JPH10205308A - Mixed medium cycle power generating system - Google Patents

Mixed medium cycle power generating system

Info

Publication number
JPH10205308A
JPH10205308A JP888197A JP888197A JPH10205308A JP H10205308 A JPH10205308 A JP H10205308A JP 888197 A JP888197 A JP 888197A JP 888197 A JP888197 A JP 888197A JP H10205308 A JPH10205308 A JP H10205308A
Authority
JP
Japan
Prior art keywords
medium
separator
turbine
liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP888197A
Other languages
Japanese (ja)
Other versions
JP3011669B2 (en
Inventor
Takayuki Marume
目 隆 之 丸
Koichi Kawamoto
本 浩 一 川
Yukio Ohashi
橋 幸 夫 大
Masakuni Sasaki
雅 國 佐々木
Mikio Takayanagi
柳 幹 男 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9008881A priority Critical patent/JP3011669B2/en
Publication of JPH10205308A publication Critical patent/JPH10205308A/en
Application granted granted Critical
Publication of JP3011669B2 publication Critical patent/JP3011669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • F01K25/065Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain higher output and efficiency than those expected on conventional systems in a mixed medium cycle power generating system which employs a non-azeotropic mixed medium made of low-boiling and high-boiling media and where the temperature and the amount of a heat source are specified. SOLUTION: An evaporator 1 which evaporates a part of a mixed medium and creates the two-phase condition of vapor and liquid by means of a heat exchange with the heat source of a rather lower temperature, a first separator 2a which separates the two-phase medium into vapor and liquid, a turbine 3 which is supplied with the vapor medium separated by the first separator 2a, a condenser 4 which condenses the exhaust gases from the turbine 3 into liquid and feeds it back to the evaporator 1, a second separator 2b which separates the two-phase medium left after the first separator 2a into vapor and liquid again, a line 9 which introduces the vapor-phase medium left after the second separator 2b to the interstage of the turbine 3 and a line 10 which allows the liquid-phase medium left after the second separator 2b to be used to heat the liquid-phase medium at the inlet of the evaporator 1 then to contact and mix with the exhaust from the turbine 3, are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低沸点媒体と高沸
点媒体からなる非共沸混合媒体を作動媒体とする混合媒
体サイクル発電システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mixed-medium cycle power generation system using a non-azeotropic mixed medium consisting of a low-boiling medium and a high-boiling medium as a working medium.

【0002】[0002]

【従来の技術】従来、比較的低温度の熱源を利用した発
電システムにおいては、低沸点媒体と高沸点媒体からな
る非共沸混合媒体を作動媒体として使用することが行わ
れている。
2. Description of the Related Art Conventionally, in a power generation system using a heat source having a relatively low temperature, a non-azeotropic mixture medium composed of a low-boiling medium and a high-boiling medium has been used as a working medium.

【0003】すなわち、図5は、低沸点媒体成分として
アンモニア、高沸点媒体として水を使用し、温度150
℃以下の熱源を利用した非共沸混合媒体サイクル発電シ
ステムの系統図であって、上記アンモニアと水からなる
媒体は蒸発器1に供給され、そこで加熱され一部蒸発
し、分離器2でアンモニアが濃厚な気相とアンモニアが
希薄な液相に分離される。
That is, FIG. 5 shows that ammonia is used as a low-boiling-point medium component, water is used as a high-boiling-point medium, and a temperature of 150.degree.
FIG. 1 is a system diagram of a non-azeotropic mixed-medium cycle power generation system using a heat source of not more than 1 ° C., wherein the medium comprising ammonia and water is supplied to an evaporator 1, where it is heated and partially evaporated, and ammonia is passed through a separator 2. Is separated into a dense gas phase and a lean liquid phase.

【0004】上記分離器2で分離された気相媒体はター
ビン3に導かれ、そこで仕事をした後、復液器4へ導入
される。
[0004] The gas phase medium separated by the separator 2 is guided to a turbine 3, where it is worked, and then introduced into a condenser 4.

【0005】一方、分離器2で分離された液相の媒体
は、再生器5で熱を放出し、減圧器6で減圧された後、
復液器4に導かれる。上記復液器4では、タービン3で
仕事を行った後の媒体と減圧器6で減圧された媒体が接
触混合される。そして、混合後の媒体は、蒸発前の濃度
に戻り、復液器4で冷却され凝縮した後、媒体循環ポン
プ7により昇圧され再生器5に入り、そこで前記分離器
2で分離された液相媒体によって加温された後、蒸気器
1に還流される。
On the other hand, the liquid-phase medium separated by the separator 2 emits heat in the regenerator 5 and is decompressed by the decompressor 6.
It is led to the condenser 4. In the condenser 4, the medium after performing the work in the turbine 3 and the medium depressurized by the decompressor 6 are mixed in contact. Then, the mixed medium returns to the concentration before the evaporation, is cooled and condensed by the condenser 4, is pressurized by the medium circulation pump 7 and enters the regenerator 5, where the liquid phase separated by the separator 2 is separated. After being heated by the medium, it is returned to the steamer 1.

【0006】[0006]

【発明が解決しようとする課題】ところで、図5に示す
システムにおいては、蒸発器での非共沸混合媒体の特徴
である非等温蒸発特性により熱源温度変化に沿ったロー
レンツサイクルに近い熱交換が可能であり、エクセルギ
ー効率の高いサイクルの実現が可能である。
By the way, in the system shown in FIG. 5, the heat exchange close to the Lorentz cycle along the heat source temperature change is caused by the non-isothermal evaporation characteristic of the non-azeotropic mixed medium in the evaporator. It is possible, and a cycle with high exergy efficiency can be realized.

【0007】図6はアンモニア・水を媒体とした98℃
の熱源時の従来方法サイクルのヒートバランスの一部を
示す図である。図5の再生器では蒸発器1で高温高圧域
までエネルギー状態を高めた液相媒体について、蒸発器
入口前の液相媒体の加熱という熱利用のみとなってしま
い、かならずしも有効なエネルギー利用とはなっていな
い。
FIG. 6 shows 98 ° C. using ammonia / water as a medium.
FIG. 4 is a diagram showing a part of the heat balance of the conventional method cycle when the heat source is used. In the regenerator shown in FIG. 5, for the liquid phase medium whose energy state has been raised to the high temperature and high pressure region by the evaporator 1, only the heat use of heating the liquid phase medium in front of the evaporator inlet is used. is not.

【0008】また、混合媒体の気相と液相が混合すると
きに液相媒体の低沸点媒体成分(水/アンモニア混合媒
体のときはアンモニア)の濃度が気相媒体の低沸点媒体
成分の濃度より低く、かつ、液相媒体の温度が気相媒体
の温度より低いときに気相媒体が液相媒体に吸収されて
全体が液相となるという現象が起こる。この現象は、蒸
気濃度の差と温度の差が大きいほど起こりやすくなる。
混合媒体サイクルの復液器ではこの吸収という現象を積
極的に利用するのが望ましい。
When the gas phase and the liquid phase of the mixed medium are mixed, the concentration of the low-boiling-point medium component of the liquid-phase medium (or ammonia in the case of a water / ammonia mixed medium) is determined by the concentration of the low-boiling-point medium component of the gas-phase medium. When the temperature is lower and the temperature of the liquid-phase medium is lower than the temperature of the gas-phase medium, a phenomenon occurs in which the gas-phase medium is absorbed by the liquid-phase medium and the whole becomes a liquid phase. This phenomenon is more likely to occur as the difference between the vapor concentration and the temperature is larger.
It is desirable to positively utilize this phenomenon of absorption in the condenser of the mixed medium cycle.

【0009】ところが図6の分離器2で分離された液相
媒体が復液器4に導入されるポイントAの液相媒体の温
度(40.4℃)がタービン排気蒸気のポイントBの温
度(22.6℃)より高くなってしまっているため、ポ
イントAでの濃度の薄いアンモニア液媒体にポイントB
のアンモニア濃度の高い蒸気が吸収されないで熱交換器
である復液器4での媒体の十分な液化が行われない恐れ
がある。そして、復液器4での完全な媒体の液化が行わ
れない場合には、濃いアンモニア蒸気が復液器4内に残
り、タービン排気圧力が上がってしまい図6に示すヒー
トバランスの実現が難しく、タービン出力が大幅に低下
してしまうことがある。
However, the temperature (40.4 ° C.) of the liquid phase medium at point A where the liquid phase medium separated by the separator 2 in FIG. 22.6 ° C), the point B was added to the thin ammonia liquid medium at point A.
There is a risk that the medium having a high ammonia concentration will not be absorbed and the medium will not be sufficiently liquefied in the condenser 4 which is a heat exchanger. If the complete liquefaction of the medium in the condenser 4 is not performed, thick ammonia vapor remains in the condenser 4 and the turbine exhaust pressure increases, making it difficult to realize the heat balance shown in FIG. As a result, the turbine output may be significantly reduced.

【0010】本発明はこのような点に鑑み、熱源温度と
熱源量が規定された場合、従来のシステムに比し出力及
び効率を向上し得るシステムを得ることを目的とする。
In view of the foregoing, it is an object of the present invention to provide a system capable of improving output and efficiency as compared with a conventional system when a heat source temperature and a heat source amount are specified.

【0011】[0011]

【課題を解決するための手段】第1の発明は、低沸点媒
体と高沸点媒体からなる非共沸混合媒体を作動媒体とす
る非共沸混合媒体サイクル発電システムにおいて、比較
的低温度の熱源との熱交換により上記非共沸混合媒体の
一部を蒸発させて気液二相状態とする蒸発器と、その気
液二相状態の媒体を気液分離する第1の分離器と、その
第1の分離器で分離された気相媒体が供給されるタービ
ンと、そのタービンからの排ガスを復液させ上記蒸発器
に還流させる復液器と、第1の分離器後の二相状態の媒
体を再び気液分離する第2の分離器と、第2の分離器後
の気相媒体をタービンの途中段に導く系統と、第2の分
離器後の液相媒体を、蒸発器入口の液媒体の加熱に利用
した後にタービンからの排気と接触混合させる系とを有
することを特徴とする。
A first aspect of the present invention is a non-azeotropic mixed medium cycle power generation system using a non-azeotropic mixed medium consisting of a low-boiling medium and a high-boiling medium as a working medium. An evaporator that evaporates a part of the non-azeotropic mixed medium into a gas-liquid two-phase state by heat exchange with a first separator that gas-liquid separates the medium in the gas-liquid two-phase state; A turbine to which the gaseous phase medium separated by the first separator is supplied, a condensate for condensing exhaust gas from the turbine and returning the exhaust gas to the evaporator, and a two-phase state after the first separator A second separator for gas-liquid separation of the medium again, a system for guiding the gas phase medium after the second separator to an intermediate stage of the turbine, and a liquid phase medium after the second separator at an evaporator inlet. A system for contacting and mixing with exhaust gas from the turbine after using it for heating the liquid medium. That.

【0012】第2の発明は、第1の発明において、第2
の分離器後の気相媒体を第1の気液分離後の気相媒体が
供給されるタービンの途中段に代え別のタービンに供給
することを特徴とする。
According to a second aspect, in the first aspect, the second aspect is provided.
The gaseous medium after the separator is supplied to another turbine instead of the middle stage of the turbine to which the gaseous medium after the first gas-liquid separation is supplied.

【0013】第3の発明は、第1または第2の発明にお
いて、第2分離器の気相側を熱源またはサイクル内媒体
からの熱を使用して加熱する手段を持つことを特徴とす
る。
A third invention is characterized in that, in the first or second invention, means for heating the gas phase side of the second separator by using heat from a heat source or a medium in the cycle is provided.

【0014】第4の発明は、第1の発明において、第2
の分離器後の気相媒体を第1の気液分離後の気相媒体が
供給されるタービンの途中段に代え高圧の第2の復液器
において作動媒体に接触混合させることを特徴とする。
According to a fourth aspect, in the first aspect, the second aspect is provided.
Wherein the gas phase medium after the separator is replaced with an intermediate stage of a turbine to which the gas phase medium after the first gas-liquid separation is supplied, and is contact-mixed with the working medium in a second high-pressure condenser. .

【0015】第5の発明は、上記各発明において、比較
的低温の熱源は150℃以下の熱源であることを特徴と
する。
A fifth invention is characterized in that in each of the above inventions, the relatively low-temperature heat source is a heat source of 150 ° C. or less.

【0016】第6の発明は、上記各発明において、熱源
は、地熱、太陽熱温水、或はプラント排熱であることを
特徴とする。
A sixth invention is characterized in that, in each of the above inventions, the heat source is geothermal heat, solar hot water, or plant exhaust heat.

【0017】第7の発明は、上記各発明において、第1
分離器から第2分離器さらに復液器につながる系の作動
媒体中には、低沸点媒体が希薄な溶液とタービン排気と
を一様に混合させる添加剤が添加されていることを特徴
とする。
According to a seventh aspect of the present invention, in each of the above inventions, the first aspect is provided.
In the working medium of the system connected from the separator to the second separator and further to the condenser, an additive for uniformly mixing the low-boiling-point medium-dilute solution and the turbine exhaust is added. .

【0018】第8の発明は、上記各発明において、蒸発
器入口の作動媒体には、媒体蒸発時に高温としてエクセ
ルギー効率を高めタービンでの仕事量を増加させるた
め、沸点上昇効果を有する媒体が投入されることを特徴
とする。
According to an eighth aspect of the present invention, in each of the above aspects, the working medium at the inlet of the evaporator includes a medium having a boiling point increasing effect in order to increase exergy efficiency and increase work in the turbine by increasing the temperature during medium evaporation. It is characterized by being thrown.

【0019】第9の発明は、上記各発明において、作動
媒体がアンモニア・水混合媒体で、90℃〜200℃程
度の熱源を使用する場合には、0.7〜0.95mol/mo
l のアンモニア濃度の濃度比とすることを特徴とする。
In a ninth aspect of the present invention, in each of the above-mentioned aspects, when the working medium is a mixed medium of ammonia and water and a heat source at about 90 ° C. to 200 ° C. is used, 0.7 to 0.95 mol / mo is used.
l is the concentration ratio of the ammonia concentration.

【0020】[0020]

【発明の実施の形態】以下、図1を参照して本発明の実
施の形態について説明する。なお、図中図5と同一部分
には同一符号を付する。
Embodiments of the present invention will be described below with reference to FIG. In the drawing, the same parts as those in FIG. 5 are denoted by the same reference numerals.

【0021】アンモニアと水の混合媒体は、蒸発器1で
地熱、太陽熱温水、或はプラント排熱等の150℃以下
程度の比較的低温の熱源との熱交換によって加熱されて
一部蒸発し、第1の分離器2aでアンモニアが濃厚な気
相とアンモニアが希薄な液相に分離される。そして、上
記第1の分離器2aで分離された気相媒体はタービン3
に導入され、そこで仕事を行った後、復液器4で復液さ
れた後、媒体循環ポンプ7によって昇圧され再生器5を
経て蒸発器1に還流される。
The mixed medium of ammonia and water is heated by the heat exchange with a relatively low-temperature heat source of about 150 ° C. or less, such as geothermal heat, solar hot water, or plant exhaust heat, in the evaporator 1 to partially evaporate. In the first separator 2a, a gas phase in which ammonia is rich and a liquid phase in which ammonia is diluted are separated. The gas-phase medium separated by the first separator 2a is supplied to the turbine 3
After performing work there, the liquid is condensed by the liquid condensing device 4, then pressurized by the medium circulation pump 7 and returned to the evaporator 1 via the regenerator 5.

【0022】一方、第1の分離器2aの液相部は、導管
8によって減圧器6aを介して第2の分離器2bに接続
されており、また第2の分離器2bの気相部は導管9を
介してタービン3の中間段に接続されている。したがっ
て、第1の分離器2aで分離された液相媒体は減圧器6
aで減圧され第2の分離器2bに導入され、そこでさら
に気液分離され分離された気相媒体はタービン3の中間
段に混入される。
On the other hand, the liquid phase portion of the first separator 2a is connected to the second separator 2b via a pressure reducer 6a by a conduit 8, and the gas phase portion of the second separator 2b is It is connected via a conduit 9 to an intermediate stage of the turbine 3. Therefore, the liquid phase medium separated by the first separator 2a is supplied to the decompressor 6
The pressure is reduced at a, and the gas is introduced into the second separator 2 b, where the gas-phase medium further separated by gas-liquid separation is mixed into an intermediate stage of the turbine 3.

【0023】しかして、タービン3で仕事を行った気相
媒体は、復液器4で復液され吸収循環系ポンプ7によっ
て蒸発器1側に還流される。
The gas phase medium that has performed work in the turbine 3 is condensed in the condenser 4 and returned to the evaporator 1 by the absorption circulation pump 7.

【0024】また、第2の分離器2bで分離された液相
媒体は再生器5を経て導管10を介して減圧器6bで減
圧され復液器4においてタービン3の出口気相媒体と接
触混合される。
The liquid phase medium separated by the second separator 2b passes through the regenerator 5 and is depressurized by the pressure reducer 6b through the conduit 10 and is contact-mixed with the gas phase medium at the outlet of the turbine 3 in the condenser 4 Is done.

【0025】図2は、図1に示すシステムにおいて図6
に示すシステムと同じ熱源温度98℃、蒸発器の交換熱
量35855kWのときのヒートバランス例を示す図で
あり、図6に示すサイクルに比べ、タービンからの発電
機出力が155kW程度増加する。ここでタービン効率
は0.85、発電機効率は0.95と仮定している。ま
た、第2の分離器2bで分離された液相媒体が復液器4
に導入されるポイントAの液相媒体の温度(20℃)が
タービン排気蒸気のポイントBの温度(22.7℃)よ
り低く、かつポイントAでの液相媒体のアンモニア濃度
(0.673mol/mol )が図6の従来サイクルのアンモ
ニア濃度(0.711mol/mol )より低いため、復液器
4での十分な混合及び液化が行われ、タービン排圧の上
昇によるタービン出力の低下も防ぐことができる。
FIG. 2 shows the system shown in FIG.
FIG. 7 is a diagram showing an example of a heat balance when the heat source temperature is 98 ° C. and the amount of heat exchanged by the evaporator is 35855 kW, which is the same as that of the system shown in FIG. Here, it is assumed that the turbine efficiency is 0.85 and the generator efficiency is 0.95. Further, the liquid phase medium separated by the second separator 2b is
The temperature of the liquid medium at point A (20 ° C.) introduced into the turbine is lower than the temperature of point B of the turbine exhaust steam (22.7 ° C.), and the ammonia concentration of the liquid medium at point A (0.673 mol / mol) is lower than the ammonia concentration (0.711 mol / mol) of the conventional cycle shown in FIG. 6, sufficient mixing and liquefaction are performed in the condenser 4, and a decrease in turbine output due to an increase in turbine exhaust pressure is also prevented. Can be.

【0026】図3は本発明の他の実施の形態を示す図で
あり、第2の分離器2bで気液分離した後の気相媒体が
第1のタービン3aとは別の第2のタービン3bへ導入
されそこで仕事を行った気相媒体が、同様に第1のター
ビン3aで仕事をした後の気相媒体と導管11を介して
復液器4の前で合流されるようにしてある。したがっ
て、これも図1に示す発明と同等の効果を得ることがで
きる。
FIG. 3 is a view showing another embodiment of the present invention, in which a gas phase medium after gas-liquid separation by a second separator 2b is a second turbine separate from the first turbine 3a. The gaseous medium introduced into 3b and working there is likewise merged with the gaseous medium after working in the first turbine 3a via the conduit 11 in front of the condenser 4. . Therefore, the same effect as that of the invention shown in FIG. 1 can be obtained.

【0027】なお、図1および図3に示す実施の形態に
おいては、第2の分離器2bで分離した気相媒体を適宜
熱源またはサイクル内の媒体からの熱を利用して加熱し
た後、タービン3或は3bに供給するようにしてもよ
い。
In the embodiment shown in FIGS. 1 and 3, after the gas phase medium separated by the second separator 2b is appropriately heated by using heat from a heat source or a medium in a cycle, the turbine 3 or 3b.

【0028】図4は本発明のさらに他の実施の形態を示
す図であり、第2の分離器2bで気液分離した後の気相
媒体を導管12を介して第1の媒体循環ポンプ7aで昇
圧した後の液相媒体に第2の復液器4bで接触混合させ
るようにしたもので、第2の復液器4b後の液媒体は第
2の媒体循環ポンプ7bにより媒体蒸発圧力まで昇圧さ
れる。しかして、この場合第2の分離器2bからの液相
媒体が第1の復液器4aに導入されるポイントAの液相
媒体の温度(22.5℃)がタービン排気蒸気のポイン
トBの温度(22.6℃)より低いことに加え吸収液側
のアンモニア濃度(0.636mol/mol )が図6の従来
サイクルのアンモニア濃度(0.711mol/mol )より
低いため、復液器4での十分な混合及び液化が行われ、
タービン出力の低下を防ぐことができる。
FIG. 4 is a view showing still another embodiment of the present invention, in which a gas-phase medium after gas-liquid separation by a second separator 2b is passed through a conduit 12 to a first medium circulation pump 7a. The second liquid condensing device 4b is contact-mixed with the liquid phase medium pressurized in the second condensing device 4b, and the liquid medium after the second condensing device 4b is heated to the medium evaporation pressure by the second medium circulation pump 7b. It is boosted. Thus, in this case, the temperature (22.5 ° C.) of the liquid phase medium at the point A where the liquid medium from the second separator 2b is introduced into the first condenser 4a is set at the point B of the turbine exhaust steam. Since the ammonia concentration (0.636 mol / mol) on the absorption liquid side is lower than the ammonia concentration (0.711 mol / mol) in the conventional cycle shown in FIG. Thorough mixing and liquefaction of
A decrease in turbine output can be prevented.

【0029】また、図1、図3、図4において、第1の
分離器2aと第2の分離器2bを含む液系に、液膜界面
を界面撹乱により物質拡散を容易にするような添加剤、
例えば、水・リチウムブロマイド混合媒体のときにはn
−オクタノール等を注入し循環させることにより、ター
ビン排気との接触混合を容易にすることができ、サイク
ルの効率を向上させることができる。
In FIGS. 1, 3 and 4, addition is made to the liquid system including the first separator 2a and the second separator 2b so that the liquid film interface facilitates substance diffusion by interfacial disturbance. Agent,
For example, in the case of a water / lithium bromide mixed medium, n
-By injecting and circulating octanol and the like, contact mixing with turbine exhaust can be facilitated and cycle efficiency can be improved.

【0030】さらに、図1、図3、図4において、第1
の分離器2aと第2の分離器2bを含む液系に、沸点上
昇効果のある媒体、例えば塩類を投入して媒体蒸発時の
圧力を高くしてタービンでの仕事量を増加させるように
し、沸点上昇効果のある媒体は蒸発を行わない領域での
使用を行うようにすることによって出力をさらに向上さ
せることができる。
Further, in FIG. 1, FIG. 3, and FIG.
Into a liquid system including the separator 2a and the second separator 2b, a medium having a boiling point increasing effect, such as salts, is added to increase the pressure at the time of evaporating the medium to increase the work in the turbine; The output of the medium having the boiling point increasing effect can be further improved by using the medium in an area where evaporation is not performed.

【0031】また、上記実施の形態においては媒体が水
とアンモニアの2成分からなるものを示したが、水、ア
ンモニア、リチウムブロマイド等の3成分以上から構成
してもよく、アンモニアと水の混合媒体の場合には90
℃〜200℃程度の熱源で0.7〜0.95mol/mol の
アンモニア濃度が好ましい。
In the above embodiment, the medium is composed of two components, water and ammonia. However, the medium may be composed of three or more components such as water, ammonia and lithium bromide. 90 for medium
An ammonia concentration of 0.7 to 0.95 mol / mol with a heat source of about 200C to 200C is preferred.

【0032】[0032]

【発明の効果】以上説明したように、本発明は第1の分
離器および第2の分離器で順次分離された液相媒体をタ
ービン排気と接触混合させるようにしたので、復液器に
おけるアンモニア濃度の高い気相媒体の吸収が効果的に
行なわれ、タービン排気圧力を下げてタービン仕事量を
増加できるばかりでなく、タービン排気の完全凝縮を行
わせることができる等の効果を奏する。
As described above, according to the present invention, the liquid phase medium sequentially separated by the first separator and the second separator is brought into contact with and mixed with the turbine exhaust gas. The high-concentration gas-phase medium is effectively absorbed, and not only can the turbine exhaust pressure be reduced to increase the turbine work, but also the turbine exhaust can be completely condensed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非共沸混合媒体サイクル発電システム
の一例を示す系統図。
FIG. 1 is a system diagram showing an example of a non-azeotropic mixed medium cycle power generation system of the present invention.

【図2】図1に示すシステムのヒートバランス例を示す
図。
FIG. 2 is a diagram showing an example of a heat balance of the system shown in FIG. 1;

【図3】本発明の他の実施の形態の一例を示す図。FIG. 3 is a diagram showing an example of another embodiment of the present invention.

【図4】本発明のさらに他の実施の形態のヒートバラン
スの一例を示す系統図。
FIG. 4 is a system diagram showing an example of a heat balance according to still another embodiment of the present invention.

【図5】従来の非共沸混合媒体サイクル発電システムの
他の例を示す系統図。
FIG. 5 is a system diagram showing another example of a conventional non-azeotropic mixed medium cycle power generation system.

【図6】図5に示すシステムのヒートバランス例を示す
図。
6 is a diagram showing an example of a heat balance of the system shown in FIG.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 分離器 2a 第1の分離器 2b 第2の分離器 3 タービン 3a 第1のタービン 3b 第2のタービン 4 復液器 4a 第1の復液器 4b 第2の復液器 5 再生器 6 減圧器 6a 第1の減圧器 6b 第2の減圧器 7 媒体循環ポンプ 7a 第1の媒体循環ポンプ 7b 第2の媒体循環ポンプ DESCRIPTION OF SYMBOLS 1 Evaporator 2 Separator 2a 1st separator 2b 2nd separator 3 Turbine 3a 1st turbine 3b 2nd turbine 4 Condenser 4a 1st condenser 4b 2nd condenser 5 Regeneration Device 6 Pressure reducer 6a First pressure reducer 6b Second pressure reducer 7 Medium circulation pump 7a First medium circulation pump 7b Second medium circulation pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 雅 國 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 高 柳 幹 男 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masakuni Sasaki 1-1-1, Shibaura, Minato-ku, Tokyo Inside Toshiba Corporation Head Office (72) Inventor Mikio Takayanagi 1-1-1, Shibaura, Minato-ku, Tokyo No. 1 Toshiba Corporation head office

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】低沸点媒体と高沸点媒体からなる非共沸混
合媒体を作動媒体とする混合媒体サイクル発電システム
において、比較的低温度の熱源との熱交換により上記混
合媒体の一部を蒸発させて気液二相状態とする蒸発器
と、その気液二相状態の媒体を気液分離する第1の分離
器と、その第1の分離器で分離された気相媒体が供給さ
れるタービンと、そのタービンからの排ガスを復液させ
上記蒸発器に還流させる復液器と、第1の分離器後の二
相状態の媒体を再び気液分離する第2の分離器と、第2
の分離器後の気相媒体をタービンの途中段に導く系統
と、第2の分離器後の液相媒体を、蒸発器入口の液相媒
体の加熱に利用した後にタービンからの排気と接触混合
させる系とを有することを特徴とする、混合媒体サイク
ル発電システム。
In a mixed-medium cycle power generation system using a non-azeotropic mixed medium composed of a low-boiling medium and a high-boiling medium as a working medium, a part of the mixed medium is evaporated by heat exchange with a relatively low-temperature heat source. An evaporator that is brought into a gas-liquid two-phase state, a first separator that gas-liquid separates the medium in the gas-liquid two-phase state, and a gas-phase medium separated by the first separator are supplied. A turbine, a condensate for condensing exhaust gas from the turbine and refluxing the gas to the evaporator, a second separator for gas-liquid separation of the two-phase medium after the first separator, and a second separator.
A system for guiding the gaseous medium after the separator to the middle stage of the turbine, and contact mixing with exhaust gas from the turbine after using the liquid medium after the second separator for heating the liquid medium at the inlet of the evaporator. A mixed medium cycle power generation system, comprising:
【請求項2】第2の分離器後の気相媒体を第1の気液分
離後の気相媒体が供給されるタービンの途中段に代え別
のタービンに供給することを特徴とする、請求項1記載
の混合媒体サイクル発電システム。
2. The method according to claim 1, wherein the gaseous phase medium after the second separator is supplied to another turbine in place of a turbine to which the gaseous phase medium after the first gas-liquid separation is supplied. Item 7. A mixed medium cycle power generation system according to Item 1.
【請求項3】第2の分離器の気相側を熱源またはサイク
ル内媒体からの熱を使用して加熱する手段を持つ請求項
1または2記載の混合媒体サイクル発電システム。
3. The mixed medium cycle power generation system according to claim 1, further comprising means for heating the gas phase side of the second separator using a heat source or heat from a medium in the cycle.
【請求項4】第2の分離器後の気相媒体を第1の気液分
離後の気相媒体が供給されるタービンの途中段に代え高
圧の第2の復液器において作動媒体に接触混合させるこ
とを特徴とする、請求項1記載の混合媒体サイクル発電
システム。
4. The method according to claim 1, wherein the gaseous medium after the second separator is replaced with an intermediate stage of a turbine to which the gaseous medium after the first gas-liquid separation is supplied. The mixed medium cycle power generation system according to claim 1, wherein the mixed medium cycle power generation is performed.
【請求項5】比較的低温の熱源は150℃以下の熱源で
あることを特徴とする、請求項1乃至4のいずれかに記
載の混合媒体サイクル発電システム。
5. The mixed medium cycle power generation system according to claim 1, wherein the relatively low-temperature heat source is a heat source of 150 ° C. or less.
【請求項6】熱源は、地熱、太陽熱温水、或はプラント
排熱であることを特徴とする、請求項1乃至5のいずれ
かに記載の混合媒体サイクル発電システム。
6. The mixed medium cycle power generation system according to claim 1, wherein the heat source is geothermal heat, solar hot water, or plant exhaust heat.
【請求項7】第1分離器から第2分離器さらに復液器に
つながる系の作動媒体中には、低沸点媒体が希薄な溶液
とタービン排気とを一様に混合させる添加剤が添加され
ていることを特徴とする、請求項1乃至6のいずれかに
記載の混合媒体サイクル発電システム。
7. An additive for uniformly mixing a solution having a low boiling point medium and a turbine exhaust gas is added to a working medium of a system connected from the first separator to the second separator and further to the condenser. The mixed medium cycle power generation system according to any one of claims 1 to 6, wherein:
【請求項8】蒸発器入口の作動媒体には、媒体蒸発時に
高温としてエクセルギー効率を高めタービンでの仕事量
を増加させるため、沸点上昇効果を有する媒体が投入さ
れることを特徴とする、請求項1乃至7のいずれかに記
載の混合媒体サイクル発電システム。
8. A working medium at the inlet of the evaporator is charged with a medium having a boiling point increasing effect in order to increase exergy efficiency and increase work in a turbine by raising the temperature to a high temperature during medium evaporation. The mixed medium cycle power generation system according to claim 1.
【請求項9】作動媒体がアンモニア・水混合媒体で、9
0℃〜200℃程度の熱源を使用する場合には、0.7
〜0.95mol/mol のアンモニア濃度の濃度比とするこ
とを特徴とする、請求項1乃至8のいずれかに記載の混
合媒体サイクル発電システム。
9. The working medium is an ammonia / water mixed medium.
When a heat source of about 0 ° C to 200 ° C is used, 0.7
The mixed medium cycle power generation system according to any one of claims 1 to 8, wherein a concentration ratio of the ammonia concentration is from 0.95 mol / mol to 0.95 mol / mol.
JP9008881A 1997-01-21 1997-01-21 Mixed media cycle power generation system Expired - Fee Related JP3011669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9008881A JP3011669B2 (en) 1997-01-21 1997-01-21 Mixed media cycle power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9008881A JP3011669B2 (en) 1997-01-21 1997-01-21 Mixed media cycle power generation system

Publications (2)

Publication Number Publication Date
JPH10205308A true JPH10205308A (en) 1998-08-04
JP3011669B2 JP3011669B2 (en) 2000-02-21

Family

ID=11705029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9008881A Expired - Fee Related JP3011669B2 (en) 1997-01-21 1997-01-21 Mixed media cycle power generation system

Country Status (1)

Country Link
JP (1) JP3011669B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008767A3 (en) * 2001-07-19 2003-08-28 Midwest Research Inst Mixed working fluid power system with incremental vapor generation
WO2005100755A1 (en) * 2004-04-16 2005-10-27 Siemens Aktiengesellschaft Method and device for carrying out a thermodynamic cyclic process
JP2008101521A (en) * 2006-10-18 2008-05-01 Fuji Oil Co Ltd Power generation system by exhaust heat
JP2009041567A (en) * 2007-08-07 2009-02-26 General Electric Co <Ge> Method and apparatus for supplying pressure for spray inlet temperature suppressor of gas turbine
WO2009027302A2 (en) * 2007-08-31 2009-03-05 Siemens Aktiengesellschaft Method and device for converting thermal energy into mechanical energy
WO2009095127A2 (en) * 2008-02-01 2009-08-06 Siemens Aktiengesellschaft Method for operating a thermodynamic cycle, and thermodynamic cycle
JP2010203376A (en) * 2009-03-05 2010-09-16 Sumitomo Metal Mining Co Ltd Evaporator in power generation system
US8091360B2 (en) * 2005-08-03 2012-01-10 Amovis Gmbh Driving device
JP2014199025A (en) * 2013-03-29 2014-10-23 メタウォーター株式会社 Binary power generation system and binary power generation system operating method
JP6363313B1 (en) * 2018-03-01 2018-07-25 隆逸 小林 Working medium characteristic difference power generation system and working medium characteristic difference power generation method using the power generation system
CN110685764A (en) * 2019-10-29 2020-01-14 云南大学 Non-azeotropic working medium two-stage organic flash evaporation circulation system and heat energy recovery method thereof
EP4036382A1 (en) * 2021-01-28 2022-08-03 Airbus Operations GmbH Use of a heat source for power generation and aircraft with cooling system

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008767A3 (en) * 2001-07-19 2003-08-28 Midwest Research Inst Mixed working fluid power system with incremental vapor generation
WO2005100755A1 (en) * 2004-04-16 2005-10-27 Siemens Aktiengesellschaft Method and device for carrying out a thermodynamic cyclic process
US8272217B2 (en) 2004-04-16 2012-09-25 Siemens Aktiengesellshaft Method and device for carrying out a thermodynamic cyclic process
US8091360B2 (en) * 2005-08-03 2012-01-10 Amovis Gmbh Driving device
JP2008101521A (en) * 2006-10-18 2008-05-01 Fuji Oil Co Ltd Power generation system by exhaust heat
JP2009041567A (en) * 2007-08-07 2009-02-26 General Electric Co <Ge> Method and apparatus for supplying pressure for spray inlet temperature suppressor of gas turbine
WO2009027302A3 (en) * 2007-08-31 2010-03-25 Siemens Aktiengesellschaft Method and device for converting thermal energy into mechanical energy
CN101842558A (en) * 2007-08-31 2010-09-22 西门子公司 Method and device for converting thermal energy into mechanical energy
WO2009027302A2 (en) * 2007-08-31 2009-03-05 Siemens Aktiengesellschaft Method and device for converting thermal energy into mechanical energy
WO2009095127A3 (en) * 2008-02-01 2011-05-05 Siemens Aktiengesellschaft Method for operating a thermodynamic cycle, and thermodynamic cycle
US9790815B2 (en) 2008-02-01 2017-10-17 Kalina Power Limited Method for operating a thermodynamic cycle, and thermodynamic cycle
WO2009095127A2 (en) * 2008-02-01 2009-08-06 Siemens Aktiengesellschaft Method for operating a thermodynamic cycle, and thermodynamic cycle
JP2010203376A (en) * 2009-03-05 2010-09-16 Sumitomo Metal Mining Co Ltd Evaporator in power generation system
JP2014199025A (en) * 2013-03-29 2014-10-23 メタウォーター株式会社 Binary power generation system and binary power generation system operating method
JP6363313B1 (en) * 2018-03-01 2018-07-25 隆逸 小林 Working medium characteristic difference power generation system and working medium characteristic difference power generation method using the power generation system
WO2019167588A1 (en) * 2018-03-01 2019-09-06 隆逸 小林 Working medium characteristic difference power generation system and working medium characteristic difference power generation method in which said power generation system is used
JP2019152125A (en) * 2018-03-01 2019-09-12 隆逸 小林 Working medium characteristic difference power generating system and working medium characteristic difference power generating method with the power generating system
CN111712620A (en) * 2018-03-01 2020-09-25 小林隆逸 Power generation system with working medium characteristic difference and power generation method with working medium characteristic difference using power generation system
KR20200124656A (en) * 2018-03-01 2020-11-03 다카이쓰 고바야시 Power generation system with difference in characteristics of operating medium and power generation method with difference in characteristics of operating medium using the power generation system
US10862370B2 (en) 2018-03-01 2020-12-08 Takaitsu Kobayashi Working medium property difference power generation system and working medium property difference power generation method that uses the power generation system
TWI777033B (en) * 2018-03-01 2022-09-11 Takaitsu Kobayashi Working medium property difference power generation system and working medium property difference power generation method that uses the power generation system
CN110685764A (en) * 2019-10-29 2020-01-14 云南大学 Non-azeotropic working medium two-stage organic flash evaporation circulation system and heat energy recovery method thereof
EP4036382A1 (en) * 2021-01-28 2022-08-03 Airbus Operations GmbH Use of a heat source for power generation and aircraft with cooling system
US11811107B2 (en) 2021-01-28 2023-11-07 Airbus Operations Gmbh Use of a heat source for generation of electricity and aircraft comprising a cooling system

Also Published As

Publication number Publication date
JP3011669B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
JP2679753B2 (en) Method and device for converting thermal energy into electric power
US8695344B2 (en) Systems, methods and apparatuses for converting thermal energy into mechanical and electrical power
KR920009138B1 (en) Method of generating energy
US6065280A (en) Method of heating gas turbine fuel in a combined cycle power plant using multi-component flow mixtures
US7305829B2 (en) Method and apparatus for acquiring heat from multiple heat sources
RU2123606C1 (en) Method and device to realize thermodynamic cycle
US5953918A (en) Method and apparatus of converting heat to useful energy
AU683754B2 (en) System and apparatus for conversion of thermal energy into mechanical and electrical power
US7516619B2 (en) Efficient conversion of heat to useful energy
JP2962751B2 (en) Method and apparatus for converting heat from geothermal fluid to electric power
US4756162A (en) Method of utilizing thermal energy
JPH0454810B2 (en)
JP3011669B2 (en) Mixed media cycle power generation system
US4819437A (en) Method of converting thermal energy to work
JPH0941908A (en) Thermodynamical power generator using three-component working fluid
KR101917430B1 (en) Power generating apparatus
JP2954022B2 (en) Non-azeotropic mixed medium cycle power generation system
JPH08105304A (en) Double current cycle plant
JP2001248409A (en) Exhaust heat recovery system
EP1936129A2 (en) Method and apparatus of converting heat to useful energy
JP2017096184A (en) Power generation system
JPS63255502A (en) Electric power plant
RU2787622C1 (en) Thermal power plant with a regeneration system and method of its operation
KR101417634B1 (en) Apparatus for Converting Thermal Energy
JPS63134867A (en) Ocean temperature difference power generation set

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees