JPH10284661A - Boiling/cooling device and manufacture therefor - Google Patents

Boiling/cooling device and manufacture therefor

Info

Publication number
JPH10284661A
JPH10284661A JP9331297A JP9331297A JPH10284661A JP H10284661 A JPH10284661 A JP H10284661A JP 9331297 A JP9331297 A JP 9331297A JP 9331297 A JP9331297 A JP 9331297A JP H10284661 A JPH10284661 A JP H10284661A
Authority
JP
Japan
Prior art keywords
wall
heat
flow control
control plate
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9331297A
Other languages
Japanese (ja)
Inventor
Masayoshi Terao
公良 寺尾
Hiroyuki Osakabe
長賀部  博之
Seiji Kawaguchi
清司 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP9331297A priority Critical patent/JPH10284661A/en
Publication of JPH10284661A publication Critical patent/JPH10284661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact inexpensive boiling cooling device which has a simple structure and can prevent interference between vaporized coolant and condensed coolant. SOLUTION: A gastight enclosure 3 consists of an extruded member 6 and a pair of caps 7 for hermetically closing both openings of the extruded member 6. A groove 8 for holding a coolant flow controlling plate 4 is formed on the inner surface of each sidewall 6a of the extruded member 6. The caps 7 are hermetically jointed to both openings of the extruded member 6. The coolant flow controlling plate 4 is made of a metal, such as aluminum and is provided with an opening 4a for flowing vaporized coolant and openings 4b for flowing condensed coolant and both sides thereof are held by the grooves 8 formed on the sides of the extruded member 6. A heating unit is disposed in the center of the surface of the heat-receiving wall 6b of the gastight enclosure 3 and is brought into close contact with the surface of the heat-receiving wall 6 by bolts and fixed thereto.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子等の発
熱体を冷却する沸騰冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling cooling device for cooling a heating element such as a semiconductor element.

【0002】[0002]

【従来の技術】従来技術として、特開昭57−2041
56号公報に記載された沸騰冷却装置がある。この装置
は、図17に示す様に、冷媒を収容する密閉容器100
の上部に発熱体110の熱を受けて沸騰した冷媒蒸気を
液化するための凝縮部120を備える。凝縮部120に
は、上部気相室130と下部気相室140とが形成され
るとともに、その上部気相室130と下部気相室140
とを連通する複数の冷媒通路150が設けられ、且つ冷
媒蒸気を一部の冷媒通路150aに導くためのガイド板
160が下部気相室140に設けられている。これによ
り、複数の冷媒通路150を、冷媒蒸気が上昇する冷媒
蒸気通路150aと凝縮液が下降する液冷媒通路150
bとに分けることができ、冷媒蒸気と凝縮液との干渉を
抑制できることから冷却効率が向上する。
2. Description of the Related Art As a prior art, Japanese Patent Application Laid-Open No. 57-2041
There is a boiling cooling device described in JP-B-56. As shown in FIG. 17, this device is a sealed container 100 for storing a refrigerant.
A condensing section 120 for liquefying the refrigerant vapor that has been boiled by receiving the heat of the heat generating element 110 is provided on the upper part. In the condensing section 120, an upper gas phase chamber 130 and a lower gas phase chamber 140 are formed, and the upper gas phase chamber 130 and the lower gas phase chamber 140 are formed.
Are provided, and a guide plate 160 for guiding the refrigerant vapor to some of the refrigerant passages 150a is provided in the lower gas phase chamber 140. Accordingly, the plurality of refrigerant passages 150 are divided into a refrigerant vapor passage 150a where the refrigerant vapor rises and a liquid refrigerant passage 150 where the condensate liquid descends.
b, and the interference between the refrigerant vapor and the condensate can be suppressed, thereby improving the cooling efficiency.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記の従来
装置は、下部気相室140内でガイド板160を斜めに
配置する構造が複雑で大型化が避けられず、発熱体11
0などを含めた部品レイアウトが冷却装置の大きさなど
による制約を大きく受けることになる。また、従来装置
では、発熱体110を密閉容器100内の冷媒液中に浸
漬させて使用する構成であるため、密閉容器100と発
熱体110を一体に構成するなど製造面で困難な点があ
った。これを解決するために、発熱体110と冷却器を
別体で構成し、後から結合させる場合には、結合部の接
触熱抵抗を低減するために高い平面度が要求され、製造
工程が複雑になる。本発明は、上記事情に基づいて成さ
れたもので、その目的は、簡単な構造で冷媒蒸気と凝縮
液との干渉を防止でき、且つ小型で低コストの沸騰冷却
装置を提供することにある。
However, in the above-mentioned conventional apparatus, the structure in which the guide plate 160 is obliquely arranged in the lower gas phase chamber 140 is inevitably complicated, and the size of the heating element 11 cannot be avoided.
The component layout including 0 is greatly restricted by the size of the cooling device. In addition, in the conventional apparatus, since the heating element 110 is used by being immersed in the refrigerant liquid in the sealed container 100, there is a difficulty in manufacturing such that the sealed container 100 and the heating element 110 are integrally formed. Was. In order to solve this, if the heating element 110 and the cooler are formed separately and then combined later, a high flatness is required to reduce the contact thermal resistance of the joint, and the manufacturing process is complicated. become. The present invention has been made based on the above circumstances, and an object of the present invention is to provide a small-sized, low-cost boiling cooling device that can prevent interference between a refrigerant vapor and a condensate with a simple structure. .

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

(請求項1の手段)密閉容器は、押出成型により設けら
れた押し出し部材と、この押し出し部材の両端開口面を
塞ぐ一対の蓋体とから成り、押し出し部材の対向する二
壁面が受熱壁と放熱壁として設けられ、且つ押し出し部
材の内壁面に冷媒流制御板を保持する保持手段が設けら
れている。この場合、押し出し部材によって密閉容器の
受熱壁と放熱壁とを含む側壁面を一体に成型できるた
め、密閉容器の強度を向上できるとともに、発熱体の取
り付け面である受熱壁表面の平面度も向上できる。ま
た、押し出し部材の両端開口面を蓋体で塞ぐだけの簡単
な構造で密閉容器を構成でき、且つ押し出し部材に保持
手段を一体に設けることで密閉容器内に冷媒流制御板を
保持できるため、従来装置と比較しても極めて製造が容
易であり、コストを低く抑えることができる。更には、
密閉容器に押し出し部材を用いることで大量生産にも適
した沸騰冷却装置を提供できる。
According to a first aspect of the present invention, the closed container includes an extruding member provided by extrusion molding, and a pair of lids closing both open surfaces of the extruding member. The holding means is provided as a wall and holds the refrigerant flow control plate on the inner wall surface of the pushing member. In this case, since the side wall surface including the heat receiving wall and the heat radiating wall of the closed container can be integrally molded by the extruding member, the strength of the closed container can be improved, and the flatness of the heat receiving wall surface on which the heating element is attached is also improved. it can. In addition, since the closed container can be configured with a simple structure of simply closing the opening surfaces at both ends of the extruding member with the lid, and the holding member is integrally provided with the extruding member, the refrigerant flow control plate can be held in the closed container. It is extremely easy to manufacture as compared with the conventional apparatus, and the cost can be kept low. Furthermore,
By using an extruding member for the closed container, a boiling cooling device suitable for mass production can be provided.

【0005】(請求項2の手段)押し出し部材の内壁面
には、冷媒流制御板を保持する保持手段としての溝が押
し出し方向に延びて設けられている。この溝は、押し出
し部材を押出成型する際に同時に形成できるため、押出
成型と別の工程で保持手段を設ける必要がない。その結
果、製造工程を短縮化してコストダウンを図ることがで
きる。
(Means of Claim 2) A groove as a holding means for holding the refrigerant flow control plate is provided on the inner wall surface of the pushing member so as to extend in the pushing direction. Since this groove can be formed at the same time when the extrusion member is extruded, there is no need to provide a holding means in a separate step from the extrusion. As a result, the manufacturing process can be shortened and the cost can be reduced.

【0006】(請求項3の手段)押し出し部材の内壁面
には、冷媒流制御板を保持する保持手段としての突起が
押し出し方向に延びて設けられている。この突起は、押
し出し部材を押出成型する際に同時に形成できるため、
押出成型と別の工程で保持手段を設ける必要がない。そ
の結果、製造工程を短縮化してコストダウンを図ること
ができる。
(Means of Claim 3) A protrusion as a holding means for holding the refrigerant flow control plate is provided on the inner wall surface of the pushing member so as to extend in the pushing direction. Since this projection can be formed at the same time when the extrusion member is extruded,
There is no need to provide holding means in a step separate from extrusion. As a result, the manufacturing process can be shortened and the cost can be reduced.

【0007】(請求項4の手段)冷媒流制御板は、冷媒
流制御板の下側から上側へ冷媒蒸気を通すための開口部
と、冷媒流制御板の上側から下側へ凝縮液を通すための
開口部とを有している。この場合、冷媒流制御板に冷媒
蒸気を通すための開口部と凝縮液を通すための開口部と
を設けるだけの簡単な構成で冷媒の流れを制御できるた
め、従来装置と比較しても簡単な構造で性能向上を図る
ことができる。
The refrigerant flow control plate has an opening through which refrigerant vapor flows from the lower side to the upper side of the refrigerant flow control plate, and a condensate from the upper side to the lower side of the refrigerant flow control plate. And an opening therefor. In this case, since the flow of the refrigerant can be controlled with a simple configuration in which the refrigerant flow control plate is simply provided with an opening for passing the refrigerant vapor and an opening for passing the condensed liquid, it is simpler than the conventional device. Performance can be improved with a simple structure.

【0008】(請求項5の手段)冷媒蒸気を通すために
冷媒流制御板に設けられた開口部は、発熱体の取り付け
部位に対応する領域に開口している。この場合、発熱体
の熱を受けて沸騰した冷媒蒸気が、発熱体の取り付け部
位に対応する領域に開口する開口部を通って密閉容器内
の上部空間へ流れることができる。即ち、最も盛んに沸
騰する領域に冷媒蒸気を通すための開口部を設けたこと
により、冷媒蒸気をスムーズに上部空間へ流して四方へ
拡散させることができるため、冷媒の循環が効率良く行
われて放熱性能を向上できる。
[0008] (Means of the present invention) The opening provided in the refrigerant flow control plate for passing the refrigerant vapor is opened in a region corresponding to the mounting portion of the heating element. In this case, the refrigerant vapor that has been boiled by the heat of the heating element can flow to the upper space in the closed container through the opening that opens to the area corresponding to the mounting part of the heating element. In other words, the provision of the opening for passing the refrigerant vapor in the region where boiling is most active allows the refrigerant vapor to flow smoothly to the upper space and diffuse in all directions, so that the refrigerant is efficiently circulated. The heat radiation performance can be improved.

【0009】(請求項6の手段)密閉容器は、蓋体の内
側面と冷媒流制御板の端面との間に冷媒が通過できる隙
間を有している。この場合、容器内部の上部空間を拡散
して密閉容器の内壁面や冷媒流制御板の表面(放熱壁側
の表面)に凝縮した冷媒が前記の隙間を通って液冷媒へ
還流できるため、冷媒蒸気の流れと凝縮液の流れとが干
渉することなく良好に容器内部を循環できる。
(Claim 6) The closed container has a gap through which the refrigerant can pass between the inner surface of the lid and the end surface of the refrigerant flow control plate. In this case, the refrigerant diffused in the upper space inside the container and condensed on the inner wall surface of the closed container or the surface of the refrigerant flow control plate (the surface on the side of the heat radiating wall) can be returned to the liquid refrigerant through the above-mentioned gap. It is possible to circulate the inside of the container well without interference between the steam flow and the condensate flow.

【0010】(請求項7の手段)押し出し部材の内部に
は、受熱壁と放熱壁とを連結する連結部が一体に設けら
れている。この連結部により放熱面積が増大するととも
に、発熱体が固定された受熱壁から連結部を通って放熱
壁へ熱伝達できるため、放熱性能を向上できる。この連
結部は、押し出し部材を押出成型する際に同時に形成す
ることができる。また、連結部を受熱壁及び放熱壁と一
体に設けることで、押し出し部材(密閉容器)の強度を
向上できるとともに、受熱壁及び放熱壁の各表面の平面
度を向上できるメリットも生じる。
(Means of Claim 7) A connecting portion for connecting the heat receiving wall and the heat radiating wall is integrally provided inside the pushing member. The heat dissipation area can be increased by the connecting portion, and heat can be transferred from the heat receiving wall to which the heating element is fixed to the heat radiating wall through the connecting portion, so that the heat radiating performance can be improved. This connecting portion can be formed at the same time as the extrusion member is extruded. In addition, by providing the connecting portion integrally with the heat receiving wall and the heat radiating wall, it is possible to improve the strength of the push-out member (closed container) and also to improve the flatness of each surface of the heat receiving wall and the heat radiating wall.

【0011】(請求項8の手段)連結部は、少なくとも
発熱体の取り付け部位に対応する領域を通って設けられ
ている。これにより、最も盛んに沸騰する領域で放熱面
積が増大し、且つ連結部を通じて受熱壁から放熱壁へ熱
伝達できるため、効率良く放熱性能を向上できる。
(Means of Claim 8) The connecting portion is provided through at least a region corresponding to a mounting portion of the heating element. Thereby, the heat radiation area is increased in the region where boiling is most active, and heat can be transferred from the heat receiving wall to the heat radiation wall through the connecting portion, so that the heat radiation performance can be efficiently improved.

【0012】(請求項9の手段)冷媒流制御板は、受熱
壁側の突起の先端面と放熱壁側の突起の先端面との間に
保持されて、受熱壁側の突起の先端面と放熱壁側の突起
の先端面とを熱的に連結し、且つ冷媒流制御板の下側で
受熱壁側の突起によって区画された空間と、冷媒流制御
板の上側で放熱壁側の突起によって区画された空間と
が、冷媒流制御板に設けられた複数の開口部を通じて連
続的に連通している。この場合、受熱壁側の突起と放熱
壁側の突起とが冷媒流制御板で熱的に連結されるため、
放熱面積が増大するとともに、発熱体の熱を受熱壁→受
熱壁側の突起→冷媒流制御板→放熱壁側の突起→放熱壁
へと伝達できるため放熱性能を向上できる。また、複数
の突起を設けることによって押し出し部材の強度を向上
でき、且つ受熱壁及び放熱壁の平面度も向上する。な
お、受熱壁側の突起と放熱壁側の突起は、押し出し部材
の押し出し方向に延びて設けられ、押し出し部材を押出
成型する際に同時に形成することができる。
(9) The coolant flow control plate is held between the distal end surface of the projection on the heat receiving wall side and the distal end surface of the projection on the heat radiating wall side. A space that is thermally connected to the distal end surface of the projection on the heat radiating wall side, and is defined by the projection on the heat receiving wall side below the refrigerant flow control plate, and the projection on the heat radiating wall side above the refrigerant flow control plate. The partitioned space communicates continuously through a plurality of openings provided in the refrigerant flow control plate. In this case, since the protrusion on the heat receiving wall side and the protrusion on the heat radiating wall side are thermally connected by the refrigerant flow control plate,
The heat radiation area can be increased and the heat of the heating element can be transmitted to the heat receiving wall → the protrusion on the heat receiving wall → the coolant flow control plate → the protrusion on the heat radiating wall → the heat radiating wall, so that the heat radiating performance can be improved. Further, by providing a plurality of protrusions, the strength of the pushing member can be improved, and the flatness of the heat receiving wall and the heat radiating wall can be improved. The protrusion on the heat receiving wall side and the protrusion on the heat radiating wall side are provided so as to extend in the pushing direction of the pushing member, and can be formed at the same time when the pushing member is extruded.

【0013】更に、本発明では、受熱壁側の突起と放熱
壁側の突起とで冷媒流制御板を保持できるため、請求項
2に記載した溝や請求項3に記載した突起等の保持手段
を設ける必要はない(従って、本発明では、受熱壁側の
突起と放熱壁側の突起が冷媒流制御板を保持するための
保持手段としても機能する)。なお、冷媒流制御板の下
側で受熱壁側の突起によって区画された空間と、冷媒流
制御板の上側で放熱壁側の突起によって区画された空間
は、冷媒流制御板に設けられた複数の開口部を通じて連
続的に連通している。このため、発熱体の熱を受けて沸
騰した冷媒蒸気は、冷媒流制御板の各開口部を通って容
器内部を四方へ拡散できるため、複数の突起を設けるこ
とで冷媒蒸気の流れが阻害されることはない。
Furthermore, in the present invention, since the coolant flow control plate can be held by the projection on the heat receiving wall side and the projection on the heat radiating wall side, holding means such as the groove described in claim 2 and the projection described in claim 3 are provided. (Accordingly, in the present invention, the protrusion on the heat receiving wall side and the protrusion on the heat radiating wall side also function as holding means for holding the refrigerant flow control plate). The space defined by the protrusions on the heat receiving wall side below the refrigerant flow control plate and the space defined by the protrusions on the heat dissipation wall side above the refrigerant flow control plate are a plurality of spaces provided on the refrigerant flow control plate. Through the opening. Therefore, the refrigerant vapor boiling due to the heat of the heating element can diffuse through the openings of the refrigerant flow control plate into the inside of the container in all directions, so that the provision of the plurality of protrusions impedes the flow of the refrigerant vapor. Never.

【0014】(請求項10の手段)押し出し部材には、
放熱壁と一体に放熱ブロックが設けられている。この場
合、放熱壁と放熱ブロックとの接触熱抵抗を無くすこと
ができるため、放熱性能を向上できる。また、ビス等の
締結具や接着等の手段により放熱壁に放熱ブロックを固
定する必要がないため、その分、コストダウンを図るこ
とができる。
(Means of Claim 10) The pushing member includes:
A heat dissipation block is provided integrally with the heat dissipation wall. In this case, since the contact thermal resistance between the heat radiating wall and the heat radiating block can be eliminated, the heat radiating performance can be improved. In addition, since it is not necessary to fix the heat radiating block to the heat radiating wall by fasteners such as screws or means such as bonding, the cost can be reduced accordingly.

【0015】(請求項11の手段)密閉容器は、一体ろ
う付けによって製造されている。この場合、密閉容器が
押し出し部材と一対の蓋体から成り、その容器内部に冷
媒流制御板を配置しただけの簡単な構造であることか
ら、組付けも容易であり、一体ろう付けによって簡単に
製造することができる。なお、密閉容器を形成する押し
出し部材(請求項10の場合は放熱ブロックも含む)と
蓋体、及び冷媒流制御板は、ろう付け可能な材質(例え
ばアルミニウム)で形成されていることは言うまでもな
い。
(Means of Claim 11) The closed container is manufactured by integral brazing. In this case, the closed container is composed of a push-out member and a pair of lids, and has a simple structure in which the refrigerant flow control plate is simply arranged inside the container. Can be manufactured. It is needless to say that the extruding member (including the heat radiating block in the case of claim 10), the lid, and the refrigerant flow control plate forming the closed container are formed of a brazable material (for example, aluminum). .

【0016】[0016]

【発明の実施の形態】次に、本発明の沸騰冷却装置を図
面に基づいて説明する。図1は沸騰冷却装置の分解斜視
図である。本実施例の沸騰冷却装置1は、例えば携帯端
末に使用される半導体素子を有する発熱体2を冷却する
もので、内部に冷媒Rを封入した密閉容器3と、この密
閉容器3内に配置される冷媒流制御板4と、密閉容器3
の一表面(放熱面)に取り付けられる放熱ブロック5
(図3参照)とを備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a cooling apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is an exploded perspective view of the boiling cooling device. The boiling cooling device 1 of the present embodiment cools a heating element 2 having a semiconductor element used for a mobile terminal, for example, and includes a closed container 3 in which a refrigerant R is sealed, and is disposed in the closed container 3. Refrigerant flow control plate 4 and closed vessel 3
Radiation block 5 attached to one surface (radiation surface)
(See FIG. 3).

【0017】密閉容器3は、図1に示す様に、両端面が
開口した押し出し部材6と、この押し出し部材6の両端
開口面を気密に塞ぐ一組のキャップ7とから成る。押し
出し部材6は、密閉容器3の四壁面を構成する部材で、
熱伝導性に優れるアルミニウム等の金属材料を押出成型
して、所定の長さLに切断して形成されている。この押
し出し部材6は、その断面形状が偏平な矩形(高さに対
して横幅が大きい)の箱型に形成され、左右の両側壁6
a(矩形の短辺に相当する側壁)の内面にそれぞれ押し
出し方向に沿って延びる溝8が形成されている。この溝
8は、両側壁6aの対向する位置に設けられて、押出成
型の際に同時に形成されている。キャップ7は、図2に
も示す様に、押し出し部材6の長手方向(押し出し方
向)の両端部外周に被せられて気密に接合されている。
このキャップ7は、単純な平板部材でなく、プレス加工
によって外側へ膨らみを持たせた形状に成型されてい
る。
As shown in FIG. 1, the closed container 3 comprises an extruding member 6 having both open end faces, and a pair of caps 7 for hermetically closing both open end faces of the extruding member 6. The extruding member 6 is a member that constitutes four wall surfaces of the closed container 3,
It is formed by extruding a metal material such as aluminum having excellent thermal conductivity and cutting it into a predetermined length L. The extruding member 6 is formed in a rectangular box shape having a flat cross section (having a large width in height with respect to the height).
Grooves 8 extending along the extrusion direction are formed on the inner surfaces of a (side walls corresponding to the short sides of the rectangle). The grooves 8 are provided at opposing positions on both side walls 6a, and are formed simultaneously during extrusion molding. As shown in FIG. 2, the cap 7 covers the outer periphery of both ends of the extruding member 6 in the longitudinal direction (extrusion direction) and is hermetically bonded.
The cap 7 is not a simple flat plate member, but is formed into a shape having a bulge outward by press working.

【0018】冷媒流制御板4は、例えばアルミニウム等
の金属板に冷媒蒸気を通すための開口部4aと凝縮液を
通すための開口部4bを設けたもので、両側辺部が押し
出し部材6の両側壁6aの内面に形成された溝8に差し
込まれることで密閉容器3内部に保持されている。な
お、密閉容器3内部における冷媒流制御板4は、密閉容
器3内部の上下方向の中央より若干低い位置に保持され
ている(図4及び図5参照)。冷媒蒸気を通すための開
口部4aは、冷媒流制御板4の略中央部に設けられ、凝
縮液を通すための開口部4bは、冷媒流制御板4の両側
辺部に沿って複数設けられている。この冷媒流制御板4
は、板厚が押し出し部材6に形成された溝8に挿入可能
で、且つ挿入後に位置ずれしない様に摩擦によって保持
される程度の寸法に設定されている。また、横幅が押し
出し部材6の溝8に挿入可能な大きさであり、長手方向
の寸法が押し出し部材6の長さと略同一または若干短い
長さL′に設けられ、開口部4a、4bの加工を含めて
一度のプレス加工により形成されている。エッチングや
切削等で加工しても問題はない。
The refrigerant flow control plate 4 is provided with an opening 4a for passing refrigerant vapor and an opening 4b for passing condensed liquid through a metal plate such as aluminum. It is held inside the closed container 3 by being inserted into a groove 8 formed on the inner surface of both side walls 6a. The refrigerant flow control plate 4 inside the closed container 3 is held at a position slightly lower than the vertical center inside the closed container 3 (see FIGS. 4 and 5). The openings 4a for passing the refrigerant vapor are provided at substantially the center of the refrigerant flow control plate 4, and the openings 4b for passing the condensed liquid are provided along the both sides of the refrigerant flow control plate 4. ing. This refrigerant flow control plate 4
Is set to such a size that the plate thickness can be inserted into the groove 8 formed in the extruding member 6 and is held by friction so as not to be displaced after the insertion. Further, the width is a size that can be inserted into the groove 8 of the extruding member 6, the length in the longitudinal direction is provided to be substantially the same as or slightly shorter than the length of the extruding member 6, and the processing of the openings 4 a and 4 b is performed. And is formed by a single press working. There is no problem even if it is processed by etching or cutting.

【0019】発熱体2は、密閉容器3の受熱壁6b(押
し出し部材6の下側壁)の表面略中央部に配されて、図
示しないボルト等の締め付けによって受熱壁6bの表面
に密着して固定されている。放熱ブロック5は、熱伝導
性に優れるアルミニウム等の金属製で、密閉容器3の放
熱壁6c(押し出し部材6の上側壁)の表面全体に密着
してボルト等の締め付けにより固定されている(図3参
照)。冷媒Rは、水、アルコール、アンモニア、フロロ
カーボン、フロン等が用いられ、密閉容器3内部に保持
された冷媒流制御板4より若干低い位置まで冷媒注入パ
イプ9(図1参照)を通じて注入されている。冷媒注入
パイプ9は、先端部が押し出し部材6の一側壁6aを貫
通して設けられた注入口6dに差し込まれて気密に接続
され、冷媒Rを注入した後、端部を封じ切って密封され
る。
The heating element 2 is disposed substantially at the center of the surface of the heat receiving wall 6b (lower side wall of the extruding member 6) of the closed vessel 3, and is fixed to the surface of the heat receiving wall 6b by tightening bolts (not shown). Have been. The heat radiating block 5 is made of metal such as aluminum having excellent thermal conductivity, and is fixed to the entire surface of the heat radiating wall 6c (the upper side wall of the extruding member 6) of the closed container 3 by tightening with bolts or the like (FIG. 3). As the refrigerant R, water, alcohol, ammonia, fluorocarbon, chlorofluorocarbon or the like is used, and the refrigerant R is injected through the refrigerant injection pipe 9 (see FIG. 1) to a position slightly lower than the refrigerant flow control plate 4 held inside the closed container 3. . The refrigerant injection pipe 9 is air-tightly connected by inserting its distal end into an injection port 6d provided through the one side wall 6a of the push-out member 6, and after sealing the refrigerant R, the end is sealed off. You.

【0020】次に、本実施例の作動を説明する。発熱体
2から発生した熱は、受熱壁6bを通じて密閉容器3内
に封入された冷媒Rに伝達されて冷媒Rを沸騰させる。
但し、発熱体2から受熱壁6bへ伝わる熱は、発熱体2
の取り付け部位から遠くなる程、温度が低くなるため、
密閉容器3内の冷媒Rは、主に発熱体2の取り付け部位
に対応する領域(以下、沸騰領域と言う)で沸騰する。
この沸騰領域で沸騰した冷媒蒸気は、図4及び図5に実
線矢印で示す様に、冷媒流制御板4の中央部に設けられ
た開口部4aを通って冷媒流制御板4より上方の空間
(以下、上部空間と言う)へ流入し、その上部空間を四
方へ拡散する。
Next, the operation of this embodiment will be described. The heat generated from the heating element 2 is transmitted to the refrigerant R sealed in the closed container 3 through the heat receiving wall 6b, and causes the refrigerant R to boil.
However, the heat transmitted from the heating element 2 to the heat receiving wall 6 b is
The farther from the installation site, the lower the temperature,
Refrigerant R in closed container 3 boils mainly in a region (hereinafter, referred to as a boiling region) corresponding to a mounting portion of heating element 2.
The refrigerant vapor that has boiled in the boiling region passes through an opening 4a provided in the center of the refrigerant flow control plate 4 and has a space above the refrigerant flow control plate 4, as indicated by solid arrows in FIGS. (Hereinafter, referred to as an upper space) and diffuses in the upper space in all directions.

【0021】上部空間を流れる冷媒蒸気は、主に放熱壁
6cの内壁面に凝縮して液化し、その内壁面を伝いなが
ら、あるいは冷媒流制御板4の表面へ滴下した後、冷媒
蒸気の流れに押されながら密閉容器3内部の外周方向へ
流れる。その凝縮液は、図4及び図5に破線矢印で示す
様に、冷媒流制御板4の両側辺部に沿って開口する複数
の開口部4b、およびキャップ7の内壁面と冷媒流制御
板4の長手方向端面との間の隙間S(図5参照)を通っ
て冷媒流制御板4の下方へ滴下し、液冷媒Rへ還流して
再び沸騰領域に供給され、上記サイクル(沸騰−凝縮−
液化)を繰り返す。 発熱体2から冷媒Rに伝達された
熱(蒸発潜熱)は、冷媒蒸気が凝縮する際に凝縮潜熱と
して放出され、その凝縮潜熱が密閉容器3の放熱壁6c
全体に伝わり、放熱壁6cから放熱ブロック5を通じて
大気へ放出される。
The refrigerant vapor flowing in the upper space is mainly condensed and liquefied on the inner wall surface of the heat radiating wall 6c, and flows along the inner wall surface or after dripping onto the surface of the refrigerant flow control plate 4, the refrigerant vapor flows. While flowing, the air flows in the outer peripheral direction inside the closed container 3. 4 and 5, the condensed liquid has a plurality of openings 4b opening along both sides of the refrigerant flow control plate 4, and the inner wall surface of the cap 7 and the refrigerant flow control plate 4. Through the gap S (see FIG. 5) between the end face in the longitudinal direction and the refrigerant flow control plate 4, and is returned to the liquid refrigerant R and supplied again to the boiling region.
Liquefaction). The heat (evaporative latent heat) transmitted from the heating element 2 to the refrigerant R is released as condensed latent heat when the refrigerant vapor condenses, and the condensed latent heat is dissipated by the radiating wall 6 c of the closed container 3.
The heat is transmitted to the whole, and is released from the heat radiating wall 6c to the atmosphere through the heat radiating block 5.

【0022】(本実施例の効果)本実施例によれば、密
閉容器3内に冷媒流制御板4を配置して冷媒蒸気の流れ
と凝縮液の流れを制御することにより、冷媒蒸気の流れ
と凝縮液の流れとの干渉を少なくしてスムーズに循環さ
せることができる。また、発熱体2の熱を受けて沸騰し
た冷媒蒸気が冷媒流制御板4の開口部4aを通って上部
空間を四方へ拡散できるため、放熱面(放熱壁6c)全
体に効率良く熱を拡散させて放熱させることができる。
これらの結果、放熱性能に優れた高性能な沸騰冷却装置
1を提供できる。
(Effects of the present embodiment) According to the present embodiment, the flow of the refrigerant vapor is controlled by arranging the refrigerant flow control plate 4 in the closed vessel 3 to control the flow of the refrigerant vapor and the flow of the condensate. Can be circulated smoothly with less interference between the fluid and the flow of the condensate. In addition, since the refrigerant vapor boiling due to the heat of the heating element 2 can diffuse in the upper space through the openings 4a of the refrigerant flow control plate 4, the heat can be efficiently diffused to the entire heat radiation surface (heat radiation wall 6c). The heat can be dissipated.
As a result, it is possible to provide a high-performance boiling cooling device 1 having excellent heat radiation performance.

【0023】本実施例では、押し出し部材6によって密
閉容器3の四壁面を一体に成型できるため、別体を成す
各壁面を接合して密閉容器3を構成する場合より密閉容
器3の強度を向上できる。また、密閉容器3に押し出し
部材6を用いることで発熱体2の取り付け面である受熱
壁6b表面の平面度を向上できるため、発熱体2と受熱
壁6bとの接触熱抵抗を低減できる。この場合、取り付
け面(受熱壁6bの表面)の切削、研磨等の工程を省略
あるいは軽微にできるメリットがある。更には、押し出
し部材6の両端開口面をキャップ7で塞ぐだけの簡単な
構造で密閉容器3を構成でき、且つ押し出し部材6の両
側壁6aに形成した溝8に冷媒流制御板4を保持できる
ため、従来装置と比較しても極めて製造が容易であり、
コストを低く抑えることができる。特に、キャップ7と
冷媒流制御板4を例えばアルミニウムのクラッド材で構
成した場合には、全体を一体ろう付けで製造できる。ま
た、押し出し部材6以外の構成部品であるキャップ7と
冷媒流制御板4をプレス加工によって簡単に成型できる
ため、大量生産に適した沸騰冷却装置1を提供できる。
In this embodiment, since the four wall surfaces of the closed container 3 can be integrally molded by the pushing member 6, the strength of the closed container 3 is improved as compared with the case where the closed wall 3 is formed by joining the separate wall surfaces. it can. In addition, since the flatness of the surface of the heat receiving wall 6b, which is the mounting surface of the heating element 2, can be improved by using the extruding member 6 in the closed container 3, the contact thermal resistance between the heating element 2 and the heat receiving wall 6b can be reduced. In this case, there is an advantage that steps such as cutting and polishing of the mounting surface (the surface of the heat receiving wall 6b) can be omitted or reduced. Furthermore, the closed container 3 can be configured with a simple structure in which the opening surfaces of both ends of the pushing member 6 are closed with the caps 7, and the coolant flow control plate 4 can be held in the grooves 8 formed on both side walls 6 a of the pushing member 6. Therefore, it is extremely easy to manufacture compared to the conventional device,
Costs can be kept low. In particular, when the cap 7 and the coolant flow control plate 4 are made of, for example, an aluminum clad material, the whole can be manufactured by integral brazing. Further, since the cap 7 and the refrigerant flow control plate 4 which are components other than the extruding member 6 can be easily formed by press working, the boiling cooling device 1 suitable for mass production can be provided.

【0024】本実施例では、キャップ7に膨らみを持た
せたことで、冷媒流制御板4との間に凝縮液を戻すため
の隙間Sを設けることができるとともに、キャップ7自
身の強度を向上できる効果もある。このキャップ7の強
度向上は、押し出し部材6との接合面の平面度が向上す
るため、密閉容器3の気密性を高めることができる。ま
た、密閉容器3としての強度向上にも有利である。な
お、キャップ7を単純な平板形状としても良い。但し、
この場合は、冷媒流制御板4の長さL′を押し出し部材
6の長さLより短くしてキャップ7との間に凝縮液を戻
すための隙間Sを確保する必要がある。
In this embodiment, since the cap 7 has a bulge, a gap S for returning the condensed liquid can be provided between the cap 7 and the refrigerant flow control plate 4, and the strength of the cap 7 itself can be improved. There is also an effect that can be done. This improvement in the strength of the cap 7 improves the flatness of the joint surface with the extrusion member 6, so that the airtightness of the sealed container 3 can be improved. It is also advantageous for improving the strength of the closed container 3. The cap 7 may have a simple flat plate shape. However,
In this case, it is necessary to make the length L 'of the refrigerant flow control plate 4 shorter than the length L of the pushing member 6 to secure a gap S between the cap 7 and the condensate.

【0025】(第1実施例の変形例)上記実施例では、
放熱ブロック5を放熱壁6cの表面にボルト等の締め付
けによって固定する例を説明したが、図6に示す様に、
放熱ブロック5を押し出し部材6と一体に設けても良
い。この場合、放熱壁6cと放熱ブロック5との接触熱
抵抗が無くなるため、放熱性能を向上できるメリットが
ある。また、放熱ブロック5を放熱壁6cに固定するた
めの工程も不要となる。上記実施例では、冷媒流制御板
4を保持するために押し出し部材6の内壁面に溝8を形
成したが、図7に示す様に、押し出し部材6の内壁面に
それぞれ一組の突起10を設けて、その一組の突起10
によって形成される溝10aに冷媒流制御板4を保持す
る構成としても良い。この場合の突起10は、押し出し
部材6を押出成型する際に同時に形成することができ
る。
(Modification of First Embodiment) In the above embodiment,
Although the example in which the heat radiation block 5 is fixed to the surface of the heat radiation wall 6c by tightening bolts or the like has been described, as shown in FIG.
The heat radiation block 5 may be provided integrally with the pushing member 6. In this case, there is an advantage that the heat radiation performance can be improved because the contact heat resistance between the heat radiation wall 6c and the heat radiation block 5 is eliminated. Further, a step for fixing the heat radiation block 5 to the heat radiation wall 6c is not required. In the above embodiment, the groove 8 was formed on the inner wall surface of the pushing member 6 to hold the refrigerant flow control plate 4, but as shown in FIG. Provided, the set of projections 10
The refrigerant flow control plate 4 may be held in the groove 10a formed by the above. In this case, the projection 10 can be formed at the same time when the extrusion member 6 is extruded.

【0026】(第2実施例)図8は沸騰冷却装置1の分
解斜視図、図9は密閉容器3の平面図である。本実施例
は、押し出し部材6の中央部に柱状のリブ11を設けて
密閉容器3の内部を二分割している。このリブ11は、
図9に示す様に、押し出し部材6の全長に渡って設けら
れ、且つリブ11の両側面には冷媒流制御板4を保持す
るための溝11aが形成されている。これに合わせて、
冷媒流制御板4も2枚に分割している。但し、2枚の冷
媒流制御板4に、それぞれ冷媒蒸気を通すための開口部
4aと凝縮液を通すための開口部4bとが設けられてい
る。従って、この場合、キャップ7に平板部材を用いて
密閉容器3の内部を二室に独立させても機能上問題はな
いが、二室に対して冷媒Rの封入を別々に行う必要が生
じるため、第1実施例で説明した様に、外側へ膨らみの
あるキャップ7を用いて各冷媒流制御板4との間に隙間
Sを持たせることにより、二室を連通させておく方が望
ましい。
(Second Embodiment) FIG. 8 is an exploded perspective view of the boiling cooling device 1, and FIG. In this embodiment, a columnar rib 11 is provided at the center of the extruding member 6 to divide the inside of the closed container 3 into two parts. This rib 11
As shown in FIG. 9, a groove 11 a is provided over the entire length of the push-out member 6, and is formed on both side surfaces of the rib 11 for holding the refrigerant flow control plate 4. According to this,
The refrigerant flow control plate 4 is also divided into two pieces. However, the two refrigerant flow control plates 4 are provided with openings 4a for passing refrigerant vapor and openings 4b for passing condensate, respectively. Therefore, in this case, there is no functional problem even if the inside of the closed container 3 is made independent of two chambers by using a flat plate member for the cap 7, but it is necessary to separately fill the refrigerant R into the two chambers. As described in the first embodiment, it is preferable that the two chambers be communicated with each other by providing a gap S between each of the refrigerant flow control plates 4 by using the cap 7 bulging outward.

【0027】発熱体2から発生した熱は、受熱壁6bを
通じて密閉容器3内に封入された冷媒Rに伝達されて冷
媒Rを沸騰させる。沸騰した冷媒蒸気は、図10及び図
11に実線矢印で示す様に、冷媒流制御板4に設けられ
た開口部4aを通って各室の上部空間(冷媒流制御板4
より上方の空間)へ流入し、その上部空間を四方へ拡散
する。上部空間を流れる冷媒蒸気は、主に放熱壁6cの
内壁面に凝縮して液化し、その内壁面を伝いながら、あ
るいは冷媒流制御板4の表面へ滴下した後、冷媒蒸気の
流れに押されながら密閉容器3内部の外周方向へ流れ
る。その凝縮液は、図10及び図11に破線矢印で示す
様に、冷媒流制御板4の側辺部に沿って開口する複数の
開口部4b、およびキャップ7の内壁面と冷媒流制御板
4の長手方向端面との間の隙間Sを通って冷媒流制御板
4の下方へ滴下し、液冷媒Rへ還流して再び沸騰領域に
供給され、上記サイクル(沸騰−凝縮−液化)を繰り返
す。発熱体2から冷媒Rに伝達された熱(蒸発潜熱)
は、冷媒蒸気が凝縮する際に凝縮潜熱として放出され、
その凝縮潜熱が密閉容器3の放熱壁6c全体に伝わり、
放熱壁6cから放熱ブロック5を通じて大気へ放出され
る。
The heat generated from the heating element 2 is transmitted to the refrigerant R sealed in the closed vessel 3 through the heat receiving wall 6b, and causes the refrigerant R to boil. The boiling refrigerant vapor passes through openings 4a provided in the refrigerant flow control plate 4, as shown by solid arrows in FIGS.
Into the upper space, and diffuses in the upper space in all directions. The refrigerant vapor flowing in the upper space is mainly condensed and liquefied on the inner wall surface of the radiating wall 6c, and is pushed by the flow of the refrigerant vapor while traveling along the inner wall surface or after dropping on the surface of the refrigerant flow control plate 4. While flowing, it flows in the outer peripheral direction inside the closed container 3. As shown by broken arrows in FIGS. 10 and 11, the condensed liquid has a plurality of openings 4 b that open along the sides of the refrigerant flow control plate 4, and the inner wall surface of the cap 7 and the refrigerant flow control plate 4. Is dropped below the refrigerant flow control plate 4 through the gap S between the liquid refrigerant R and the liquid refrigerant R, is supplied to the boiling region again, and the above cycle (boiling-condensing-liquefaction) is repeated. Heat transferred from refrigerant 2 to refrigerant R (latent heat of evaporation)
Is released as latent heat of condensation when the refrigerant vapor condenses,
The latent heat of condensation is transmitted to the entire heat radiation wall 6c of the closed container 3,
The heat is released from the heat radiating wall 6c to the atmosphere through the heat radiating block 5.

【0028】本実施例では、押し出し部材6の中央部に
リブ11が設けられるため、密閉容器3の強度を向上で
きる。また、押出成型によってリブ11を押し出し部材
6と一体に設けることができるため、発熱体2が取り付
けられる受熱壁6bからリブ11を通じて放熱壁6cへ
熱伝達することができる。これにより、例えば、図12
に示す様に、発熱体2を密閉容器3の上側に配置した姿
勢で使用する場合でも、リブ11を通じて熱伝達される
ことにより受熱壁6bから放熱壁6cへの最低限の熱輸
送を確保できる。
In this embodiment, since the rib 11 is provided at the center of the pushing member 6, the strength of the closed container 3 can be improved. Further, since the rib 11 can be provided integrally with the extruding member 6 by extrusion molding, heat can be transmitted from the heat receiving wall 6b to which the heating element 2 is attached to the heat radiating wall 6c through the rib 11. Thereby, for example, FIG.
As shown in (2), even when the heating element 2 is used in a posture arranged above the closed container 3, the minimum heat transfer from the heat receiving wall 6b to the heat radiating wall 6c can be ensured by heat transfer through the rib 11. .

【0029】(第3実施例)図13は沸騰冷却装置1の
分解斜視図、図14は密閉容器3の平面図である。本実
施例は、受熱壁6b側と放熱壁6c側とにそれぞれ複数
のリブ12、13を設けて、両側のリブ12、13の間
に冷媒流制御板4を配置した構成である。押し出し部材
6には、図13に示す様に、受熱壁6bから放熱壁6c
側へ延びる複数のリブ12と、放熱壁6cから受熱壁6
b側へ延びる複数のリブ13とが互いにずれた位置に設
けられている。但し、互いのリブ12、13の高さは、
互いのリブ12、13の先端面の間に冷媒流制御板4を
挿入できる寸法に設定されている。
(Third Embodiment) FIG. 13 is an exploded perspective view of the boiling cooling device 1, and FIG. In the present embodiment, a plurality of ribs 12 and 13 are provided on the heat receiving wall 6b side and the heat radiating wall 6c side, respectively, and the refrigerant flow control plate 4 is arranged between the ribs 12 and 13 on both sides. As shown in FIG. 13, the extruding member 6 includes a heat receiving wall 6b and a heat radiating wall 6c.
A plurality of ribs 12 extending to the side,
A plurality of ribs 13 extending to the b side are provided at positions shifted from each other. However, the height of the ribs 12 and 13 is
The dimensions are set such that the coolant flow control plate 4 can be inserted between the end faces of the ribs 12 and 13.

【0030】冷媒流制御板4は、受熱壁6b側のリブ1
2の先端面と放熱壁6c側のリブ13の先端面との間に
挿入されて、互いのリブ12、13により保持されてい
る。従って、本実施例では、押し出し部材6の内壁面に
溝8や突起10等の保持手段を設ける必要がない。ま
た、冷媒流制御板4には、冷媒流制御板4の下側で受熱
壁6b側のリブ12によって区画された複数の空間A
(図15参照)と、冷媒流制御板4の上側で放熱壁6c
側のリブ13によって区画された複数の空間B(図15
参照)とを相互に連通する複数の開口部4cが設けられ
ている。
The refrigerant flow control plate 4 is provided with a rib 1 on the heat receiving wall 6b side.
2 and the ribs 13 on the side of the heat radiating wall 6c are inserted and held by the ribs 12, 13. Therefore, in the present embodiment, there is no need to provide holding means such as the groove 8 and the protrusion 10 on the inner wall surface of the pushing member 6. The refrigerant flow control plate 4 has a plurality of spaces A defined by ribs 12 on the heat receiving wall 6b side below the refrigerant flow control plate 4.
(See FIG. 15), and the heat radiation wall 6c above the refrigerant flow control plate 4.
A plurality of spaces B (see FIG. 15)
) Are provided.

【0031】発熱体2から発生した熱は、受熱壁6bを
通じて密閉容器3内に封入された冷媒Rに伝達されて冷
媒Rを沸騰させる。沸騰した冷媒蒸気は、図15に実線
矢印で示す様に、冷媒流制御板4に設けられた複数の開
口部4cを通って密閉容器3内部の上部空間(冷媒流制
御板4の上側で放熱壁6c側のリブ13によって区画さ
れた空間B)と下部空間(冷媒流制御板4の下側で受熱
壁6b側のリブ12によって区画された空間A)とを蛇
行しながら密閉容器3の横幅方向(図15の左右方向)
へ拡散する。同時に、密閉容器3内部の上部空間へ流入
した冷媒蒸気は、そのまま上部空間を密閉容器3の長手
方向へも拡散する(図16参照)。これにより、密閉容
器3内部を四方へ拡散した冷媒蒸気は、主に放熱壁6c
の内壁面に凝縮して液化し、その内壁面を伝いながら、
あるいは冷媒流制御板4の表面へ滴下した後、図16に
破線矢印で示す様に、冷媒蒸気の流れに押されながらキ
ャップ7の内壁面と冷媒流制御板4の長手方向端面との
間の隙間Sを通って冷媒流制御板4の下方へ滴下し、液
冷媒Rへ還流して再び沸騰領域に供給され、上記サイク
ル(沸騰−凝縮−液化)を繰り返す。発熱体2から冷媒
Rに伝達された熱(蒸発潜熱)は、冷媒蒸気が凝縮する
際に凝縮潜熱として放出され、その凝縮潜熱が密閉容器
3の放熱壁6c全体に伝わり、放熱壁6cから放熱ブロ
ック5を通じて大気へ放出される。
The heat generated from the heating element 2 is transmitted to the refrigerant R sealed in the closed vessel 3 through the heat receiving wall 6b, and causes the refrigerant R to boil. The boiling refrigerant vapor passes through a plurality of openings 4c provided in the refrigerant flow control plate 4 and radiates heat in the upper space inside the closed vessel 3 (above the refrigerant flow control plate 4 as shown by solid arrows in FIG. The width of the sealed container 3 while meandering the space B defined by the rib 13 on the wall 6c side and the lower space (space A defined by the rib 12 on the heat receiving wall 6b side below the refrigerant flow control plate 4). Direction (left-right direction in FIG. 15)
Spread to At the same time, the refrigerant vapor that has flowed into the upper space inside the closed container 3 diffuses in the upper space as it is in the longitudinal direction of the closed container 3 (see FIG. 16). As a result, the refrigerant vapor diffused in all directions inside the closed container 3 mainly emits the heat radiating wall 6c.
Condensed and liquefied on the inner wall of the
Alternatively, after being dropped on the surface of the refrigerant flow control plate 4, the space between the inner wall surface of the cap 7 and the longitudinal end surface of the refrigerant flow control plate 4 is pushed while being pushed by the flow of the refrigerant vapor, as shown by the dashed arrow in FIG. It is dropped below the coolant flow control plate 4 through the gap S, returned to the liquid coolant R and supplied to the boiling region again, and the above cycle (boiling-condensing-liquefaction) is repeated. The heat (evaporative latent heat) transmitted from the heating element 2 to the refrigerant R is released as condensing latent heat when the refrigerant vapor condenses, and the condensed latent heat is transmitted to the entire heat radiating wall 6c of the closed casing 3, and radiated from the heat radiating wall 6c. Released to the atmosphere through block 5.

【0032】本実施例では、押し出し部材6に複数のリ
ブ12、13を設けたことにより密閉容器3の強度を向
上できる。また、冷媒流制御板4を通じて受熱壁6b側
のリブ12と放熱壁6c側のリブ13とを熱的に連結で
きるため、放熱面積が増大し、且つ発熱体2の熱を受熱
壁6b→受熱壁6b側のリブ12→冷媒流制御板4→放
熱壁6c側のリブ13→放熱壁6cへと伝達できるため
放熱性能を向上できる。また、第2実施例の場合と同様
に、発熱体2が密閉容器3の上側に配置された状態で使
用した場合でも、各リブ12、13と冷媒流制御板4を
通じて熱伝達されることにより受熱壁6bから放熱壁6
cへの最低限の熱輸送を確保できる。なお、本実施例で
は、冷媒蒸気が冷媒流制御板4の上側と下側とを流れる
ため、冷媒流制御板4の位置は、冷媒R液面と放熱壁6
cとの略中央であることが望ましい。
In this embodiment, the strength of the sealed container 3 can be improved by providing the extrusion member 6 with the plurality of ribs 12 and 13. Further, since the ribs 12 on the heat receiving wall 6b side and the ribs 13 on the heat radiating wall 6c side can be thermally connected through the refrigerant flow control plate 4, the heat radiating area is increased, and the heat of the heating element 2 is transferred from the heat receiving wall 6b to the heat receiving. The heat can be transmitted from the ribs 12 on the wall 6b side → the refrigerant flow control plate 4 → the ribs 13 on the heat radiation wall 6c → the heat radiation wall 6c, so that the heat radiation performance can be improved. Further, similarly to the case of the second embodiment, even when the heating element 2 is used in a state arranged above the closed vessel 3, heat is transmitted through the ribs 12 and 13 and the refrigerant flow control plate 4 so that heat is transmitted. From the heat receiving wall 6b to the heat radiating wall 6
minimum heat transfer to c. In the present embodiment, since the refrigerant vapor flows on the upper side and the lower side of the refrigerant flow control plate 4, the position of the refrigerant flow control plate 4 is determined by the liquid level of the refrigerant R and the heat radiation wall 6.
It is desirably substantially at the center with c.

【図面の簡単な説明】[Brief description of the drawings]

【図1】沸騰冷却装置の分解斜視図である(第1実施
例)。
FIG. 1 is an exploded perspective view of a boiling cooling device (first embodiment).

【図2】密閉容器の平面図である。FIG. 2 is a plan view of the closed container.

【図3】沸騰冷却装置の斜視図である。FIG. 3 is a perspective view of a boiling cooling device.

【図4】A−A線に沿う密閉容器の断面図である。FIG. 4 is a cross-sectional view of the closed container along line AA.

【図5】B−B線に沿う密閉容器の断面図である。FIG. 5 is a cross-sectional view of the closed container along a line BB.

【図6】押し出し部材の断面図である。FIG. 6 is a sectional view of an extruding member.

【図7】押し出し部材の断面図である。FIG. 7 is a sectional view of an extruding member.

【図8】沸騰冷却装置の分解斜視図である(第2実施
例)。
FIG. 8 is an exploded perspective view of a boiling cooling device (second embodiment).

【図9】密閉容器の平面図である。FIG. 9 is a plan view of the closed container.

【図10】C−C線に沿う密閉容器の断面図である。FIG. 10 is a sectional view of the closed container along the line CC.

【図11】D−D線に沿う密閉容器の断面図である。FIG. 11 is a sectional view of the closed container along the line DD.

【図12】密閉容器の断面図である(第2実施例)。FIG. 12 is a sectional view of a closed container (second embodiment).

【図13】沸騰冷却装置の分解斜視図である(第3実施
例)。
FIG. 13 is an exploded perspective view of a boiling cooling device (third embodiment).

【図14】密閉容器の平面図である。FIG. 14 is a plan view of a closed container.

【図15】E−E線に沿う密閉容器の断面図である。FIG. 15 is a cross-sectional view of the closed container along the line EE.

【図16】F−F線に沿う密閉容器の断面図である。FIG. 16 is a cross-sectional view of the closed container along the line FF.

【図17】沸騰冷却装置の断面図である(従来技術)。FIG. 17 is a sectional view of a boiling cooling device (prior art).

【符号の説明】[Explanation of symbols]

1 沸騰冷却装置 2 発熱体 3 密閉容器 4 冷媒流制御板 4a 冷媒蒸気を通すための開口部 4b 凝縮液を通すための開口部 4c 開口部 5 放熱ブロック 6 押し出し部材 6b 受熱壁 6c 放熱壁 7 キャップ(蓋体) 8 溝(保持手段) 10 突起(保持手段) 11 リブ(連結部) 12 受熱壁側のリブ(突起) 13 放熱壁側のリブ(突起) R 冷媒 S 冷媒が通過できる隙間 DESCRIPTION OF SYMBOLS 1 Boiling cooling device 2 Heating element 3 Airtight container 4 Refrigerant flow control plate 4a Opening for passing refrigerant vapor 4b Opening for passing condensed liquid 4c Opening 5 Heat dissipation block 6 Extruding member 6b Heat receiving wall 6c Heat dissipation wall 7 Cap (Lid) 8 Groove (holding means) 10 Projection (holding means) 11 Rib (connecting part) 12 Rib (projection) on heat-receiving wall 13 Rib (projection) on heat-dissipation wall R Refrigerant S Gap through which refrigerant can pass

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】対向して配置された受熱壁と放熱壁とを有
し、この受熱壁及び放熱壁とともに閉空間を形成して、
その閉空間に所定量の冷媒が封入された密閉容器を備
え、 前記受熱壁の表面に発熱体が固定され、その発熱体の熱
で容器内部の冷媒が沸騰し、冷媒蒸気となって容器内部
の上部空間を四方へ拡散しながら前記放熱壁の内壁面に
凝縮して液化し、凝縮潜熱を前記放熱壁より外部へ放出
する沸騰冷却装置であって、 前記密閉容器の内部で冷媒液面より上方に配置されて、
前記発熱体の熱を受けて沸騰した冷媒蒸気の流れと、こ
の冷媒蒸気が凝縮して液化した凝縮液の流れとを制御す
る冷媒流制御板を有し、 前記密閉容器は、押出成型により設けられた押し出し部
材と、この押し出し部材の両端開口面を塞ぐ一対の蓋体
とから成り、前記押し出し部材の対向する二壁面が前記
受熱壁と前記放熱壁として設けられ、且つ前記押し出し
部材の内壁面に前記冷媒流制御板を保持する保持手段が
設けられていることを特徴とする沸騰冷却装置。
1. A closed space is formed with a heat receiving wall and a heat radiating wall disposed opposite to each other, and a closed space is formed together with the heat receiving wall and the heat radiating wall.
The closed space is provided with a sealed container in which a predetermined amount of refrigerant is sealed, a heating element is fixed to the surface of the heat receiving wall, and the heat inside the container boils by the heat of the heating element, forming a refrigerant vapor inside the container. A boiling cooling device that condenses and liquefies on the inner wall surface of the heat radiating wall while diffusing the upper space in four directions, and releases condensed latent heat to the outside from the heat radiating wall. Located above,
A refrigerant flow control plate that controls the flow of the refrigerant vapor that has been boiled by receiving the heat of the heating element and the flow of the condensed liquid that has been condensed and liquefied by the refrigerant vapor, wherein the closed container is provided by extrusion molding. And a pair of lids for closing the opening surfaces at both ends of the pushing member. Two opposing wall surfaces of the pushing member are provided as the heat receiving wall and the heat radiating wall, and an inner wall surface of the pushing member. And a holding means for holding the refrigerant flow control plate.
【請求項2】前記押し出し部材の内壁面には、前記冷媒
流制御板を保持する保持手段としての溝が押し出し方向
に延びて設けられていることを特徴とする請求項1に記
載した沸騰冷却装置。
2. The boiling cooling according to claim 1, wherein a groove as holding means for holding the refrigerant flow control plate is provided on the inner wall surface of the pushing member so as to extend in the pushing direction. apparatus.
【請求項3】前記押し出し部材の内壁面には、前記冷媒
流制御板を保持する保持手段としての突起が押し出し方
向に延びて設けられていることを特徴とする請求項1に
記載した沸騰冷却装置。
3. A cooling apparatus according to claim 1, wherein a projection as a holding means for holding said refrigerant flow control plate is provided on an inner wall surface of said pushing member so as to extend in a pushing direction. apparatus.
【請求項4】前記冷媒流制御板は、前記冷媒流制御板の
下側から上側へ冷媒蒸気を通すための開口部と、前記冷
媒流制御板の上側から下側へ凝縮液を通すための開口部
とを有していることを特徴とする請求項1〜3に記載し
た何れかの沸騰冷却装置。
4. The refrigerant flow control plate has an opening through which refrigerant vapor flows from below to above the refrigerant flow control plate, and a passage through which condensate flows from above to below the refrigerant flow control plate. The boiling cooling device according to any one of claims 1 to 3, further comprising an opening.
【請求項5】冷媒蒸気を通すために前記冷媒流制御板に
設けられた開口部は、前記発熱体の取り付け部位に対応
する領域に開口していることを特徴とする請求項4に記
載した沸騰冷却装置。
5. An apparatus according to claim 4, wherein an opening provided in said refrigerant flow control plate for allowing refrigerant vapor to pass therethrough is opened in a region corresponding to a mounting portion of said heating element. Boiling cooling device.
【請求項6】前記密閉容器は、前記蓋体の内側面と前記
冷媒流制御板の端面との間に冷媒が通過できる隙間を有
していることを特徴とする請求項1〜5に記載した何れ
かの沸騰冷却装置。
6. The airtight container according to claim 1, wherein a gap through which a refrigerant can pass is provided between an inner surface of the lid and an end surface of the refrigerant flow control plate. Any of the boiling cooling devices.
【請求項7】前記押し出し部材の内部には、前記受熱壁
と前記放熱壁とを連結する連結部が一体に設けられてい
ることを特徴とする請求項1〜6に記載した何れかの沸
騰冷却装置。
7. The boiling member according to claim 1, wherein a connecting portion for connecting the heat receiving wall and the heat radiating wall is integrally provided inside the pushing member. Cooling system.
【請求項8】前記連結部は、少なくとも前記発熱体の取
り付け部位に対応する領域を通って設けられていること
を特徴とする請求項7に記載した沸騰冷却装置。
8. The boiling cooling device according to claim 7, wherein the connecting portion is provided at least through a region corresponding to a mounting portion of the heating element.
【請求項9】前記押し出し部材の内部には、前記受熱壁
から前記放熱壁側へ延びる複数の突起と、前記放熱壁か
ら前記受熱壁側へ延びる複数の突起とが互いにずれた位
置に設けられ、 前記冷媒流制御板は、前記受熱壁側の突起の先端面と前
記放熱壁側の突起の先端面との間に保持されて、前記受
熱壁側の突起の先端面と前記放熱壁側の突起の先端面と
を熱的に連結し、且つ前記冷媒流制御板の下側で前記受
熱壁側の突起によって区画された空間と、前記冷媒流制
御板の上側で前記放熱壁側の突起によって区画された空
間とが、前記冷媒流制御板に設けられた複数の開口部を
通じて連続的に連通していることを特徴とする請求項1
〜8に記載した何れかの沸騰冷却装置。
9. A plurality of protrusions extending from the heat receiving wall to the heat radiating wall and a plurality of protrusions extending from the heat radiating wall to the heat receiving wall are provided inside the extruding member at positions shifted from each other. The refrigerant flow control plate is held between a distal end surface of the projection on the heat receiving wall side and a distal end surface of the projection on the heat radiating wall side. A space that is thermally connected to a tip end surface of the protrusion, and is defined by the protrusion on the heat receiving wall side below the refrigerant flow control plate, and a protrusion on the heat radiation wall side above the refrigerant flow control plate. The divided space is continuously communicated through a plurality of openings provided in the refrigerant flow control plate.
9. The boiling cooling device according to any one of items 1 to 8.
【請求項10】前記押し出し部材には、前記放熱壁と一
体に放熱ブロックが設けられていることを特徴とする請
求項1〜9に記載した何れかの沸騰冷却装置。
10. The boiling cooling device according to claim 1, wherein the extruding member is provided with a heat radiation block integrally with the heat radiation wall.
【請求項11】請求項1〜10に記載した何れかの沸騰
冷却装置を製造する方法であって、 前記密閉容器は、一体ろう付けによって製造されている
ことを特徴とする沸騰冷却装置の製造方法。
11. A method for manufacturing a boiling cooling device according to claim 1, wherein said closed vessel is manufactured by integral brazing. Method.
JP9331297A 1997-04-11 1997-04-11 Boiling/cooling device and manufacture therefor Pending JPH10284661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9331297A JPH10284661A (en) 1997-04-11 1997-04-11 Boiling/cooling device and manufacture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9331297A JPH10284661A (en) 1997-04-11 1997-04-11 Boiling/cooling device and manufacture therefor

Publications (1)

Publication Number Publication Date
JPH10284661A true JPH10284661A (en) 1998-10-23

Family

ID=14078809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9331297A Pending JPH10284661A (en) 1997-04-11 1997-04-11 Boiling/cooling device and manufacture therefor

Country Status (1)

Country Link
JP (1) JPH10284661A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088048A (en) * 2002-07-05 2004-03-18 Sony Corp Cooling device, electronic equipment, acoustic equipment, and method of manufacturing cooling device
KR100423235B1 (en) * 2001-10-11 2004-03-18 엘지전선 주식회사 Heat spreader for the cooling of electronic devices
JP2005019794A (en) * 2003-06-27 2005-01-20 Mitsubishi Electric Corp Cooling device
JP2011205018A (en) * 2010-03-26 2011-10-13 Fujitsu Ltd Semiconductor package, and semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423235B1 (en) * 2001-10-11 2004-03-18 엘지전선 주식회사 Heat spreader for the cooling of electronic devices
JP2004088048A (en) * 2002-07-05 2004-03-18 Sony Corp Cooling device, electronic equipment, acoustic equipment, and method of manufacturing cooling device
JP2005019794A (en) * 2003-06-27 2005-01-20 Mitsubishi Electric Corp Cooling device
JP2011205018A (en) * 2010-03-26 2011-10-13 Fujitsu Ltd Semiconductor package, and semiconductor device

Similar Documents

Publication Publication Date Title
US5309986A (en) Heat pipe
US6749013B2 (en) Heat sink
US20100155030A1 (en) Thermal module
JPH08264692A (en) Cooling device for electronic parts
JPH08264694A (en) Cooling device for electronic parts
US20050082040A1 (en) Integrated liquid cooling system for electrical components
US20050061482A1 (en) Integrated liquid cooling system for electrical components
CN209930821U (en) Liquid-cooled heat conduction block and water-cooled radiator
CN112188792A (en) Heat radiator
JPH11274781A (en) Electronic device
KR100659582B1 (en) Loop type micro heat transport device
JPH10284661A (en) Boiling/cooling device and manufacture therefor
CN214676229U (en) Thermosiphon radiator
CN215984138U (en) Heat radiating member and cooling device having the same
JPH10256445A (en) Boiling and cooling device and its manufacture
JP2021196087A (en) Heat conductive member and cooler comprising the same
JP3123335B2 (en) Air-cooled heat sink
JPH1187583A (en) Boiling cooler
US20220232736A1 (en) Cooling device and data processing apparatus
JPH06112380A (en) Radiator discharging heat pipe function
TWI842472B (en) Vapor chamber device
US20240310126A1 (en) Vapor chamber
JP7452253B2 (en) Cooling system
JPH08178559A (en) Heat exchanger
CN221962190U (en) Immersed radiator