半は廃棄物として埋め立て処分さ
れている。しかし、この飛灰中には、鉛、亜鉛等の重金
属類が多く含まれている。このため、埋め立て後の溶出
を防止するため、重金属類の溶出防止処理が施されてい
る。
[0003] Most fly ash is landfilled as waste. However, this fly ash contains many heavy metals such as lead and zinc. For this reason, in order to prevent elution after landfill, a treatment for preventing elution of heavy metals is performed.

【0004】飛灰より重金属を溶出させないようにする
ため現在採用され、あるいは検討されている技術、すな
わち溶出防止技術は以下のようなものである。
[0004] Techniques currently adopted or studied to prevent heavy metals from being eluted from fly ash, ie, elution prevention techniques, are as follows.

【0005】a.溶融固化 この方法では、飛灰や主灰を加熱溶融し、その後冷却固
化する。このとき、飛灰や主灰の含有物によってはガラ
ス化するものもある。この方法は、飛灰や主灰の減容化
が図れるものの、エネルギー消費量が高く、コスト的に
は全く経済性のないものとなりかねない。また生成する
ガラス(スラグガラス)の資源化が難しい。
A. Melt solidification In this method, fly ash and main ash are heated and melted, and then cooled and solidified. At this time, some of the fly ash and the main ash contain vitrified materials. Although this method can reduce the volume of fly ash and main ash, it consumes a large amount of energy and may not be economical at all in terms of cost. In addition, it is difficult to recycle glass (slag glass) to be generated.

【0006】b.セメント固化 この方法では、その名の通りセメントを混ぜ込み、固化
する。混合するセメントの分だけ処理物が増量するた
め、最終処分場の寿命を縮めることになり、問題が大き
い。コスト的には安価であるものの、経済的というには
ほど遠い状況である。
B. Cement solidification In this method, cement is mixed and solidified as the name implies. Since the amount of treated material is increased by the amount of the cement to be mixed, the life of the final disposal site is shortened, which is a serious problem. Although cheap in terms of cost, it is far from economic.

【0007】C.キレート処理 この方法では、鉛や亜鉛等の重金属類をキレート剤によ
り安定な化合物として溶出を防止する。キレート剤が高
価であることと、長期の重金属類の安定効果の面で信頼
性が必ずしも確かなものではない。また、焼却灰の減容
化の面で問題がある。
C. Chelation treatment In this method, heavy metals such as lead and zinc are prevented from being eluted by a chelating agent as a stable compound. The reliability is not always reliable in terms of the expensive chelating agent and the long-term stability of heavy metals. There is also a problem in reducing the volume of incinerated ash.

【0008】d.酸洗浄 この方法では、飛灰を酸洗浄し、予め溶出する可能性の
高い金属分を除去し、洗浄後の飛灰を埋め立て、洗浄水
を別途処理する。処理設備が大規模となり、焼却灰の減
容化の面でも問題を抱えている。
D. Acid Cleaning In this method, fly ash is acid-cleaned to remove metals that are likely to elute in advance, landfill the fly ash after cleaning, and separately treat washing water. The treatment equipment has become large-scale, and there is a problem in terms of volume reduction of incinerated ash.

【0009】[0009]

【発明が解決しようとする課題】上記方法では何れも、
専ら重金属類の溶出防止が考案され、その再利用は考慮
されていない。従って、飛灰の大半部分が埋め立て処分
となっているばかりか、セメントの混ぜ込みなどで、新
たな廃棄物すら生みだしかねない。しかし、埋め立て処
分場、特に飛灰を処理するための管理型の最終処分場は
残余年数が少なくなる一方であり、多くの自治体が処分
場の確保と寿命の延長に苦慮しているところである。
In each of the above methods,
Prevention of elution of heavy metals was devised exclusively, and its reuse is not considered. Therefore, not only most of fly ash is landfilled, but also new waste may be generated by mixing cement. However, landfills, especially managed landfills for processing fly ash, are decreasing in remaining years, and many municipalities are struggling to secure landfills and extend their life.

【0010】加えて、セメント固化、キレート処理、酸
洗浄といった方法では例えば、重金属類の溶出を長期
間、確実に防止できるかどうか、処理コストをどこまで
低下させ得るか、処理設備の運転技術を簡便にするには
どうすべきかといった点で解決すべき点は多い。
In addition, methods such as cement solidification, chelating treatment, and acid washing, for example, make it possible to reliably prevent the elution of heavy metals for a long period of time, reduce the processing cost, and simplify the operation technology of the processing equipment. There are many issues to be resolved in terms of what to do.

【0011】本発明では、これらの欠点を解消し、低コ
ストで重金属類の溶出を長期安定的に防止し、かつ飛灰
を廃棄物として処分するのではなく、資源として有効利
用する技術の提供を課題とする。
According to the present invention, there is provided a technique which solves these drawbacks, inexpensively prevents the elution of heavy metals for a long time, and effectively utilizes fly ash as a resource instead of disposing it as waste. As an issue.

【0012】[0012]

【課題を解決するための手段】上記課題を解決する本発
明の方法では、まず原料である都市ごみの飛灰に粘結材
としてのベントナイトと組成調合材とを混合して混合物
を作り、このとき焼成後の化学組成がシリカが20〜8
0重量%で酸化カルシュウムが10〜35重量%になる
ように調整する。該混合物を平均粒径が15μm以下と
なるように粉砕するのが好ましい。次いで、得られた粉
砕物に水を加えて成形して成形体を得て、その後、要す
れば乾燥した後、この成形体を焼成する。
In the method of the present invention for solving the above-mentioned problems, first, fly ash of municipal solid waste, which is a raw material, is mixed with bentonite as a binder and a composition mixture to form a mixture. When the chemical composition after firing is 20 to 8 silica
It is adjusted so that calcium oxide becomes 10 to 35% by weight at 0% by weight. The mixture is preferably pulverized so that the average particle size is 15 μm or less. Next, water is added to the obtained pulverized material to form a molded body, and after drying if necessary, the molded body is fired.

【0013】前記組成調合材として、珪砂、陶石、長
石、カオリナイト、木節粘度等のシリカを含む鉱物を上
記の化学組成の範囲となるように加えた原料に、必要に
応じて酸化カルシュウム源として石灰石、消石灰、生石
灰等の酸化カルシュウムを含む鉱物を用いるのが望まし
い。焼成温度は、1000〜1250℃が望ましい。
[0013] As the composition-combining material, a mineral containing silica such as silica sand, pottery stone, feldspar, kaolinite, and wood knot viscosity is added to the above-mentioned chemical composition, and if necessary, calcium oxide is added. It is desirable to use minerals containing calcium oxide, such as limestone, slaked lime and quicklime, as a source. The firing temperature is desirably 1000 to 1250 ° C.

【0014】本発明に用いる成形装置としては、所定の
径になるように成形できるものであれば支障はないが、
パンペレタイザーや押し出し成型機を用いると簡便であ
る。また、焼成装置は、連続操業や品質の均一性を勘案
すれば、ロータリーキルンを用いることが好ましい。
There is no problem as long as the molding device used in the present invention can be molded so as to have a predetermined diameter.
It is convenient to use a pan pelletizer or an extrusion molding machine. In addition, it is preferable to use a rotary kiln as the firing apparatus in consideration of continuous operation and quality uniformity.

【0015】[0015]

【発明の実施の形態】本発明者らは、飛灰と組成調合材
と粘結材とを用いて人工骨材を得るべく種々の検討を行
った結果、飛灰と組成調合材とを用いて焼成するに際
し、焼成後のシリカと酸化カルシュウムの含有率を所定
の範囲となるように調整すれば、鉛や亜鉛等の重金属の
溶出を極めて少なくできると共に土木・建築用骨材とし
て十分使用できる強度と化学的品質を持った人工骨材が
焼成できることを見い出し、本発明に至った。以下に、
本発明の各要素について詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted various studies to obtain an artificial aggregate using fly ash, a composition mixture and a binder, and as a result, have found that fly ash and a composition mixture are used. During firing, if the content of silica and calcium oxide after firing is adjusted to be within a predetermined range, elution of heavy metals such as lead and zinc can be extremely reduced and can be sufficiently used as an aggregate for civil engineering and construction. The present inventors have found that an artificial aggregate having strength and chemical quality can be fired, and have reached the present invention. less than,
Each element of the present invention will be described in detail.

【0016】シリカ含有率および酸化カルシウム含有率 焼成物中のシリカの含有率が20〜80重量%以下で酸
化カルシュウムの含有率を10〜35重量%の範囲とな
るようにした場合、これらの焼成物より重金属の溶出が
少なく、かつ建築用として高強度を有し、耐久性にも優
れている。すなわち、本発明の方法において、シリカ含
有率を20重量%以上とするのは、これよりシリカ含有
量が低い場合には、焼成後の強度が低く、また耐久性が
悪くなるからである。一方、シリカの含有率が80重量
%を超えると、組成調合材の量が飛灰の数重量倍となる
ことと、焼成温度が1250℃を超え燃料コストが高く
なり、焼成設備の高耐熱化が必要となり実用的でなくな
るからである。
Silica Content and Calcium Oxide Content When the content of silica in the fired product is 20 to 80% by weight or less and the content of calcium oxide is in the range of 10 to 35% by weight, It has less elution of heavy metals than products, has high strength for construction, and has excellent durability. That is, the reason why the silica content is set to 20% by weight or more in the method of the present invention is that if the silica content is lower than this, the strength after firing is low and the durability is poor. On the other hand, when the content of silica exceeds 80% by weight, the amount of the composition mixture becomes several times as much as that of fly ash, and the sintering temperature exceeds 1250 ° C., and the fuel cost increases. This is necessary and is not practical.

【0017】また、酸化カルシュウムの含有量を10重
量%以上とするのは、これより酸化カルシュウム含有量
が低い場合には、骨材焼成時に発泡膨張を起こし高強度
化ができないからである。一方、酸化カルシュウムの含
有率が35重量%を超えると、焼成温度が1250℃を
超え、骨材の焼成可能な適正焼成温度の幅が狭くなって
好ましくない。すなわち、適正焼成温度を超えると、キ
ルン内壁に落着したり、骨材相互に落着し、適正温度以
下では、焼結不十分で骨材強度が小さく、重金属の溶出
も多くなり、好ましい品質の骨材を安定して焼成できな
くなる。従って、35重量%以下にして、適正焼成温度
の幅を確保する。
The reason why the content of calcium oxide is set to 10% by weight or more is that if the content of calcium oxide is lower than this, foam expansion occurs at the time of sintering of the aggregate, and high strength cannot be achieved. On the other hand, if the content of calcium oxide exceeds 35% by weight, the firing temperature exceeds 1250 ° C., and the range of the appropriate firing temperature at which the aggregate can be fired becomes narrow, which is not preferable. In other words, if the temperature exceeds the proper firing temperature, it settles on the inner wall of the kiln or aggregates with each other. If the temperature is lower than the appropriate temperature, the sintering is insufficient, the aggregate strength is small, and the elution of heavy metals is increased. The material cannot be fired stably. Therefore, the range of the appropriate firing temperature is ensured at 35% by weight or less.

【0018】飛灰 表1に飛灰の組成を示す。シリカの含有量は適正組成以
下である場合が多いので、組成調合材として珪砂、陶
石、長石、カオリナイト、木節粘度等のシリカ、または
該シリカとアルミナを含む鉱物を用いて、補充する。酸
化カルシュウムは適正組成内かそれ以上の場合が多く、
必ずしも酸化カルシュゥムを含む組成調合材を必要とし
ない。むしろ酸化カルシュウムは適正組成範囲を超える
ことがあり、この場合は、シリカを含む組成調合材によ
り適正組成範囲内になるように調整する。
[0018] The composition of the fly ash to fly ash in Table 1. Since the content of silica is often less than the proper composition, it is supplemented by using silica such as silica sand, pottery stone, feldspar, kaolinite, silica such as wood knot viscosity, or a mineral containing the silica and alumina as a composition mixture. . Calcium oxide is often within the proper composition or higher,
A composition preparation containing calcium oxide is not necessarily required. Rather, calcium oxide may exceed the proper composition range. In this case, the composition is adjusted to be within the proper composition range by using a composition preparation containing silica.

【0019】粘結剤 ロータリーキルンなどの回転炉で焼成する場合、ペレッ
トが転動してキルン内を移動する際にすり減って粉体を
発生する。この発生する粉体が多いと、実収率の低下や
煤煙の捕集設備への負荷を増加させる。加えて、キルン
内の焼成部でペレット表面に粉体が付着してこれが接着
剤の役割を果たし、ペレット相互に付着したり、キルン
内壁へ付着し易くなる。これらの付着物の生成が甚だし
くなると焼成操作が困難となる。粘結材を用いるのは、
キルン内での粉化を低減するためであり、ベントナイト
がこの目的に適している。粘結剤は焼成前の物量に対し
て0.2〜10重量%となる量を加えると良好な結果が
得られる。添加量がこの範囲より少ない場合は粘結材と
しての効果が得られず、この範囲より多くしても更なる
粘結効果の増加は期待できない。
When firing in a rotary kiln such as a binder rotary kiln, the pellets are tumbled and abraded when moving in the kiln to generate powder. When the amount of generated powder is large, the actual yield decreases and the load on the soot collection equipment increases. In addition, the powder adheres to the surface of the pellets in the firing section in the kiln, and this serves as an adhesive, which makes it easier for the pellets to adhere to each other and to adhere to the inner wall of the kiln. If the formation of these deposits becomes excessive, the firing operation becomes difficult. The use of binder
Bentonite is suitable for this purpose to reduce powdering in the kiln. Good results can be obtained by adding the binder in an amount of 0.2 to 10% by weight based on the amount before firing. If the addition amount is less than this range, the effect as a binder will not be obtained, and if it is more than this range, further increase in the binding effect cannot be expected.

【0020】混合物の粒径 本発明の方法では、飛灰と組成調合材と粘結材とを混合
した混合物の平均粒径が15μmより大きいと、最終的
に得られる人工軽量骨材の強度が低下する。よって、平
均粒径が15μm以下となるように粉砕した後に成形す
ることが必要である。なお、この粉砕が均一混合の役割
を果たすことは言うまでもない。粉砕および混合して得
た混合物に水を加えて、転動造粒かまたは押し出し造粒
により、ペレットに成形する。このようにして得た成形
体の大きさをどの程度にするかは、製品として得る人工
軽量骨材の大きさにもよるが、一般に5〜15mmとす
ることが多い。
[0020] In the method of the particle size present invention mixtures, average particle diameter and 15μm greater than the mixture obtained by mixing a fly ash with a composition formulated material and caking additive, finally obtained strength of the artificial lightweight aggregate is descend. Therefore, it is necessary to form after pulverization so that the average particle size is 15 μm or less. Needless to say, this grinding plays a role of uniform mixing. Water is added to the mixture obtained by grinding and mixing, and the mixture is formed into pellets by tumbling granulation or extrusion granulation. The size of the molded body obtained in this way depends on the size of the artificial lightweight aggregate obtained as a product, but is generally 5 to 15 mm.

【0021】焼成 焼成は1000〜1250℃とするが、この組成より低
い温度では焼成が十分でなく、この範囲より高い温度で
は、ペレットの粘結性が高まり、ペレットの付着により
操業不能となる確率が高くなる。さらに、焼成温度が1
250℃より高いと、燃料コストが高くなり、焼成設備
の高耐熱化が必要となり実用的でなくなる。焼成に用い
る炉はロータリーキルンが好ましい。ロータリーキルン
は設備が簡易で焼成した骨材の品質にぱらつきが少な
く、重金属類の溶出を少なくして無害化する場合の信頼
性が高い点で骨材を焼成する設備として好ましい。な
お、成形体の焼成前に、必要に応じて乾燥を行うことは
いうまでもない。
[0021] Firing is carried out at a temperature of 1000 to 1250 ° C, but at a temperature lower than this composition, the firing is not sufficient, and at a temperature higher than this range, the stickiness of the pellets is increased, and the operation becomes impossible due to the adhesion of the pellets. Will be higher. Furthermore, the firing temperature is 1
If the temperature is higher than 250 ° C., the fuel cost increases, and the firing equipment needs to have high heat resistance, which is not practical. The furnace used for firing is preferably a rotary kiln. The rotary kiln is preferred as a facility for sintering aggregates because the facility is simple and the quality of the baked aggregate is small, and the reliability of detoxification by reducing elution of heavy metals is high. Needless to say, drying is performed as necessary before firing the molded body.

【0022】嵩比重 飛灰を主原料として組成調合材と粘結材を添加して粉砕
し、混合した後に造粒して得た乾燥嵩比重1.2〜1.
9のペレットをキルン内で加熱すると、焼成収縮して、
絶乾比重が1.9〜2.3程度の高強度な人工骨材とな
る。
A dry bulk specific gravity of 1.2 to 1.1 obtained by adding a composition mixture material and a binder using the bulk specific gravity fly ash as a main raw material, pulverizing, mixing, and granulating.
When the pellets of No. 9 were heated in the kiln, they shrank and shrunk,
It becomes a high-strength artificial aggregate having a bone-dry specific gravity of about 1.9 to 2.3.

【0023】[0023]

【実施例】以下実施例を用いて本発明を説明する。The present invention will be described below with reference to examples.

【0024】[実施例1−1−1〜3−1−2]実験に
使用した3種類の焼却飛灰、珪砂、長石、ベントナイ
ト、石灰石の化学組成を表1に示した。これらの原料を
表2に示す配合で計量採取してボールミルで粉砕混合し
た。粉砕した原料の粒度分布はレーザー回折式粒度分布
計で測定した。得られた粉砕原料に水を加えながらパン
ペレタイザーで直径5〜15mm程度の球状に造粒し乾
燥した後、ロータリーキルン(煉瓦内径500mm×長
さ4800mm)に供給して焼成した。焼成後の骨材
(焼成品)の化学組成を表2〜表4に、原料の平均粒径
と焼成温度を表7に示した。焼成した骨材の比重はJIS
A 1110に基づいて測定し、圧壊強度は直径約10mmの
骨材について測定した。得られた結果を表7に合わせて
示した。
Examples 1-1-1 to 3-1-2 The chemical compositions of the three types of incinerated fly ash, quartz sand, feldspar, bentonite and limestone used in the experiments are shown in Table 1. These raw materials were weighed and collected in the composition shown in Table 2 and pulverized and mixed in a ball mill. The particle size distribution of the pulverized raw material was measured with a laser diffraction type particle size distribution meter. The obtained crushed raw material was granulated into a spherical shape with a diameter of about 5 to 15 mm by a pan pelletizer while adding water, dried, and then supplied to a rotary kiln (brick inner diameter 500 mm × length 4800 mm) for firing. Tables 2 to 4 show the chemical composition of the aggregate (fired product) after firing, and Table 7 shows the average particle size and firing temperature of the raw materials. The specific gravity of the fired aggregate is JIS
The crushing strength was measured on an aggregate having a diameter of about 10 mm based on A1110. The results obtained are shown in Table 7.

【0025】比重については約1.9から2.3まで製
造条件により異なっているが、何れも焼成時に原料の約
20〜30重量%の塩素化合物等による揮散減量による
比重低下以上に焼成収縮によって焼き締まり強度が高く
なっている。市販の人工軽量骨材の圧壊強度が約50k
gfであるのに対して、実施例では90kgf〜260
kgf程度となり、一般の構造用コンクリートの骨材と
してのみならず、高強度コンクリート用骨材としても利
用できる。
The specific gravity varies depending on the production conditions from about 1.9 to 2.3, but in any case, the firing is caused by shrinkage due to the shrinkage of the raw material due to the loss of volatilization by the chlorine compound of about 20 to 30% by weight. The compaction strength is high. The crushing strength of commercially available artificial lightweight aggregate is about 50k
gf, in the embodiment, 90 kgf to 260 kgf.
It is about kgf and can be used not only as an aggregate for general structural concrete but also as an aggregate for high-strength concrete.

【0026】焼成した骨材からの重金属類の溶出性につ
いては環境庁告示13号に規定する方法により塩酸酸性
と水酸化ナトリウムアルカリ性について、鉛と亜鉛の溶
出試験を行った。その結果、表2〜表4の実施例総てに
ついて鉛は環境基準の0.01PPM以下であり、亜鉛
は水質汚濁防止法で規制する排水基準の5PPM以下と
なった。
With respect to the dissolution property of heavy metals from the fired aggregate, the dissolution test of lead and zinc was carried out for acidity of hydrochloric acid and alkalinity of sodium hydroxide in accordance with the method prescribed in Notification No. 13 of the Environment Agency. As a result, in all of the examples in Tables 2 to 4, lead was 0.01 PPM or less as an environmental standard, and zinc was 5 PPM or less as a drainage standard regulated by the Water Pollution Control Law.

【0027】[比較例1−1、1−2]表5、表8の条
件で焼成物を得た。この焼成物の圧潰強度は、市販の人
工軽量骨材程度で、高強度コンクリート用骨材には用い
ることのできないものであった。
Comparative Examples 1-1 and 1-2 A fired product was obtained under the conditions shown in Tables 5 and 8. The crushing strength of this fired product was about the same as a commercially available artificial lightweight aggregate, and could not be used for high-strength concrete aggregate.

【0028】[比較例2−1、2−2 ]表6、表8の
条件で焼成物を得た。この焼成物の圧潰強度は、市販の
人工軽量骨材の圧潰強度以下であり、構造用コンクリー
トには適さないものであった。
Comparative Examples 2-1 and 2-2 A fired product was obtained under the conditions shown in Tables 6 and 8. The crushing strength of this fired product was lower than the crushing strength of commercially available artificial lightweight aggregate, and was not suitable for structural concrete.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【表5】 [Table 5]

【0034】[0034]

【表6】 [Table 6]

【0035】[0035]

【表7】 [Table 7]

【0036】[0036]

【表8】 [Table 8]

【0037】[0037]

【発明の効果】本発明は、以上のように構成されている
ので、埋め立て後溶出しやすい重金属類を無害化すると
共に土木.建築用として高強度な優れた骨材を比較的低
コストで生産することができる。これにより、従来の廃
棄物を無害化して骨材資源として有効利用することがで
き、埋め立て処分場確保の問題も解消できる。また、重
金属類の無害化や灰の減容化にかかっていた多大なコス
トを低減することもでき、環境問題・資源有効利用上極
めて意義が大きい。
According to the present invention, since the present invention is constituted as described above, heavy metals which are easily eluted after landfill are made harmless and civil engineering. An excellent aggregate having high strength for construction can be produced at a relatively low cost. Thereby, the conventional waste can be detoxified and effectively used as aggregate resources, and the problem of securing a landfill disposal site can be solved. In addition, enormous costs involved in detoxification of heavy metals and volume reduction of ash can be reduced, which is extremely significant in terms of environmental problems and effective use of resources.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 飛灰を原料とした焼成による人工骨材の
製造方法であって、ベントナイトと組成調合材とを前記
飛灰に混合して混合物を作り、このとき焼成後の化学組
成が20〜80重量%のシリカおよび10〜35重量%
の酸化カルシュウムとなるように調整し、該混合物を粉
砕し成形した成形体を焼成することを特徴とする人工骨
材の製造方法。
1. A method for producing an artificial aggregate by firing using fly ash as a raw material, wherein bentonite and a composition-mixed material are mixed with the fly ash to form a mixture. -80% by weight silica and 10-35% by weight
A method for producing an artificial aggregate, characterized in that the mixture is adjusted to be calcium oxide, and the mixture is pulverized and the molded body is fired.
【請求項2】 混合物を平均粒径が15μm以下になる
ようにしたことを特徴とする請求項1記載の人工骨材の
製造方法。
2. The method for producing an artificial aggregate according to claim 1, wherein the mixture has an average particle diameter of 15 μm or less.
【請求項3】 1000〜1250℃で焼成するように
したことを特徴とする請求項1記載の人工骨材の製造方
法。
3. The method for producing an artificial aggregate according to claim 1, wherein the firing is performed at 1000 to 1250 ° C.
【請求項4】 飛灰を原料とした焼成による人工骨材の
製造方法であって、ベントナイトと組成調合材とを前記
飛灰に混合して混合物を作り、このとき焼成後の化学組
成が20〜80重量%のシリカおよび10〜35重量%
の酸化カルシュウムとなるように調整し、該混合物を平
均粒径が15μm以下になるように粉砕して、成形して
ペレットを得て、該ペレットを乾燥し、1000〜12
50℃で焼成することを特徴とする人工骨材の製造方
法。
4. A method for producing an artificial aggregate by firing using fly ash as a raw material, wherein bentonite and a composition-mixed material are mixed with the fly ash to form a mixture. -80% by weight silica and 10-35% by weight
The mixture is adjusted to be calcium oxide, and the mixture is pulverized so that the average particle size is 15 μm or less, molded to obtain pellets, and the pellets are dried and dried.
A method for producing an artificial aggregate, comprising firing at 50 ° C.
【請求項5】 組成調合材として珪砂、陶石、長石、カ
オリナイト、木節粘度、焼却主灰の少なくとも一種を用
いることを特徴とする請求項1〜4のいずれかに記載の
人工骨材の製造方法。
5. The artificial aggregate according to claim 1, wherein at least one of silica sand, pottery stone, feldspar, kaolinite, wood knot viscosity and incinerated main ash is used as the composition mixture. Manufacturing method.
【請求項6】 組成調合材は、シリカ源として珪砂、陶
石、長石、カオリナイト、木節粘度、焼却主灰の少なく
とも一種を用い、且つ酸化カルシュウム源として石灰
石、消石灰、生石灰の内の一種以上を用いることを特徴
とする請求項1〜4のいずれかに記載の人工骨材の製造
方法。
6. The composition mixture uses at least one of silica sand, porcelain stone, feldspar, kaolinite, wood knot viscosity and incineration main ash as a silica source, and one of limestone, slaked lime and quick lime as a calcium oxide source. The method for producing an artificial aggregate according to any one of claims 1 to 4, wherein the above is used.
【請求項7】 焼成炉としてロータリーキルンを用いる
ことを特徴とする請求項1〜4のいずれかに記載の人工
骨材の製造方法。
7. The method for producing an artificial aggregate according to claim 1, wherein a rotary kiln is used as the firing furnace.
JP18645096A 1996-07-16 1996-07-16 Production of artificial aggregate Pending JPH1029841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18645096A JPH1029841A (en) 1996-07-16 1996-07-16 Production of artificial aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18645096A JPH1029841A (en) 1996-07-16 1996-07-16 Production of artificial aggregate

Publications (1)

Publication Number Publication Date
JPH1029841A true JPH1029841A (en) 1998-02-03

Family

ID=16188676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18645096A Pending JPH1029841A (en) 1996-07-16 1996-07-16 Production of artificial aggregate

Country Status (1)

Country Link
JP (1) JPH1029841A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143556A (en) * 2004-11-24 2006-06-08 Taiheiyo Cement Corp Manufacturing method for artificial aggregate, and artificial aggregate
WO2006074944A1 (en) * 2005-01-14 2006-07-20 Alkemy Ltd. Pyroprocessed aggregates comprising iba and pfa and methods for producing such aggregates
KR100711528B1 (en) * 1998-08-21 2007-04-27 코닌클리케 필립스 일렉트로닉스 엔.브이. Information processing device
JP2009050776A (en) * 2007-08-24 2009-03-12 Hitachi Zosen Corp Method of rendering heavy metal-containing contaminant harmless
CN114195417A (en) * 2021-11-02 2022-03-18 南京钜力智能制造技术研究院有限公司 Fly ash solidified light aggregate production process and production device thereof
CN115925343A (en) * 2023-01-04 2023-04-07 生物炭建材有限公司 Long-acting stable curing industrial solid waste baking-free paving brick and preparation method thereof
CN117510183A (en) * 2023-11-10 2024-02-06 北京科技大学 Concrete aggregate prepared from waste incineration fly ash and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711528B1 (en) * 1998-08-21 2007-04-27 코닌클리케 필립스 일렉트로닉스 엔.브이. Information processing device
JP2006143556A (en) * 2004-11-24 2006-06-08 Taiheiyo Cement Corp Manufacturing method for artificial aggregate, and artificial aggregate
WO2006074944A1 (en) * 2005-01-14 2006-07-20 Alkemy Ltd. Pyroprocessed aggregates comprising iba and pfa and methods for producing such aggregates
JP2009050776A (en) * 2007-08-24 2009-03-12 Hitachi Zosen Corp Method of rendering heavy metal-containing contaminant harmless
CN114195417A (en) * 2021-11-02 2022-03-18 南京钜力智能制造技术研究院有限公司 Fly ash solidified light aggregate production process and production device thereof
CN115925343A (en) * 2023-01-04 2023-04-07 生物炭建材有限公司 Long-acting stable curing industrial solid waste baking-free paving brick and preparation method thereof
CN117510183A (en) * 2023-11-10 2024-02-06 北京科技大学 Concrete aggregate prepared from waste incineration fly ash and preparation method thereof

Similar Documents

Publication Publication Date Title
CN108218272B (en) Environment-friendly artificial aggregate (aggregate) derived from waste
JP2002003248A (en) Method of manufacturing artificial aggregate by using municipal refuse incinerator ash
KR100562169B1 (en) Manufacturing method of lightweight aggregate using ash from municipal and industrial solid waste incinerators
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
GB2211836A (en) Process for converting refuse into a material in pellet form
JP2000302498A (en) Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby
JP2005320188A (en) Inorganic foamed, fired body and its production method
JPH1029841A (en) Production of artificial aggregate
JP2007223841A (en) Method for producing artificial aggregate using waste slag as main raw material
JP3840371B2 (en) Steelmaking slag and sand-washed sludge treatment method
JPH03275134A (en) Utilization of coal ash
JPH1095648A (en) Production of artificial aggregate
JPH08301641A (en) Production of artificial lightweight aggregate
JP2003012355A (en) Method for producing artificial lightweight aggregate
JP3261604B2 (en) Waste treatment method
JP2001253740A (en) Artificial aggregate and its production process
JPH08259946A (en) Method of utilizing coal ash, surplus soil of construction and slag
JP3204104B2 (en) Manufacturing method of artificial lightweight aggregate
JPH0693260A (en) Soil additive
JP2003238221A (en) Method of producing artificial aggregate
JP3552173B2 (en) Manufacturing method of lightweight aggregate using sewage sludge incineration ash
JP2603599B2 (en) Artificial lightweight aggregate and manufacturing method thereof
JPH0739845A (en) Production of recycling materials from refuse incineration ashes, sewer sludge incineration ashes and the like
JP3653300B2 (en) Artificial aggregate and method for producing the same
JP3055899B1 (en) Artificial aggregate and method for producing the same