JPH10252486A - Intake/exhaust device for internal combustion engine - Google Patents

Intake/exhaust device for internal combustion engine

Info

Publication number
JPH10252486A
JPH10252486A JP9053003A JP5300397A JPH10252486A JP H10252486 A JPH10252486 A JP H10252486A JP 9053003 A JP9053003 A JP 9053003A JP 5300397 A JP5300397 A JP 5300397A JP H10252486 A JPH10252486 A JP H10252486A
Authority
JP
Japan
Prior art keywords
cylinder
intake
exhaust
egr gas
stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9053003A
Other languages
Japanese (ja)
Inventor
Nobuo Habu
信男 土生
Toshio Ito
敏雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9053003A priority Critical patent/JPH10252486A/en
Publication of JPH10252486A publication Critical patent/JPH10252486A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress occurrence of knocking by forming an EGR gas layer over the whole circumference of the peripheral part of a combustion chamber. SOLUTION: Communicating passages 18, 19, 20, 21 are arranged in this intake/exhaust device so that intake ports 6, 7, 8, 9 of air cylinders 2, 3, 4, 5 in an intake stroke and exhaust ports 13, 12, 11, 10 of air cylinders 5, 4, 3, 2 in an exhaust stroke are communicated with each other, thereby exhaust having high exhaust pressure of the air cylinder in the exhaust stroke is supplied as EGR gas to the air cylinder in the intake stroke. The negative pressure of the intake port is large at the time of a light load and blow down pressure is large at the time of a high load, therefore differential pressure between the intake port of a predetermined air cylinder and the exhaust port of the air cylinder corresponding to the predetermined air cylinder is always large. Therefore, EGR gas pressure can be sufficiently increased, and sufficiently strong intercylinder swirl can be produced in the combustion chamber of the air cylinder in the intake stroke.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の吸排気装
置に関する。
The present invention relates to an intake and exhaust device for an internal combustion engine.

【0002】[0002]

【従来の技術】従来、スワールポートを設けることによ
り筒内スワールを発生させ、更に吸気行程吸気下死点以
前に排気弁を所定期間だけ開弁することにより筒内スワ
ールを発生させる内燃機関の吸排気装置が知られてい
る。この吸排気装置は、二つの筒内スワールが相まっ
て、燃焼室全周にわたるスワール流れを形成し、燃焼室
の周縁部全周にEGRガス層を形成する。そのため、N
Ox発生量を低減できかつノッキングの発生を抑制でき
る。更に、この吸排気装置は、燃焼室中心部の点火プラ
グ付近に比較的リッチな混合気を形成する。そのため、
混合気の着火性及び燃焼性を高く保持できかつHC発生
量を低減できる。この種の内燃機関の吸排気装置の例と
しては、例えば特開平5−280356号公報に記載さ
れたものがある。
2. Description of the Related Art Conventionally, a swirl port is provided to generate in-cylinder swirl, and furthermore, an intake valve of an internal combustion engine that generates in-cylinder swirl by opening an exhaust valve for a predetermined period before a bottom dead center of intake stroke. Exhaust devices are known. In this intake and exhaust device, the two in-cylinder swirls combine to form a swirl flow over the entire circumference of the combustion chamber, and form an EGR gas layer all around the periphery of the combustion chamber. Therefore, N
Ox generation can be reduced and knocking can be suppressed. Further, this intake / exhaust device forms a relatively rich air-fuel mixture near the spark plug at the center of the combustion chamber. for that reason,
The ignitability and combustibility of the air-fuel mixture can be kept high and the amount of generated HC can be reduced. An example of this type of intake and exhaust device for an internal combustion engine is disclosed in, for example, JP-A-5-280356.

【0003】また、EGRガスを吸気弁のフェース部か
ら燃焼室内に注入する、又は加圧した混合気を吸気弁の
フェース部から燃焼室内に噴出させることにより筒内ス
ワールを発生させる内燃機関の吸排気装置が知られてい
る。この吸排気装置は、筒内スワールにより、燃焼室内
に吸入される混合気を強制的に攪拌し、排気ガス又は空
気を多量に混入した希薄混合気を燃焼させることがで
き、HC、NOx等の発生量を低減できる。この種の内
燃機関の吸排気装置の例としては、例えば特開昭54−
112415号公報に記載されたものがある。
In addition, an EGR gas is injected into a combustion chamber from a face portion of an intake valve, or a pressurized air-fuel mixture is injected into a combustion chamber from a face portion of an intake valve to generate in-cylinder swirl. Exhaust devices are known. This intake / exhaust device can forcibly stir the air-fuel mixture sucked into the combustion chamber by the in-cylinder swirl and burn a lean air-fuel mixture containing a large amount of exhaust gas or air. The amount of generation can be reduced. An example of this type of intake and exhaust device for an internal combustion engine is disclosed in, for example,
There is one described in JP-A-112415.

【0004】また、同一の気筒の吸気ポートと排気ポー
トとを連通させ、吸気ポートを介して燃焼室内に注入さ
れるEGRガスの注入方向を切り換えることにより筒内
スワールを付消勢する内燃機関の吸排気装置が知られて
いる。この吸排気装置は、筒内スワールによって新気と
EGRガスとを混合する。そのため、良好な燃焼を行う
ことができ、HC、NOx等の発生量を低減できる。こ
の種の内燃機関の吸排気装置の例としては、例えば実開
平2−40961号公報に記載されたものがある。
Further, an intake port and an exhaust port of the same cylinder are communicated with each other, and the direction of injection of EGR gas injected into the combustion chamber via the intake port is switched to deactivate the in-cylinder swirl. Intake and exhaust devices are known. This intake / exhaust device mixes fresh air and EGR gas by in-cylinder swirl. Therefore, good combustion can be performed, and the generation amount of HC, NOx, and the like can be reduced. An example of this type of intake / exhaust device for an internal combustion engine is disclosed in Japanese Utility Model Laid-Open No. 2-40961.

【0005】また、複数の気筒の燃焼室を連結路によっ
て連通させ、圧縮行程の気筒の燃焼室内の混合気を吸入
行程の気筒の燃焼室内に注入することにより、吸入行程
の気筒の燃焼室内に筒内スワールを発生させる内燃機関
の吸排気装置が知られている。この吸排気装置は、筒内
スワールによって混合気を攪拌して燃焼を改善すること
ができる。この種の内燃機関の吸排気装置の例として
は、例えば特開昭54−16010号公報に記載された
ものがある。
Further, the combustion chambers of a plurality of cylinders are communicated by a connecting path, and the air-fuel mixture in the combustion chambers of the cylinders in the compression stroke is injected into the combustion chambers of the cylinders in the suction stroke, so that the mixture in the combustion chambers of the cylinders in the suction stroke. BACKGROUND ART An intake and exhaust device for an internal combustion engine that generates in-cylinder swirl is known. This intake / exhaust device can improve the combustion by stirring the air-fuel mixture by the in-cylinder swirl. An example of this type of intake and exhaust device for an internal combustion engine is disclosed in, for example, JP-A-54-16010.

【0006】また、単一の吸気弁の上流部において二つ
の吸気通路が合流しており、そのうちの一方の吸気通路
にのみEGRガスの注入口を設けた内燃機関の吸排気装
置が知られている。この吸排気装置は、EGRガスの注
入口を設けていない吸気通路の吸気流速を大きくするこ
とにより筒内スワールを発生させ、混合気を攪拌して燃
焼を改善することができる。この種の内燃機関の吸排気
装置の例としては、例えば特開昭57−146042号
公報に記載されたものがある。
Also, there is known an intake / exhaust device for an internal combustion engine in which two intake passages join at an upstream portion of a single intake valve, and an EGR gas inlet is provided only in one of the intake passages. I have. This intake / exhaust device can generate in-cylinder swirl by increasing the intake flow velocity in an intake passage not provided with an EGR gas inlet, and stir the air-fuel mixture to improve combustion. An example of this type of intake / exhaust device for an internal combustion engine is disclosed, for example, in Japanese Patent Application Laid-Open No. 57-146042.

【0007】また、EGRガス通路の開口をヘリカルポ
ートの絞りの下流側に設けた内燃機関の吸排気装置が知
られている。この吸排気装置は、EGRガスがヘリカル
ポートの絞りを通過することを回避し、EGRガスに関
するポンプ損失を低減することができる。この種の内燃
機関の吸排気装置の例としては、例えば特開平6−17
3781号公報に記載されたものがある。
Further, there is known an intake and exhaust device for an internal combustion engine in which an opening of an EGR gas passage is provided downstream of a throttle of a helical port. This intake / exhaust device can prevent the EGR gas from passing through the throttle of the helical port, and can reduce the pump loss related to the EGR gas. An example of this type of intake and exhaust device for an internal combustion engine is disclosed in, for example, JP-A-6-17.
There is one described in U.S. Pat.

【0008】[0008]

【発明が解決しようとする課題】ところが、特開平5−
280356号公報の内燃機関の吸排気装置は、吸気行
程吸気下死点以後にも吸気弁を介して燃焼室内に混合気
を注入する。そのため、吸気行程吸気下死点以前に、燃
焼室の周縁部全周にわたってEGRガス層を形成して
も、吸気行程吸気下死点以後に、燃焼室の周縁部全周の
EGRガスは混合気に置換されてしまう。その結果、N
Ox発生量を十分に低減できず、ノッキングの発生を十
分に抑制できない。更に、吸気行程吸気下死点以前に排
気弁を介して注入したEGRガスと、吸気行程吸気下死
点以後に吸気弁を介して注入した混合気とが、吸気行程
吸気下死点以後に混合してしまう。それゆえ、燃焼室中
心部の点火プラグ付近にリッチな混合気を十分に形成す
ることができない。その結果、混合気の着火性及び燃焼
性を十分に高く保持できず、HC発生量を十分に低減で
きない。
SUMMARY OF THE INVENTION However, Japanese Patent Application Laid-Open No.
The intake and exhaust system of the internal combustion engine disclosed in Japanese Patent Publication No. 280356 injects air-fuel mixture into the combustion chamber via the intake valve even after the intake stroke bottom dead center. Therefore, even if the EGR gas layer is formed over the entire periphery of the combustion chamber before the intake stroke bottom dead center, the EGR gas on the entire periphery of the combustion chamber is mixed with the air-fuel mixture after the intake stroke intake bottom dead center. Will be replaced by As a result, N
Ox generation cannot be sufficiently reduced, and knocking cannot be sufficiently suppressed. Further, the EGR gas injected through the exhaust valve before the intake stroke bottom dead center and the air-fuel mixture injected through the intake valve after the intake stroke bottom dead center are mixed after the intake stroke intake bottom dead center. Resulting in. Therefore, a rich air-fuel mixture cannot be sufficiently formed near the ignition plug in the center of the combustion chamber. As a result, the ignitability and the combustibility of the air-fuel mixture cannot be kept sufficiently high, and the amount of generated HC cannot be sufficiently reduced.

【0009】また、特開昭54−112415号公報の
内燃機関の吸排気装置は、EGRガスを燃焼室内に注入
する場合、EGRガスを排気管から導くためにEGRガ
スの圧力が十分に高くなく、十分に強い筒内スワールを
発生させることができない。そのため、燃焼室内に吸入
される混合気を十分に攪拌できず、燃焼室の周縁部全周
にわたってEGRガス層を形成することができない。そ
の結果、特開平5−280356号公報の内燃機関の吸
排気装置と同様に、NOx発生量を十分に低減できず、
ノッキングの発生を十分に抑制できない。加圧した混合
気を燃焼室内に噴出させる場合、混合気を加圧するため
に圧縮機を作動しなければならない。その結果、圧縮機
を設置するためのコストが増加してしまい、更に圧縮機
の作動に必要なだけ燃費が悪化してしまう。
Further, in the intake and exhaust system of an internal combustion engine disclosed in Japanese Patent Application Laid-Open No. 54-112415, when EGR gas is injected into a combustion chamber, the pressure of the EGR gas is not high enough to guide the EGR gas from an exhaust pipe. , Cannot generate sufficiently strong in-cylinder swirl. Therefore, the air-fuel mixture sucked into the combustion chamber cannot be sufficiently stirred, and the EGR gas layer cannot be formed over the entire periphery of the combustion chamber. As a result, similarly to the intake and exhaust device of the internal combustion engine disclosed in Japanese Patent Application Laid-Open No. 5-280356, the amount of NOx generated cannot be sufficiently reduced,
The occurrence of knocking cannot be sufficiently suppressed. When a pressurized air-fuel mixture is injected into a combustion chamber, a compressor must be operated to pressurize the air-fuel mixture. As a result, the cost for installing the compressor increases, and furthermore, the fuel efficiency deteriorates as required for the operation of the compressor.

【0010】また、実開平2−40961号公報の内燃
機関の吸排気装置は、同一の気筒の吸気ポートと排気ポ
ートとが連通されているため、燃焼室内へのEGRガス
の注入と燃焼室からの排気の排出とを同時に行う。更
に、燃焼室内へのEGRガスの注入は吸入行程において
行うため、EGRガス注入時における排圧は十分に高く
ない。つまりEGRガスの圧力は十分に高くない。その
ため、十分に強い筒内スワールを発生させることができ
ず、新気とEGRガスとを十分に攪拌できず、燃焼室の
周縁部全周にわたってEGRガス層を形成することがで
きない。その結果、特開平5−280356号公報の内
燃機関の吸排気装置と同様に、NOx発生量を十分に低
減できず、ノッキングの発生を十分に抑制できない。
In the intake / exhaust device for an internal combustion engine disclosed in Japanese Utility Model Laid-Open Publication No. 2-40961, the intake port and the exhaust port of the same cylinder are connected to each other. And exhaust of the exhaust gas at the same time. Further, since the injection of the EGR gas into the combustion chamber is performed during the suction stroke, the exhaust pressure during the injection of the EGR gas is not sufficiently high. That is, the pressure of the EGR gas is not sufficiently high. Therefore, a sufficiently strong in-cylinder swirl cannot be generated, the fresh air and the EGR gas cannot be sufficiently stirred, and an EGR gas layer cannot be formed over the entire periphery of the combustion chamber. As a result, similarly to the intake and exhaust system of the internal combustion engine disclosed in JP-A-5-280356, the amount of generated NOx cannot be reduced sufficiently, and the occurrence of knocking cannot be sufficiently suppressed.

【0011】また、特開昭54−16010号公報の内
燃機関の吸排気装置は、混合気により筒内スワールを発
生させることができるが、EGRガスによって筒内スワ
ールを発生させることができない。そのため、燃焼室の
周縁部全周にわたってEGRガス層を形成することがで
きない。その結果、特開平5−280356号公報の内
燃機関の吸排気装置と同様に、NOx発生量を十分に低
減できず、ノッキングの発生を十分に抑制できない。
The intake and exhaust system for an internal combustion engine disclosed in Japanese Patent Application Laid-Open No. 54-16010 can generate in-cylinder swirl by an air-fuel mixture, but cannot generate in-cylinder swirl by EGR gas. Therefore, the EGR gas layer cannot be formed over the entire periphery of the combustion chamber. As a result, similarly to the intake and exhaust system of the internal combustion engine disclosed in JP-A-5-280356, the amount of generated NOx cannot be reduced sufficiently, and the occurrence of knocking cannot be sufficiently suppressed.

【0012】また、特開昭57−146042号公報の
内燃機関の吸排気装置は、燃焼室内に注入するEGRガ
スの圧力が十分に高くないため、筒内スワールを発生で
きたとしても、燃焼室の周縁部全周にわたってEGRガ
ス層を形成することができない。その結果、特開平5−
280356号公報の内燃機関の吸排気装置と同様に、
NOx発生量を十分に低減できず、ノッキングの発生を
十分に抑制できない。
Further, in the intake and exhaust system of the internal combustion engine disclosed in Japanese Patent Application Laid-Open No. 57-146042, the pressure of the EGR gas injected into the combustion chamber is not sufficiently high. The EGR gas layer cannot be formed over the entire periphery of. As a result, the
Similarly to the intake and exhaust device of the internal combustion engine of 280356,
The amount of generated NOx cannot be sufficiently reduced, and the occurrence of knocking cannot be sufficiently suppressed.

【0013】また、特開平6−173781号公報の内
燃機関の吸排気装置は、実開平2−40961号公報の
内燃機関の吸排気装置と同様に、同一の気筒の吸気ポー
トと排気ポートとが連通されているため、EGRガスの
圧力が十分に高くない。そのため、十分に強い筒内スワ
ールを発生させることができず、新気とEGRガスとを
十分に攪拌できず、燃焼室の周縁部全周にわたってEG
Rガス層を形成することができない。その結果、特開平
5−280356号公報の内燃機関の吸排気装置と同様
に、NOx発生量を十分に低減できず、ノッキングの発
生を十分に抑制できない。
The intake and exhaust system for an internal combustion engine disclosed in Japanese Patent Application Laid-Open No. 6-173781 is similar to the intake and exhaust system for an internal combustion engine disclosed in Japanese Utility Model Application Laid-Open No. 2-40961. Because of the communication, the pressure of the EGR gas is not sufficiently high. Therefore, a sufficiently strong in-cylinder swirl cannot be generated, the fresh air and the EGR gas cannot be sufficiently agitated, and the EG is swept around the entire periphery of the combustion chamber.
The R gas layer cannot be formed. As a result, similarly to the intake / exhaust device for an internal combustion engine disclosed in Japanese Patent Application Laid-Open No. 5-280356, the amount of generated NOx cannot be sufficiently reduced, and the occurrence of knocking cannot be sufficiently suppressed.

【0014】上記問題に鑑み、本発明は、EGRガス等
を加圧する圧縮機を設置するためのコストアップ及び圧
縮機の作動による燃費の悪化を回避しつつ、十分に強い
筒内スワールを発生させ、燃焼室の周縁部全周にわたっ
てEGRガス層を形成することによりノッキングの発生
を抑制し、更に混合気の着火性及び燃焼性を高く保持で
きかつNOx、HCの発生量を低減することができる内
燃機関の吸排気装置を提供することを目的とする。
[0014] In view of the above problems, the present invention provides a sufficiently strong in-cylinder swirl while avoiding an increase in cost for installing a compressor for pressurizing EGR gas and the like and a decrease in fuel efficiency due to operation of the compressor. By forming an EGR gas layer all around the periphery of the combustion chamber, knocking can be suppressed, the ignitability and combustibility of the air-fuel mixture can be kept high, and the generation amount of NOx and HC can be reduced. An object of the present invention is to provide an intake and exhaust device for an internal combustion engine.

【0015】[0015]

【課題を解決するための手段】請求項1に記載の発明に
よれば、吸気弁によって開閉される吸気ポートと排気弁
によって開閉される排気ポートとを備えた気筒を複数具
備する内燃機関の吸排気装置において、一の気筒の吸気
ポートと他の一の気筒の排気ポートとをそれぞれ連通路
により連通させ、前記一の気筒が吸気行程となる時に、
前記他の一の気筒は排気行程となることを特徴とする内
燃機関の吸排気装置が提供される。
According to the first aspect of the present invention, there is provided an intake system for an internal combustion engine having a plurality of cylinders each having an intake port opened and closed by an intake valve and an exhaust port opened and closed by an exhaust valve. In the exhaust device, the intake port of one cylinder and the exhaust port of the other cylinder communicate with each other through a communication path, and when the one cylinder is in an intake stroke,
An intake / exhaust device for an internal combustion engine is provided, wherein the other cylinder performs an exhaust stroke.

【0016】請求項1に記載の内燃機関の吸排気装置
は、排気行程の気筒の排圧の高い排気をEGRガスとし
て吸気行程の気筒に供給する。つまり、EGR通路は互
いに異なる気筒の排気ポートと吸気ポートとを連通して
いる。そのため、EGRガスの圧力を十分に高くするこ
とができ、吸気行程の気筒の燃焼室に十分に強い筒内ス
ワールを発生させることができ、燃焼室の周縁部全周に
わたってEGRガス層を形成することができる。その結
果、ノッキングの発生を抑制でき、NOx発生量を低減
できる。更に、吸気行程の気筒の燃焼室において、燃焼
室中心部の点火プラグ付近にリッチな混合気を形成する
ことができる。その結果、混合気の着火性及び燃焼性を
高く保持でき、HC発生量を低減できる。尚、EGRガ
スを加圧するための圧縮機が不要であるため、圧縮機の
作動の際に生じる燃費の悪化を回避することができる。
尚、各気筒の吸気ポートとその気筒に対応する気筒の排
気ポートとをそれぞれの連通路によって連通させている
ため、他の気筒の吸排気脈動の影響が小さく、EGRガ
スを良好に分配することができる。また、軽負荷時には
吸気マニホルドつまり吸気ポートの負圧が大きく、高負
荷時にはブローダウン圧力が大きいため、所定の気筒の
吸気ポートとその気筒に対応する気筒の排気ポートとの
間の差圧が常に大きく、その結果、常に高圧のEGRガ
スを供給することができる。
According to the first aspect of the present invention, the intake and exhaust system for an internal combustion engine supplies exhaust gas having a high exhaust pressure of a cylinder in an exhaust stroke to the cylinder in an intake stroke as EGR gas. That is, the EGR passage communicates the exhaust port and the intake port of the different cylinders. Therefore, the pressure of the EGR gas can be sufficiently increased, a sufficiently strong in-cylinder swirl can be generated in the combustion chamber of the cylinder in the intake stroke, and the EGR gas layer is formed over the entire periphery of the combustion chamber. be able to. As a result, occurrence of knocking can be suppressed, and the amount of generated NOx can be reduced. Further, in the combustion chamber of the cylinder in the intake stroke, a rich air-fuel mixture can be formed near the ignition plug at the center of the combustion chamber. As a result, the ignitability and combustibility of the air-fuel mixture can be kept high, and the amount of generated HC can be reduced. In addition, since a compressor for pressurizing the EGR gas is not required, it is possible to avoid deterioration of fuel efficiency caused when the compressor is operated.
In addition, since the intake port of each cylinder and the exhaust port of the cylinder corresponding to that cylinder communicate with each other through communication passages, the influence of intake and exhaust pulsations of other cylinders is small, and the EGR gas can be distributed well. Can be. Also, at a light load, the intake manifold, that is, the negative pressure at the intake port is large, and at a high load, the blowdown pressure is large, so that the differential pressure between the intake port of a given cylinder and the exhaust port of the cylinder corresponding to that cylinder is always constant. As a result, high-pressure EGR gas can always be supplied.

【0017】[0017]

【発明の実施の形態】以下、添付図面を用いて本発明の
実施形態について説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0018】図1は本発明の内燃機関の吸排気装置の一
実施形態のシリンダヘッドの断面図である。図1におい
て、1はシリンダヘッド、2〜5は、それぞれ一番気
筒、二番気筒、三番気筒、四番気筒である。6〜9は、
それぞれ一番気筒、二番気筒、三番気筒、四番気筒の吸
気ポートである。10〜13は、それぞれ一番気筒、二
番気筒、三番気筒、四番気筒の排気ポートである。14
〜17は、それぞれ一番気筒、二番気筒、三番気筒、四
番気筒のEGRガス吹出しパイプである。18は一番気
筒の吸気ポート6と四番気筒の排気ポート13とを連通
するEGR通路である。19は二番気筒の吸気ポート7
と三番気筒の排気ポート12とを連通するEGR通路で
ある。20は三番気筒の吸気ポート8と二番気筒の排気
ポート11とを連通するEGR通路である。21は四番
気筒の吸気ポート9と一番気筒の排気ポート10とを連
通するEGR通路である。22〜25は、それぞれEG
R通路18〜21に設けられたリード弁である。26〜
29は、それぞれEGR通路18〜21に設けられた制
御弁である。
FIG. 1 is a sectional view of a cylinder head of an embodiment of an intake / exhaust device for an internal combustion engine according to the present invention. In FIG. 1, reference numeral 1 denotes a cylinder head, and reference numerals 2 to 5 denote a first cylinder, a second cylinder, a third cylinder, and a fourth cylinder, respectively. 6-9 are
These are the intake ports of the first cylinder, the second cylinder, the third cylinder, and the fourth cylinder, respectively. Reference numerals 10 to 13 denote exhaust ports of the first cylinder, the second cylinder, the third cylinder, and the fourth cylinder, respectively. 14
Reference numerals 17 to 17 denote EGR gas blowing pipes of the first cylinder, the second cylinder, the third cylinder, and the fourth cylinder, respectively. An EGR passage 18 connects the intake port 6 of the first cylinder and the exhaust port 13 of the fourth cylinder. 19 is the intake port 7 of the second cylinder
And an EGR passage that communicates with the exhaust port 12 of the third cylinder. Reference numeral 20 denotes an EGR passage that connects the intake port 8 of the third cylinder and the exhaust port 11 of the second cylinder. An EGR passage 21 communicates the intake port 9 of the fourth cylinder and the exhaust port 10 of the first cylinder. 22 to 25 are EG
This is a reed valve provided in the R passages 18 to 21. 26-
Reference numeral 29 denotes control valves provided in the EGR passages 18 to 21, respectively.

【0019】図1に示すように、EGRガス吹出しパイ
プ14〜17は、それぞれ吸気ポート6〜9に対して中
心をずらして配置されている。そのため、図中矢印の方
向に筒内スワールを発生させることができる。EGR通
路18〜21にそれぞれ設けられたリード弁22〜25
は、排気ポートから吸気ポートの側に流れるEGRガス
の逆流を防止する。制御弁26〜29は、それぞれEG
R通路18〜21内を流れるEGRガスの流量をECU
からの信号に基づいて制御する。各EGR通路18〜2
1は互いに独立しており、各EGR通路18〜21内の
EGRガスが互いに混合することはない。そのため、気
筒の吸排気脈動は、その気筒に連通されていない気筒に
ほとんど影響を及ぼさない。各EGR通路18〜21の
排気ポート側の端部は、可能な限り燃焼室に近接して設
けられている。そのため、各燃焼室からの排気は、各排
気ポート10〜13を通過する際に圧力が低下すること
なく、各EGR通路18〜21内に到達することができ
る。更に、EGR吹出しパイプ14〜17の端部も、可
能な限り燃焼室に近接して設けられている。そのため、
各EGR通路18〜21からのEGRガスは、各吸気ポ
ート6〜9を通過する際に圧力が低下することなく、各
燃焼室内に到達することができる。
As shown in FIG. 1, the EGR gas outlet pipes 14 to 17 are arranged off-center with respect to the intake ports 6 to 9, respectively. Therefore, in-cylinder swirl can be generated in the direction of the arrow in the figure. Reed valves 22 to 25 provided in EGR passages 18 to 21, respectively
Prevents the backflow of EGR gas flowing from the exhaust port to the intake port. The control valves 26 to 29 are respectively EG
The EGR gas flow rate flowing through the R passages 18 to 21 is determined by the ECU.
Control based on signals from the Each EGR passage 18-2
1 are independent of each other, and the EGR gases in each of the EGR passages 18 to 21 do not mix with each other. Therefore, the intake / exhaust pulsation of the cylinder hardly affects the cylinder that is not communicated with the cylinder. The exhaust port side end of each of the EGR passages 18 to 21 is provided as close to the combustion chamber as possible. Therefore, the exhaust gas from each combustion chamber can reach each of the EGR passages 18 to 21 without decreasing the pressure when passing through each of the exhaust ports 10 to 13. Further, the ends of the EGR outlet pipes 14 to 17 are also provided as close to the combustion chamber as possible. for that reason,
The EGR gas from each of the EGR passages 18 to 21 can reach each combustion chamber without lowering the pressure when passing through each of the intake ports 6 to 9.

【0020】図2は図1のシリンダヘッドの各気筒の行
程タイミングを示す特性図である。図2において、実線
双方向矢印はEGRガス吹出しパイプ側の吸気弁の開弁
期間を示し、一点鎖線双方向矢印はEGRガス吹出しパ
イプの反対側の吸気弁の開弁期間を示し、二点鎖線双方
向矢印は排気弁の開弁期間(各気筒の二つの排気弁にお
いて共通)を示し、白抜き矢印はブローダウンによるE
GRガスの流れを示す。図2に示すように、各気筒のE
GRガス吹出しパイプ側の吸気弁の開弁時期は、その気
筒のEGRガス吹出しパイプの反対側の吸気弁の開弁時
期よりもはやく、各気筒のEGRガス吹出しパイプ側の
吸気弁の閉弁時期は、その気筒のEGRガス吹出しパイ
プの反対側の吸気弁の閉弁時期よりも遅くなっている。
その結果、各気筒の燃焼室に筒内スワールをより一層効
果的に発生させることができる。
FIG. 2 is a characteristic diagram showing stroke timing of each cylinder of the cylinder head of FIG. In FIG. 2, a solid line bidirectional arrow indicates an opening period of the intake valve on the side of the EGR gas discharge pipe, a dashed line bidirectional arrow indicates a valve opening period of the intake valve on the opposite side of the EGR gas discharge pipe, and a two-dot chain line. The two-way arrow indicates the opening period of the exhaust valve (common to the two exhaust valves of each cylinder), and the white arrow indicates the blowdown E
4 shows the flow of GR gas. As shown in FIG.
The opening timing of the intake valve on the GR gas outlet pipe side is no longer than the opening timing of the intake valve on the opposite side of the EGR gas outlet pipe of that cylinder, and the closing timing of the intake valve on the EGR gas outlet pipe side of each cylinder. Is later than the closing timing of the intake valve on the opposite side of the EGR gas outlet pipe of that cylinder.
As a result, in-cylinder swirl can be generated more effectively in the combustion chamber of each cylinder.

【0021】図1及び図2に基づいて、EGR通路によ
り互いに連通されている一方の気筒から他方の気筒への
EGRガスの流れを以下説明する。図1に示すように、
本実施形態の内燃機関の吸排気装置は、一番気筒のEG
Rガス吹出しパイプ14、EGR通路18、制御弁26
及びリード弁22を介して、一番気筒の吸気ポート6と
四番気筒の排気ポート13とを連通している。図2に示
すように、一番気筒2の吸気行程(一番気筒のEGRガ
ス吹出しパイプ側の吸気弁の開弁期間)と四番気筒5の
排気行程(四番気筒の排気弁の開弁期間)とは、一番気
筒2の吸気行程の終了直前の期間(四番気筒5の排気行
程の開始直後の期間)において重複する。気筒の燃焼室
の排圧はその気筒の排気行程の開始直後の期間に最も高
い。そのため、図2に白抜き矢印で示すように、四番気
筒5のブローダウンにより、排気行程の開始直後の期間
における四番気筒5の燃焼室からの最も高圧の排気が、
EGRガスとしてEGR通路18等を介して一番気筒の
吸気ポート6に到達する。吸気ポート6に到達するEG
Rガスが十分に高圧であるため、一番気筒2の燃焼室内
に十分に強い筒内スワールを形成することができる。そ
の結果、一番気筒2の燃焼室周縁部にEGRガス層を形
成することができる。四番気筒5からの高圧のEGRガ
スは、一番気筒2の吸気行程の終了直前の期間に一番気
筒2の燃焼室に到達するため、一番気筒2の十分に強い
筒内スワールを吸気行程終了直後の点火時期まで維持す
ることができる。
Referring to FIGS. 1 and 2, the flow of EGR gas from one cylinder to the other cylinder, which is connected to each other by an EGR passage, will be described below. As shown in FIG.
The intake and exhaust device of the internal combustion engine according to the present embodiment has the first cylinder EG.
R gas outlet pipe 14, EGR passage 18, control valve 26
Further, the intake port 6 of the first cylinder and the exhaust port 13 of the fourth cylinder communicate with each other via the reed valve 22. As shown in FIG. 2, the intake stroke of the first cylinder 2 (opening period of the intake valve on the side of the EGR gas outlet pipe of the first cylinder) and the exhaust stroke of the fourth cylinder 5 (opening of the exhaust valve of the fourth cylinder) The period) overlaps with the period immediately before the end of the intake stroke of the first cylinder 2 (the period immediately after the start of the exhaust stroke of the fourth cylinder 5). The exhaust pressure of the combustion chamber of a cylinder is highest during the period immediately after the start of the exhaust stroke of the cylinder. Therefore, as indicated by a white arrow in FIG. 2, the highest pressure exhaust from the combustion chamber of the fourth cylinder 5 during the period immediately after the start of the exhaust stroke is caused by the blowdown of the fourth cylinder 5,
The EGR gas reaches the intake port 6 of the first cylinder via the EGR passage 18 and the like. EG reaching intake port 6
Since the R gas has a sufficiently high pressure, a sufficiently strong in-cylinder swirl can be formed in the combustion chamber of the cylinder 2. As a result, an EGR gas layer can be formed at the periphery of the combustion chamber of the first cylinder 2. The high-pressure EGR gas from the fourth cylinder 5 reaches the combustion chamber of the first cylinder 2 during a period immediately before the end of the intake stroke of the first cylinder 2, and thus inhales a sufficiently strong in-cylinder swirl of the first cylinder 2. It can be maintained until the ignition timing immediately after the end of the stroke.

【0022】更に、図1に示すように、本実施形態の内
燃機関の吸排気装置は、二番気筒のEGRガス吹出しパ
イプ15、EGR通路19、制御弁27及びリード弁2
3を介して、二番気筒の吸気ポート7と三番気筒の排気
ポート12とを連通している。図2に示すように、二番
気筒3の吸気行程と三番気筒4の排気行程とは、二番気
筒3の吸気行程の終了直前の期間(三番気筒4の排気行
程の開始直後の期間)において重複する。図2に白抜き
矢印で示すように、三番気筒4のブローダウンにより、
排気行程の開始直後の期間における三番気筒4の燃焼室
からの最も高圧の排気が、EGRガスとしてEGR通路
19等を介して二番気筒の吸気ポート7に到達する。吸
気ポート7に到達するEGRガスが十分に高圧であるた
め、二番気筒3の燃焼室内に十分に強い筒内スワールを
形成することができる。その結果、二番気筒3の燃焼室
周縁部にEGRガス層を形成することができる。三番気
筒4からの高圧のEGRガスは、二番気筒3の吸気行程
の終了直前の期間に二番気筒3の燃焼室に到達するた
め、二番気筒3の十分に強い筒内スワールを吸気行程終
了直後の点火時期まで維持することができる。
Further, as shown in FIG. 1, the intake / exhaust system for an internal combustion engine according to the present embodiment includes an EGR gas blowing pipe 15 of a second cylinder, an EGR passage 19, a control valve 27, and a reed valve 2.
3, the intake port 7 of the second cylinder and the exhaust port 12 of the third cylinder communicate with each other. As shown in FIG. 2, the intake stroke of the second cylinder 3 and the exhaust stroke of the third cylinder 4 are defined as a period immediately before the end of the intake stroke of the second cylinder 3 (a period immediately after the start of the exhaust stroke of the third cylinder 4). ). As shown by the white arrow in FIG. 2, the blowdown of the third cylinder 4
The highest-pressure exhaust gas from the combustion chamber of the third cylinder 4 during the period immediately after the start of the exhaust stroke reaches the intake port 7 of the second cylinder via the EGR passage 19 and the like as EGR gas. Since the EGR gas reaching the intake port 7 has a sufficiently high pressure, a sufficiently strong in-cylinder swirl can be formed in the combustion chamber of the second cylinder 3. As a result, an EGR gas layer can be formed at the periphery of the combustion chamber of the second cylinder 3. The high-pressure EGR gas from the third cylinder 4 reaches the combustion chamber of the second cylinder 3 during a period immediately before the end of the intake stroke of the second cylinder 3, and thus inhales a sufficiently strong swirl in the cylinder of the second cylinder 3. It can be maintained until the ignition timing immediately after the end of the stroke.

【0023】更に、図1に示すように、本実施形態の内
燃機関の吸排気装置は、三番気筒のEGRガス吹出しパ
イプ16、EGR通路20、制御弁28及びリード弁2
4を介して、三番気筒の吸気ポート8と二番気筒の排気
ポート11とを連通している。図2に示すように、三番
気筒4の吸気行程と二番気筒3の排気行程とは、三番気
筒4の吸気行程の終了直前の期間(二番気筒3の排気行
程の開始直後の期間)において重複する。図2に白抜き
矢印で示すように、二番気筒3のブローダウンにより、
排気行程の開始直後の期間における二番気筒3の燃焼室
からの最も高圧の排気が、EGRガスとしてEGR通路
20等を介して三番気筒の吸気ポート8に到達する。吸
気ポート8に到達するEGRガスが十分に高圧であるた
め、三番気筒4の燃焼室内に十分に強い筒内スワールを
形成することができる。その結果、三番気筒4の燃焼室
周縁部にEGRガス層を形成することができる。二番気
筒3からの高圧のEGRガスは、三番気筒4の吸気行程
の終了直前の期間に三番気筒4の燃焼室に到達するた
め、三番気筒4の十分に強い筒内スワールを吸気行程終
了直後の点火時期まで維持することができる。
Further, as shown in FIG. 1, the intake / exhaust system for an internal combustion engine according to the present embodiment includes an EGR gas blowing pipe 16 of a third cylinder, an EGR passage 20, a control valve 28, and a reed valve 2.
4, the intake port 8 of the third cylinder and the exhaust port 11 of the second cylinder communicate with each other. As shown in FIG. 2, the intake stroke of the third cylinder 4 and the exhaust stroke of the second cylinder 3 are defined as a period immediately before the end of the intake stroke of the third cylinder 4 (a period immediately after the start of the exhaust stroke of the second cylinder 3). ). As shown by the white arrow in FIG. 2, the blowdown of the second cylinder 3
The highest-pressure exhaust gas from the combustion chamber of the second cylinder 3 during the period immediately after the start of the exhaust stroke reaches the intake port 8 of the third cylinder via the EGR passage 20 and the like as EGR gas. Since the EGR gas reaching the intake port 8 has a sufficiently high pressure, a sufficiently strong in-cylinder swirl can be formed in the combustion chamber of the third cylinder 4. As a result, an EGR gas layer can be formed at the periphery of the combustion chamber of the third cylinder 4. The high-pressure EGR gas from the second cylinder 3 reaches the combustion chamber of the third cylinder 4 during a period immediately before the end of the intake stroke of the third cylinder 4, and thus inhales a sufficiently strong in-cylinder swirl of the third cylinder 4. It can be maintained until the ignition timing immediately after the end of the stroke.

【0024】更に、図1に示すように、本実施形態の内
燃機関の吸排気装置は、四番気筒のEGRガス吹出しパ
イプ17、EGR通路21、制御弁29及びリード弁2
5を介して、四番気筒の吸気ポート9と一番気筒の排気
ポート10とを連通している。図2に示すように、四番
気筒5の吸気行程と一番気筒2の排気行程とは、四番気
筒5の吸気行程の終了直前の期間(一番気筒2の排気行
程の開始直後の期間)において重複する。図2に白抜き
矢印で示すように、一番気筒2のブローダウンにより、
排気行程の開始直後の期間における一番気筒2の燃焼室
からの最も高圧の排気が、EGRガスとしてEGR通路
21等を介して四番気筒の吸気ポート9に到達する。吸
気ポート9に到達するEGRガスが十分に高圧であるた
め、四番気筒5の燃焼室内に十分に強い筒内スワールを
形成することができる。その結果、四番気筒5の燃焼室
周縁部にEGRガス層を形成することができる。一番気
筒2からの高圧のEGRガスは、四番気筒5の吸気行程
の終了直前の期間に四番気筒5の燃焼室に到達するた
め、四番気筒5の十分に強い筒内スワールを吸気行程終
了直後の点火時期まで維持することができる。
Further, as shown in FIG. 1, the intake / exhaust system for an internal combustion engine according to the present embodiment includes a fourth cylinder EGR gas blowing pipe 17, an EGR passage 21, a control valve 29, and a reed valve 2.
The intake port 9 of the fourth cylinder and the exhaust port 10 of the first cylinder communicate with each other through the port 5. As shown in FIG. 2, the intake stroke of the fourth cylinder 5 and the exhaust stroke of the first cylinder 2 are defined as a period immediately before the end of the intake stroke of the fourth cylinder 5 (a period immediately after the start of the exhaust stroke of the first cylinder 2). ). As shown by the white arrow in FIG.
The highest-pressure exhaust gas from the combustion chamber of the first cylinder 2 during the period immediately after the start of the exhaust stroke reaches the intake port 9 of the fourth cylinder via the EGR passage 21 and the like as EGR gas. Since the EGR gas reaching the intake port 9 has a sufficiently high pressure, a sufficiently strong in-cylinder swirl can be formed in the combustion chamber of the fourth cylinder 5. As a result, an EGR gas layer can be formed at the periphery of the combustion chamber of the fourth cylinder 5. The high-pressure EGR gas from the first cylinder 2 reaches the combustion chamber of the fourth cylinder 5 during a period immediately before the end of the intake stroke of the fourth cylinder 5, and thus inhales a sufficiently strong in-cylinder swirl of the fourth cylinder 5. It can be maintained until the ignition timing immediately after the end of the stroke.

【0025】それゆえ、本実施形態の内燃機関の吸排気
装置は、すべての気筒の燃焼室周縁部におけるNOx発
生量を低減でき、ノッキングの発生を抑制することがで
きる。そのため、各気筒の燃焼室の圧縮比を増加させ、
燃費を向上させることができる。更に、上述した構成に
より、すべての気筒の燃焼室に高圧のEGRガスを供給
することができるため、EGRガスを加圧するための空
気圧縮機を廃止でき、空気圧縮機を作動することによる
燃費の悪化を回避することができる。その上、すべての
気筒の燃焼室に十分に強い筒内スワールを発生させるこ
とができるため、内燃機関の出力を減少させてしまうス
ワールポートを廃止することができる。
Therefore, the intake / exhaust device for an internal combustion engine of the present embodiment can reduce the amount of NOx generated at the periphery of the combustion chamber of all cylinders, and can suppress the occurrence of knocking. Therefore, the compression ratio of the combustion chamber of each cylinder is increased,
Fuel efficiency can be improved. Further, with the above-described configuration, high-pressure EGR gas can be supplied to the combustion chambers of all the cylinders, so that the air compressor for pressurizing the EGR gas can be eliminated, and the fuel consumption by operating the air compressor can be reduced. Deterioration can be avoided. In addition, a sufficiently strong in-cylinder swirl can be generated in the combustion chambers of all cylinders, so that a swirl port that reduces the output of the internal combustion engine can be eliminated.

【0026】尚、上述した実施形態では、一番気筒及び
四番気筒の吸気ポート及び排気ポート、二番気筒及び三
番気筒の吸気ポート及び排気ポートをそれぞれ連通して
いるが、他の実施形態では、一番気筒及び三番気筒の吸
気ポート及び排気ポート、二番気筒及び四番気筒の吸気
ポート及び排気ポートをそれぞれ連通することもでき
る。その他、一方の気筒が吸気行程にある時に他方の気
筒が排気行程にある、任意の組合せの気筒の吸気ポート
及び排気ポートをそれぞれ連通することができる。
In the above-described embodiment, the intake ports and exhaust ports of the first and fourth cylinders and the intake ports and exhaust ports of the second and third cylinders are communicated with each other. Then, the intake port and the exhaust port of the first cylinder and the third cylinder, and the intake port and the exhaust port of the second cylinder and the fourth cylinder can be communicated with each other. In addition, the intake port and the exhaust port of any combination of cylinders can be communicated with each other when one cylinder is in the intake stroke and the other cylinder is in the exhaust stroke.

【0027】[0027]

【発明の効果】本発明によれば、EGRガス等を加圧す
る圧縮機を設置するためのコストアップ及び圧縮機の作
動による燃費の悪化を回避しつつ、十分に強い筒内スワ
ールを発生させ、燃焼室の周縁部全周にわたってEGR
ガス層を形成することによりノッキングの発生を抑制
し、更に混合気の着火性及び燃焼性を高く保持できかつ
NOx、HCの発生量を低減することができる。
According to the present invention, a sufficiently strong in-cylinder swirl is generated while avoiding an increase in cost for installing a compressor for pressurizing EGR gas and the like and a decrease in fuel efficiency due to the operation of the compressor. EGR over the entire periphery of the combustion chamber
By forming the gas layer, the occurrence of knocking can be suppressed, the ignitability and combustibility of the air-fuel mixture can be kept high, and the generation amount of NOx and HC can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の内燃機関の吸排気装置の一実施形態の
シリンダヘッドの断面図である。
FIG. 1 is a sectional view of a cylinder head of an embodiment of an intake and exhaust device for an internal combustion engine of the present invention.

【図2】図1のシリンダヘッドの各気筒の行程タイミン
グを示す特性図である。
FIG. 2 is a characteristic diagram showing stroke timing of each cylinder of the cylinder head of FIG. 1;

【符号の説明】[Explanation of symbols]

2〜5…気筒 6〜9…吸気ポート 10〜13…排気ポート 18〜21…EGR通路 2-5: cylinder 6-9: intake port 10-13: exhaust port 18-21: EGR passage

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02M 25/07 580 F02M 25/07 580A 580B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F02M 25/07 580 F02M 25/07 580A 580B

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 吸気弁によって開閉される吸気ポートと
排気弁によって開閉される排気ポートとを備えた気筒を
複数具備する内燃機関の吸排気装置において、一の気筒
の吸気ポートと他の一の気筒の排気ポートとをそれぞれ
連通路により連通させ、前記一の気筒が吸気行程となる
時に、前記他の一の気筒は排気行程となることを特徴と
する内燃機関の吸排気装置。
1. An intake / exhaust system for an internal combustion engine having a plurality of cylinders each having an intake port opened and closed by an intake valve and an exhaust port opened and closed by an exhaust valve. An intake / exhaust device for an internal combustion engine, characterized in that the exhaust ports of the cylinders are communicated with each other through communication paths, and when the one cylinder is in an intake stroke, the other cylinder is in an exhaust stroke.
JP9053003A 1997-03-07 1997-03-07 Intake/exhaust device for internal combustion engine Pending JPH10252486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9053003A JPH10252486A (en) 1997-03-07 1997-03-07 Intake/exhaust device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9053003A JPH10252486A (en) 1997-03-07 1997-03-07 Intake/exhaust device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH10252486A true JPH10252486A (en) 1998-09-22

Family

ID=12930751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9053003A Pending JPH10252486A (en) 1997-03-07 1997-03-07 Intake/exhaust device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH10252486A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065610A (en) * 2008-09-10 2010-03-25 Mitsubishi Heavy Ind Ltd Air supply device of engine with egr device and engine having the same
DE102009059287A1 (en) 2008-12-26 2010-08-05 DENSO CORPORATION, Kariya-shi Exhaust gas recirculation device
JP2012052554A (en) * 2011-12-12 2012-03-15 Mitsubishi Heavy Ind Ltd Intake device of engine with egr device and engine including the same
JP2013036367A (en) * 2011-08-05 2013-02-21 Mitsubishi Motors Corp Internal combustion engine
JP2016169714A (en) * 2015-03-16 2016-09-23 三菱自動車工業株式会社 Intake port structure of engine
DE102015117738B4 (en) 2015-06-04 2022-06-15 Hyundai America Technical Center, Inc. Exhaust gas recirculation system with paired cylinders

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065610A (en) * 2008-09-10 2010-03-25 Mitsubishi Heavy Ind Ltd Air supply device of engine with egr device and engine having the same
DE102009059287A1 (en) 2008-12-26 2010-08-05 DENSO CORPORATION, Kariya-shi Exhaust gas recirculation device
US8776768B2 (en) 2008-12-26 2014-07-15 Denso Corporation Exhaust gas recirculation apparatus
DE102009059287B4 (en) * 2008-12-26 2021-01-07 Denso Corporation Exhaust gas recirculation device
JP2013036367A (en) * 2011-08-05 2013-02-21 Mitsubishi Motors Corp Internal combustion engine
JP2012052554A (en) * 2011-12-12 2012-03-15 Mitsubishi Heavy Ind Ltd Intake device of engine with egr device and engine including the same
JP2016169714A (en) * 2015-03-16 2016-09-23 三菱自動車工業株式会社 Intake port structure of engine
DE102015117738B4 (en) 2015-06-04 2022-06-15 Hyundai America Technical Center, Inc. Exhaust gas recirculation system with paired cylinders

Similar Documents

Publication Publication Date Title
WO2002084088A1 (en) Multiple cylinder internal combustion engine
US4484549A (en) 4-Cycle internal combustion engine
US6513484B1 (en) Boosted direct injection stratified charge gasoline engines
US4325346A (en) Four-cycle internal combustion engine
JPH10252486A (en) Intake/exhaust device for internal combustion engine
US7082764B2 (en) Burnt gas-scavenging indirect-injection internal-combustion supercharged engine and supercharged air supply method for such an engine
JPH048606B2 (en)
JP2597081Y2 (en) Engine intake system
US12044161B2 (en) Internal combustion engine
JPH07224626A (en) Control device for engine
JPH08232702A (en) Operationg control device for fuel injection type two cycle engine
JPH05187326A (en) Exhaust gas reflux device for internal combustion engine
JPS6128828B2 (en)
JP3896630B2 (en) Exhaust gas purification device for in-cylinder injection engine
JP3151273B2 (en) Engine combustion control device
JP2966129B2 (en) Engine combustion chamber structure
JPH06213081A (en) Exhaust gas recirculation system of engine
JP6548571B2 (en) Internal combustion engine
JP3430549B2 (en) Engine intake system
JPH0740667Y2 (en) Split operation control device for two-cycle internal combustion engine
JP2004176620A (en) Overhead valve type multiple cylinder engine capable of two-cycle operation
JP3759796B2 (en) Supply structure of exhaust gas recirculation gas engine
JP2004332591A (en) Intake device of internal combustion engine, internal combustion engine, collector device of internal combustion engine and intake device of spark ignition cylinder injection engine
JPH0364625A (en) Suction device for multi-cylinder internal combustion engine
JPH07310602A (en) Intake device for engine