JPH10201105A - Photovoltaic power generation system - Google Patents

Photovoltaic power generation system

Info

Publication number
JPH10201105A
JPH10201105A JP9017560A JP1756097A JPH10201105A JP H10201105 A JPH10201105 A JP H10201105A JP 9017560 A JP9017560 A JP 9017560A JP 1756097 A JP1756097 A JP 1756097A JP H10201105 A JPH10201105 A JP H10201105A
Authority
JP
Japan
Prior art keywords
distributed power
power
control device
distributed
supplies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9017560A
Other languages
Japanese (ja)
Inventor
Mitsuru Matsukawa
満 松川
Yukio Shimomura
幸男 下村
Norio Sakae
紀雄 榮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP9017560A priority Critical patent/JPH10201105A/en
Publication of JPH10201105A publication Critical patent/JPH10201105A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Inverter Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To transmit operation control information without laying an exclusive use signal line respectively between a control device and each dispersed power source, in the case of operating a stationary type power converter device of a plurality of solar battery constitutional dispersed power sources by a common one set of control device. SOLUTION: A common one set of control device 18 and each dispersed power source 19a to 19b is provided with a distribution line carrier communication device 21 which is connected to a power line (distribution line 2') of a system 2 to exchange operation control information of a power converter device (inverter 22) of each dispersed power source 19a to 19d between the control device 18 and each dispersed power source 19a to 19d, thereby controlling the power converter device of each dispersed power source 19a to 19d by the control device 18 through the distribution line of the system 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池構成の複
数の分散電源を有する太陽光発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic power generator having a plurality of distributed power sources having a solar cell configuration.

【0002】[0002]

【従来の技術】従来、工場,ビル或いは一般住宅等にお
いて、いわゆる分散電源として太陽光発電装置を備える
場合、それらの屋根や側壁等に大型,大電力出力の大規
模の太陽電池を設置できないときは、この大規模の太陽
電池を複数の小規模,小型の太陽電池に分散し、これら
の小型の太陽電池と,静止型の電力変換装置としての小
型,小容量のインバータとを組合せた太陽電池構成の複
数の分散電源を前記の屋根や側壁に分散して設置するこ
とが行われる。
2. Description of the Related Art Conventionally, when a photovoltaic power generator is provided as a so-called distributed power source in a factory, a building, a general house, or the like, when a large-scale solar cell with a large power output cannot be installed on a roof or a side wall thereof. Disperses this large-scale solar cell into a plurality of small-sized and small-sized solar cells, and combines these small-sized solar cells with a small-sized and small-capacity inverter as a stationary power converter. A plurality of distributed power sources having a configuration are distributed and installed on the roof and the side wall.

【0003】そして、この複数の分散電源からなる従来
の太陽光発電装置は、ほぼ図3に示すように形成され
る。
[0003] A conventional photovoltaic power generator comprising a plurality of distributed power sources is formed substantially as shown in FIG.

【0004】同図は受電盤1の負荷側の系統2に4個の
分散電源3a,3b,3c,3dを接続して形成された
場合を示し、各分散電源3a〜3dは、それぞれ例えば
数KW程度の比較的小規模の小型の太陽電池4の出力を
静止型の電力変換装置としての例えば電圧型のインバー
タ5に供給する。
FIG. 1 shows a case where four distributed power sources 3a, 3b, 3c and 3d are connected to a system 2 on the load side of a power receiving panel 1, and each of the distributed power sources 3a to 3d is, for example, a number. The output of a relatively small and small solar cell 4 of about KW is supplied to, for example, a voltage-type inverter 5 as a static power converter.

【0005】さらに、各分散電源3a〜3dのインバー
タ5をそれぞれの制御装置(システムコントローラ)6
により駆動制御して運転し、太陽電池4の直流の出力電
力をそれぞれ系統周波数の交流電力に変換し、この交流
電力をそれぞれの配線用遮断器7及び負荷切換盤8を介
して系統2の各一般負荷9,非常負荷10に給電する。
Further, the inverters 5 of the distributed power sources 3a to 3d are connected to respective control devices (system controllers) 6
The DC output power of the solar cell 4 is converted into AC power of a system frequency, respectively, and the AC power is transmitted to each of the systems 2 via the respective wiring breakers 7 and load switching boards 8. Power is supplied to the general load 9 and the emergency load 10.

【0006】そして、系統電源11が健全な通常時は、
インバータ5の出力側の系統電圧等の監視に基づく制御
装置6の連系運転制御により、各分散電源3a〜3dが
それぞれの太陽電池4の出力に基づき、個別に系統電源
11と連系運転される。
When the system power supply 11 is normal,
By the interconnection operation control of the control device 6 based on the monitoring of the system voltage on the output side of the inverter 5, each of the distributed power sources 3 a to 3 d is individually operated for interconnection with the system power supply 11 based on the output of each solar cell 4. You.

【0007】このとき、発電量の増加に伴う系統2の連
系点電圧の上昇を抑制するため、各分散電源3a〜3d
はインバータ5の進相運転機能を有し、連系点電圧が1
05%〜110%以上に上昇すると、その上昇量に応じ
てそれぞれのインバータ5が進相運転される。
At this time, in order to suppress an increase in the interconnection point voltage of the system 2 due to an increase in the amount of power generation, each of the distributed power sources 3a to 3d
Has a phase leading operation function of the inverter 5 and the interconnection point voltage is 1
When the voltage rises from 05% to 110% or more, each of the inverters 5 is operated in the leading phase according to the amount of the rise.

【0008】つぎに、災害の発生等に伴う系統電源11
の停電が発生すると、各分散電源3a〜3dの非同期運
転による弊害を防止するため、各分散電源3a〜3dは
予め設定された1台,例えば分散電源3aのみが自立運
転に移行し、残りの各分散電源3b〜3dは運転を停止
する。
Next, the system power supply 11 for the occurrence of a disaster, etc.
In order to prevent the adverse effects of the asynchronous operation of the distributed power supplies 3a to 3d when the power failure occurs, only one of the preset distributed power supplies 3a to 3d, for example, only the distributed power supply 3a shifts to the autonomous operation, and the remaining The operation of each of the distributed power sources 3b to 3d is stopped.

【0009】また、自立運転に移行した分散電源3a
は、その出力を非常負荷10に給電するため、制御装置
6により負荷切換器8を切換え、この切換器8を介して
非常負荷10にのみインバータ5の自立運転出力を供給
する。
Further, the distributed power supply 3a which has shifted to the independent operation
In order to supply the output to the emergency load 10, the control device 6 switches the load switch 8, and supplies the self-sustained operation output of the inverter 5 only to the emergency load 10 via the switch 8.

【0010】なお、図3の12は受電盤1の各交流遮断
器、13は系統2の各負荷フィーダの配線用遮断器、1
4は負荷切換盤8を形成する各開閉器である。
In FIG. 3, reference numeral 12 denotes an AC breaker of the power receiving panel 1, and 13 denotes a wiring breaker of each load feeder of the system 2.
Reference numeral 4 denotes each switch forming the load switching board 8.

【0011】また、15は系統連系保護リレーであり、
系統電圧とコンデンサ分圧の零相変圧器(ZPD)16
の出力とに基づき、連系点電圧の過電圧,不足電圧,地
絡等の異常を検出して所要の遮断器12の開放等を行
う。
Reference numeral 15 denotes a system interconnection protection relay,
Zero phase transformer (ZPD) 16 for system voltage and capacitor division
Based on this output, an abnormality such as an overvoltage, an undervoltage, or a ground fault of the interconnection point voltage is detected, and the required breaker 12 is opened.

【0012】さらに、この図3の太陽光発電装置は、分
散電源3aに2次電池構成の電池電源17を備える。
Further, the photovoltaic power generator of FIG. 3 includes a distributed power source 3a and a battery power source 17 having a secondary battery configuration.

【0013】この電池電源17は自立運転される分散電
源3aに接続され、分散電源3aが自立運転されるとき
は、その制御装置6によりインバータ5の入力が太陽電
池4の単独出力から太陽電池4と電池電源17との並列
出力に切換わり、電池電源17によりインバータ5の直
流入力が補われる。
The battery power source 17 is connected to the distributed power source 3a which is operated independently. When the distributed power source 3a is operated independently, the input of the inverter 5 is controlled by the control device 6 from the single output of the solar cell 4 to the solar cell 4a. And the battery power supply 17 is switched to a parallel output, and the DC input of the inverter 5 is supplemented by the battery power supply 17.

【0014】[0014]

【発明が解決しようとする課題】前記従来のこの種太陽
光発電装置の場合、各分散電源3a〜3dのインバータ
5をそれぞれの制御装置6により個別に運転制御するた
め、分散電源3a〜3d毎に制御装置6が必要になり、
発電装置が大型化する。
In the case of the above-mentioned conventional solar power generation apparatus, the operation of the inverters 5 of the distributed power supplies 3a to 3d is individually controlled by the respective control devices 6, so that each of the distributed power supplies 3a to 3d is controlled. Requires a control device 6,
The power generator becomes larger.

【0015】さらに、各分散電源3a〜3dのインバー
タ5がそれぞれの制御装置6により別個独立に運転制御
されるため、つぎのような問題を招来する。
Further, since the operation of the inverters 5 of the respective distributed power sources 3a to 3d is controlled independently by the respective control devices 6, the following problems are caused.

【0016】まず、連系運転において、発電量の増加に
伴う連系点電圧の上昇を分散電源3a〜3dの進相運転
で抑制する際、それぞれの制御装置6で行われる抑制判
定の基準電圧が分散電源3a〜3dによってばらつき、
分散電源3a〜3dの進相運転量のばらつきが生じ、極
端な場合は基準電圧の最も低い分散電源のみが進相運転
される。
First, in the interconnection operation, when an increase in the interconnection point voltage due to an increase in the amount of power generation is suppressed by the phase-advanced operation of the distributed power sources 3a to 3d, the reference voltage for the inhibition determination performed by each control device 6 is described. Varies with the distributed power sources 3a to 3d,
The phase operation amounts of the distributed power sources 3a to 3d vary, and in an extreme case, only the distributed power source with the lowest reference voltage is operated in the advanced phase.

【0017】なお、一般に進相運転が力率0.85でク
リップされるため、分散電源によっては、力率0.85
になっても連系点電圧の上昇が続く場合、その出力(発
電出力)を実際に絞り込んで低減するものもあり、この
場合は、進相運転量のばらつきが生じるだけでなく、全
体の発電効率が悪化(低下)する。
In general, the phase-advance operation is clipped at a power factor of 0.85.
If the interconnection point voltage continues to rise even after the power failure, the output (power generation output) may be reduced by actually narrowing down the output. The efficiency deteriorates (decreases).

【0018】つぎに、連系運転中にインバータ5の出力
と負荷容量とがつり合って各分散電源3a〜3dが単独
運転の状態になるときにも適正な運転を継続するため、
単独運転の能動方式の検出に広く採用されている無効電
力方式で単独運転を検出しようとすると、この検出が無
効電力の可変を周期的にくり返して連系点電圧等の変動
から系統停電等による単独運転への移行を検出するもの
であるから、この検出を各分散電源3a〜3dが非同期
の状態で別個独立に行うことにより、無効電力の可変に
よる効果が分散電源3a〜3d間で相殺されて検出困難
になり、場合によっては単独運転への移行を検出できな
い事態も生じる。
Next, the proper operation is continued even when the output of the inverter 5 and the load capacity are balanced during the interconnection operation and each of the distributed power sources 3a to 3d is in an independent operation state.
If an attempt is made to detect islanding with the reactive power system widely used for the detection of the active mode of islanding, this detection periodically repeats the variation of the reactive power and changes in the interconnection point voltage etc. Since the shift to the islanding operation is detected, this detection is performed separately and independently in a state where the distributed power sources 3a to 3d are asynchronous, so that the effect of the variable reactive power is offset between the distributed power sources 3a to 3d. This makes detection difficult, and in some cases, a transition to islanding operation cannot be detected.

【0019】さらに、各分散電源3a〜3dの運転状態
を1個所で集中して監視することができず、能率のよい
運転管理等が行えない問題もある。
Further, there is another problem that the operation state of each of the distributed power sources 3a to 3d cannot be monitored centrally at one place, and efficient operation management and the like cannot be performed.

【0020】そこで、各分散電源3a〜3dを共通の1
台の制御装置で運転制御し、抑制判定の基準電圧の共通
化等を図って前記の諸点を解消することが考えられる。
Therefore, each of the distributed power sources 3a to 3d is connected to a common 1
It is conceivable that the above-mentioned points are eliminated by controlling the operation of the two control devices and sharing the reference voltage for the suppression determination.

【0021】この場合、共通の1台の制御装置と各分散
電源3a〜3dとの運転制御情報の伝送は、一般には、
制御装置と各分散電源3a〜3dとの間それぞれに専用
の信号線(ケーブル)を敷設し、専用線を用いた有線通
信方式で行われる。
In this case, transmission of operation control information between one common control device and each of the distributed power sources 3a to 3d is generally performed as follows.
A dedicated signal line (cable) is laid between the control device and each of the distributed power supplies 3a to 3d, and a wired communication method using a dedicated line is performed.

【0022】しかし、この専用の有線通信方式を採用し
た場合、煩雑で労力,時間及び費用を要する各信号線の
敷設工事等の通信工事を要し、その際、分散電源の数が
多くなる程信号線が長くなるとともに信号線の数が多く
なり、この場合、一層煩雑になるとともに労力,時間及
び費用を要する問題点がある。
However, when this dedicated wire communication system is adopted, communication work such as laying of each signal line, which is complicated and requires labor, time and cost, is required. In this case, as the number of distributed power sources increases, the number of distributed power sources increases. As the length of the signal line increases, the number of signal lines increases. In this case, there is a problem that the signal line becomes more complicated and requires labor, time and cost.

【0023】そして、外乱(ノイズ)の影響を排除する
ため、各信号線を光ファイバにより形成すると、著しく
高価になる。
If each signal line is formed by an optical fiber in order to eliminate the influence of disturbance (noise), it becomes extremely expensive.

【0024】本発明は、太陽電池構成の複数の分散電源
の電力変換装置を共通の1台の制御装置で運転制御する
際に、制御装置と各分散電源との間それぞれに専用の信
号線を敷設することなく、運転制御情報を伝送し得るよ
うにすることを課題とする。
According to the present invention, a dedicated signal line is provided between the control device and each of the distributed power sources when the operation of the power converters of the plurality of distributed power sources having the solar cell configuration is controlled by one common control device. It is an object to enable operation control information to be transmitted without laying.

【0025】[0025]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の太陽光発電装置においては、共通の1台
の制御装置及び各分散電源に、系統の電力線に接続さ
れ,制御装置と各分散電源との間で電力変換装置の運転
制御情報をやりとりする配電線搬送通信装置を設け、制
御装置により系統の配電線を介して各分散電源の電力変
換装置を制御する。
In order to solve the above-mentioned problems, in a photovoltaic power generator according to the present invention, one common control device and each distributed power source are connected to a system power line and connected to a control device. A distribution line carrier communication device for exchanging operation control information of the power conversion device between the power supply device and each distributed power source is provided, and the control device controls the power conversion device of each distributed power source via a system distribution line.

【0026】したがって、共通の制御装置と各分散電源
との間の電力変換装置の運転制御情報の通信が、専用の
信号線を敷設することなく、系統の電力線を利用した配
電線搬送により行われる。
Therefore, the communication of the operation control information of the power conversion device between the common control device and each distributed power source is performed by the distribution line conveyance using the power line of the system without laying a dedicated signal line. .

【0027】また、本発明の太陽光発電装置において
は、共通の1台の制御装置及び各分散電源に、制御装置
と各分散電源との間で電力変換装置の運転制御情報をや
りとりする無線通信装置を設け、制御装置により無線通
信で各分散電源の電力変換装置を制御する。
Further, in the photovoltaic power generator of the present invention, wireless communication for exchanging operation control information of the power conversion device between the control device and each distributed power source to one common control device and each distributed power source. A device is provided, and the control device controls the power conversion device of each distributed power supply by wireless communication.

【0028】したがって、この場合は共通の制御装置と
各分散電源との間の電力変換装置の運転制御情報の通信
が、専用の信号線を敷設することなく、無線通信で行わ
れる。
Therefore, in this case, the communication of the operation control information of the power converter between the common control device and each distributed power source is performed by wireless communication without laying a dedicated signal line.

【0029】[0029]

【発明の実施の形態】本発明の実施の形態について、図
1及び図2を参照して説明する。 (実施の第1の形態)まず、請求項1の太陽光発電装置
に対応する本発明の実施の第1の形態につき、図1を参
照して説明する。図1はアドレス#0の共通の1個の制
御装置(メインコントローラ)18,アドレス#1,#
2,#3,#4の4個の分散電源(ACアレイ)19
a,19b,19c,19d及び電池電源(バッテリー
盤)20を備えた場合の単線系統図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. (First Embodiment) First, a first embodiment of the present invention corresponding to the photovoltaic power generator of claim 1 will be described with reference to FIG. FIG. 1 shows one common control device (main controller) 18 having an address # 0 and addresses # 1 and #
4, # 3, # 4, four distributed power supplies (AC array) 19
1A, 19B, 19C and 19D are single-line system diagrams in a case where a battery power supply (battery panel) 20 is provided.

【0030】この図1において、図3と同一符号は同一
もしくは相当するものを示し、図1の構成が図3の従来
構成と異なる点は、主につぎの(i)〜(iv)の点であ
る。
In FIG. 1, the same reference numerals as those in FIG. 3 denote the same or corresponding elements, and the difference between the configuration of FIG. 1 and the conventional configuration of FIG. 3 is mainly the following points (i) to (iv). It is.

【0031】(i)各分散電源19a〜19dは図3の
従来電源3a〜3dの個別の制御装置6が設けられず、
工場,ビルの管理所等に設けられた共通の1個の制御装
置18により集中制御される点。
(I) Each of the distributed power supplies 19a to 19d is not provided with a separate control device 6 for the conventional power supplies 3a to 3d in FIG.
Centrally controlled by one common control device 18 provided at a factory, a building management office, or the like.

【0032】(ii)制御装置18及び各分散電源19a
〜19dそれぞれに、系統2の電力線としての配電線
2’に接続された配電線搬送通信装置21が設けられた
点。
(Ii) The controller 18 and each distributed power supply 19a
To 19d, the distribution line carrier communication device 21 connected to the distribution line 2 ′ as the power line of the system 2 is provided.

【0033】(iii )各分散電源19a〜19dに、図
3の従来電源3a〜3dのインバータ5の代わりに、系
統停電の発生時に太陽電池4の単独入力から太陽電池4
の出力と電池電源20の出力との並列入力に切換わる機
能及び電池電源20の充電コンバータ機能を付加した電
圧型のインバータ22が設けられた点。そして、電池電
源20は各分散電源19a〜19dの共通の補助直流電
源を形成する。
(Iii) Instead of the inverters 5 of the conventional power supplies 3a to 3d shown in FIG.
In that a voltage-type inverter 22 having a function of switching to a parallel input of the output of the battery power supply 20 and a charge converter function of the battery power supply 20 is provided. The battery power supply 20 forms a common auxiliary DC power supply for each of the distributed power supplies 19a to 19d.

【0034】(iv)図5の系統連系保護リレー15の代
わりに、このリレー15に例えば有線の通信機能を付加
した構成の系統連系保護リレー23が設けられ、系統連
系保護リレー23から制御装置18のマイクロコンピュ
ータ構成の運転制御部24に、リレー23の過電圧,不
足電圧等の検出情報の信号が伝送され、系統連系保護リ
レー23の検出情報を利用して各分散電源19a〜19
dの連系保護を図るようにした点。
(Iv) Instead of the grid connection protection relay 15 of FIG. 5, a grid connection protection relay 23 having a configuration in which, for example, a wired communication function is added to the relay 15 is provided. A signal of detection information such as overvoltage and undervoltage of the relay 23 is transmitted to the operation control unit 24 of the microcomputer configuration of the control device 18, and each of the distributed power supplies 19 a to 19 is utilized by using the detection information of the system interconnection protection relay 23.
The point that d is protected from interconnection.

【0035】そして、制御装置18と各分散電源19a
〜19dとの間で、配電線2’を介した配電線搬送通信
により、各分散電源19a〜19dのインバータ22の
運転制御情報をやりとりするため、各配電線搬送通信装
置21は、それぞれインバータ構成の送信器21aと受
信用の復調器21bとからなる。
Then, the controller 18 and each distributed power source 19a
-19d to exchange operation control information of the inverter 22 of each of the distributed power supplies 19a-19d by distribution line transport communication via the distribution line 2 ', the respective distribution line transport communication devices 21 And a demodulator 21b for reception.

【0036】つぎに、制御装置18について説明する。
制御装置18は系統連系保護リレー23の検出情報が供
給されるとともに、配電線2’の系統電圧が計器用変圧
器25を介して同期電圧(連系点電圧)の情報として供
給される。
Next, the control device 18 will be described.
The control device 18 is supplied with the detection information of the system interconnection protection relay 23, and the system voltage of the distribution line 2 'is supplied as information of the synchronization voltage (interconnection point voltage) via the instrument transformer 25.

【0037】また、手動又は自動の運転モードの選択に
より、個別連系運転モード,並列自立運転モード,充電
運転モードの制御に選択的に切換わり、連系運転時は各
分散電源19a〜19dを個別に連系運転に制御し、自
立運転時は各分散電源19a〜19dを同期させて並列
自立運転に制御し、充電運転時は各分散電源19a〜1
9dのコンバータ運転による電池電源20の充電に制御
する。
The selection of the manual or automatic operation mode selectively switches to the control of the individual interconnection operation mode, the parallel independent operation mode, and the charging operation mode. During the interconnection operation, each of the distributed power supplies 19a to 19d is switched. Independent operation is controlled individually, and in the independent operation, the distributed power sources 19a to 19d are synchronized to be controlled to the parallel independent operation. In the charging operation, the distributed power sources 19a to 1d are controlled.
Control is performed to charge the battery power supply 20 by the 9d converter operation.

【0038】すなわち、運転モードが選択されると、運
転制御部24が予め設定された各動作モードのプログラ
ムを実行する。
That is, when the operation mode is selected, the operation control unit 24 executes a preset program for each operation mode.

【0039】このとき、計器用変圧器25からの同期電
圧の情報は、分周等されて連系運転時の同期制御のタイ
ミング信号(同期信号)に加工されるとともに、その大
きさが各分散電源19a〜19dの運転開始(進相運転
開始)の共通の判定基準になる。
At this time, the information of the synchronization voltage from the instrument transformer 25 is divided and processed into a synchronization control timing signal (synchronization signal) at the time of interconnection operation, and the size of the information is divided into various values. This is a common criterion for starting the operation of the power supplies 19a to 19d (starting the phase advance operation).

【0040】なお、同期電圧の情報が得られない自立運
転時等は、制御装置18の基準周波数の自走発振出力に
より、系統周波数の同期制御のタイミング信号が形成さ
れる。
During self-sustained operation or the like in which information on the synchronization voltage is not obtained, a timing signal for synchronization control of the system frequency is formed by the free-running oscillation output of the control device 18 at the reference frequency.

【0041】そして、運転制御部24は前記のタイミン
グ信号,系統連系保護リレー23の検出情報,計器用変
圧器25の同期電圧及び各分散電源19a〜19dから
通知された現在の運転状態や発電出力,出力電圧等に基
づくシーケンス制御処理により、系統電源11及び各分
散電源19a〜19dの状態等を監視する。
Then, the operation control unit 24 determines the timing signal, the detection information of the system interconnection protection relay 23, the synchronous voltage of the instrument transformer 25, and the current operation state and power generation notified from each of the distributed power supplies 19a to 19d. The status and the like of the system power supply 11 and the distributed power supplies 19a to 19d are monitored by a sequence control process based on the output, the output voltage, and the like.

【0042】さらに、例えば系統連系運転保護リレー2
3の検出情報に基づき、系統停電の有無を検出するとと
もに運転/停止の情報を形成する。
Further, for example, a system interconnection operation protection relay 2
Based on the detection information of No. 3, the presence / absence of a system power outage is detected and information on operation / stop is formed.

【0043】すなわち、前記監視に基づき、運転制御部
24は選択された運転モード等にしたがって、タイミン
グ信号,進相運転開始の指令信号及び並列運転/個別運
転,自立運転/連系運転,発電運転/充電運転,運転/
停止のモード変更の信号,データ要求信号等の制御装置
側の運転制御情報の信号を形成する。
That is, based on the monitoring, the operation control unit 24 determines the timing signal, the command signal for starting the early phase operation, the parallel operation / individual operation, the independent operation / interconnection operation, and the power generation operation in accordance with the selected operation mode or the like. / Charging operation, operation /
A signal for operation control information on the control device side, such as a stop mode change signal and a data request signal, is formed.

【0044】さらに、これらの運転制御情報の信号は、
所定の通信フォーマットで各分散電源19a〜19dに
個別に又は一斉に伝送するため、制御装置18のアドレ
ス#0(送信元アドレス)及び各分散電源19a〜19
dの個別のアドレス#1〜#4又は共通のアドレス(送
信先アドレス)等が付加されて下りの送信信号に加工さ
れる。
Further, these operation control information signals are:
In order to individually or simultaneously transmit to the distributed power supplies 19a to 19d in a predetermined communication format, the address # 0 (transmission source address) of the control device 18 and the distributed power supplies 19a to 19d are transmitted.
The individual address # 1 to # 4 of d or a common address (destination address) and the like are added and processed into a downlink transmission signal.

【0045】そして、この下りの送信信号が運転制御部
24から配電線搬送通信装置21の送信器21aに送ら
れ、この送信器21aにより下りの送信信号が系統周波
数の影響が少ない適当な周波数に変調されて配電線2’
に送出される。
The downstream transmission signal is sent from the operation control unit 24 to the transmitter 21a of the distribution line carrier communication device 21, and the downstream transmission signal is converted by the transmitter 21a to an appropriate frequency which is less affected by the system frequency. Modulated distribution line 2 '
Sent to

【0046】また、データ要求信号にしたがって各分散
電源19a〜19dから配電線2’に送出された後述の
上りの送信信号が制御装置18の復調器21bにより受
信されて復調され、この復調により各分散電源19a〜
19dの現在の運転状態や発電出力,出力電圧等の運転
制御情報が再生される。
Further, an upstream transmission signal, which will be described later, transmitted from each of the distributed power supplies 19a to 19d to the distribution line 2 'in accordance with the data request signal is received and demodulated by the demodulator 21b of the control device 18, and this demodulation causes Distributed power supply 19a-
Operation control information such as the current operation state, power generation output, and output voltage of 19d is reproduced.

【0047】そして、各分散電源19a〜19dからの
運転制御情報に基づき、運転制御部24は制御装置18
の図示省略した表示器に各分散電源19a〜19dの運
転状態や発電量等を集中表示する。
Then, based on the operation control information from each of the distributed power supplies 19a to 19d, the operation control unit 24
Of the distributed power supplies 19a to 19d are collectively displayed on a display (not shown).

【0048】つぎに、各分散電源19a〜19dについ
て説明する。各分散電源19a〜19dは配電線2’の
下りの送信信号をそれぞれの配電線搬送通信装置21の
復調器21bにより受信して復調し、自装置のアドレス
#1〜#4又は共通のアドレスが付加された運転制御情
報の信号を復調器21bからそれぞれのインバータ22
に転送する。
Next, each of the distributed power supplies 19a to 19d will be described. Each of the distributed power supplies 19a to 19d receives and demodulates the downstream transmission signal of the distribution line 2 'by the demodulator 21b of the distribution line carrier communication device 21, and the address # 1 to # 4 of the own device or the common address is used. The added operation control information signal is transmitted from the demodulator 21b to the respective inverters 22.
Transfer to

【0049】このインバータ22は与えられた運転制御
情報の運転モードの指令に基づき、運転モード(動作モ
ード)が前記した個別連系運転モード,並列自立運転モ
ード,充電運転モードのいずれかになる。
The inverter 22 changes its operation mode (operation mode) to any one of the above-described individual interconnection operation mode, parallel independent operation mode, and charging operation mode based on the operation mode command given to the operation control information.

【0050】そして、個別連系運転モードが指令される
通常の連系運転時は、受信したタイミング信号に基づ
き、各分散電源19a〜19dのインバータ22が系統
電圧に同期して個別にインバータ動作する。
Then, during the normal interconnection operation in which the individual interconnection operation mode is commanded, the inverters 22 of the distributed power supplies 19a to 19d individually operate in synchronization with the system voltage based on the received timing signal. .

【0051】このとき、太陽電池4の出力電圧等の監視
に基づき、インバータ22は太陽電池4から最大電力を
取出すように太陽電池4の時々刻々の最大電力に追従し
て動作する。
At this time, based on monitoring of the output voltage and the like of the solar cell 4, the inverter 22 operates so as to take out the maximum electric power of the solar cell 4 so as to extract the maximum electric power from the solar cell 4.

【0052】このインバータ動作により各分散電源19
a〜19dは系統電圧に同期して個別に連系運転され、
各太陽電池19a〜19dの時々刻々の最大電力が系統
周波数の交流電力に変換される。
By this inverter operation, each distributed power supply 19
a to 19d are individually operated in synchronization with the system voltage,
The momentary maximum power of each of the solar cells 19a to 19d is converted to AC power of the system frequency.

【0053】このとき、各分散電源19a〜19dのイ
ンバータ22が系統電圧に同期して運転されるため、各
分散電源19a〜19dは同期して連系運転される。
At this time, since the inverters 22 of the distributed power supplies 19a to 19d are operated in synchronization with the system voltage, the distributed power supplies 19a to 19d are operated in synchronization with each other.

【0054】また、連系点電圧が上昇傾向になると、そ
の過大な上昇を抑制するため、個別連系運転中に進相運
転開始の指令が受信され、各分散電源19a〜19dの
インバータ22が進相運転される。
When the interconnection point voltage tends to increase, an instruction to start the phase advance operation is received during the individual interconnection operation in order to suppress the excessive increase, and the inverter 22 of each of the distributed power supplies 19a to 19d operates. The phase is driven.

【0055】このとき、各分散電源19a〜19dが制
御装置18からの進相運転開始の指令に基づき、共通化
された同一の判定基準の電圧にしたがって進相運転さ
れ、従来のような分散電源19a〜19d間の進相運転
量のばらつきが防止されて各分散電源19a〜19dが
均等に進相運転され、全体の発電効率の低下を防止して
連系点電圧が抑制される。
At this time, each of the distributed power supplies 19a to 19d is operated in accordance with a common voltage of the same determination criterion based on a command for starting the phase operation from the control device 18, and the conventional distributed power supply is used. The dispersion of the advanced operation amount between 19a to 19d is prevented, and the dispersed power supplies 19a to 19d are uniformly operated in advanced phase. The overall power generation efficiency is prevented from lowering and the interconnection point voltage is suppressed.

【0056】さらに、系統電圧に同期したタイミング信
号に基づき、各分散電源19a〜19dのインバータ2
2は外乱発生タイミングの同期をとってその出力の無効
電力を可変し、いわゆる無効電力変動方式で単独運転状
態への移行を監視して検出する。
Further, based on a timing signal synchronized with the system voltage, the inverter 2 of each of the distributed power supplies 19a to 19d
Numeral 2 varies the reactive power of its output by synchronizing the disturbance occurrence timing, and monitors and detects the transition to the isolated operation state by a so-called reactive power fluctuation method.

【0057】そのため、各分散電源19a〜19dの無
効電力の可変による効果が分散電源19a〜19d間で
相殺されず、各分散電源19a〜19dが単独運転状態
になっても、この状態が確実に検出されて運転が継続さ
れる。
Therefore, the effect of varying the reactive power of each of the distributed power supplies 19a to 19d is not canceled among the distributed power supplies 19a to 19d, and even if each of the distributed power supplies 19a to 19d is in the independent operation state, this state is ensured. The operation is detected and the operation is continued.

【0058】つぎに、系統停電等が発生して並列自立運
転モードが指令される並列自立運転時は、各分散電源1
9a〜19dのインバータ22は自立運転のインバータ
動作に切換わり、このとき、制御装置18の自走発振の
タイミング信号に基づき、各分散電源19a〜19dの
インバータ22は同期して運転される。
Next, at the time of parallel independent operation in which a system blackout or the like occurs and the parallel independent operation mode is instructed, each distributed power source 1
The inverters 9a to 19d switch to the inverter operation of the self-sustained operation. At this time, the inverters 22 of the distributed power supplies 19a to 19d are operated in synchronization based on the timing signal of the free-running oscillation of the control device 18.

【0059】また、各分散電源19a〜19dの入力電
源が太陽電池4と電池電源20との並列電源になる。
The input power of each of the distributed power supplies 19a to 19d is a parallel power supply of the solar cell 4 and the battery power supply 20.

【0060】したがって、災害等による系統停電時、各
分散電源19a〜19dのインバータ22が同期してい
ずれも自立運転され、従来のように各分散電源19a〜
19dのうちの1台を運転する場合より非常負荷10に
給電可能な電力が大きくなり、非常負荷10を十分な大
きさにすることができる。
Therefore, when a power outage occurs due to a disaster or the like, all the inverters 22 of the distributed power supplies 19a to 19d operate independently in synchronization with each other, and the distributed power supplies 19a to
The power that can be supplied to the emergency load 10 is greater than when one of the 19d is operated, and the emergency load 10 can be made sufficiently large.

【0061】しかも、電池電源20の併用により、自立
運転時の安定給電の確保,給電電力の一層の増大等が図
られる。
In addition, by using the battery power supply 20 together, it is possible to ensure stable power supply during the self-sustained operation and further increase the power supply.

【0062】つぎに、充電運転モードが指令されると、
各分散電源19a〜19dのインバータ22がコンバー
タ動作に切換わり、各分散電源19a〜19dのコンバ
ータ出力により電池電源20が充電される。
Next, when the charge operation mode is commanded,
The inverter 22 of each of the distributed power supplies 19a to 19d switches to the converter operation, and the battery power supply 20 is charged by the converter output of each of the distributed power supplies 19a to 19d.

【0063】この場合、大型の専用の充電設備等を別途
用意することなく、各分散電源19a〜19dのいずれ
か1台のコンバータ出力で充電する場合より大容量の充
電電力で電池電源20が充電され、電池電源20の容量
の増大等を図ることができる。
In this case, the battery power supply 20 is charged with a larger amount of charging power than when the charging is performed by using the converter output of any one of the distributed power supplies 19a to 19d without separately preparing a large dedicated charging facility or the like. Thus, the capacity of the battery power supply 20 can be increased.

【0064】ところで、各分散電源19a〜19dの運
転状態や発電量,出力電圧はそれぞれのインバータ22
により監視され、この監視情報が分散電源側の運転制御
情報を形成する。
By the way, the operation state, the amount of power generation, and the output voltage of each of the distributed power supplies 19a to 19d are
And this monitoring information forms operation control information on the distributed power source side.

【0065】そして、制御装置18からのデータ要求信
号を各分散電源19a〜19dが受信すると、それぞれ
のインバータ22の分散電源側の運転制御情報の信号に
各分散電源19a〜19dのアドレス#1〜#4(送信
元アドレス),制御装置18のアドレス#0(送信先ア
ドレス)等を付加して上りの送信信号が形成され、この
上りの送信信号が分散電源19a〜19dの送信器21
aにより、下りの送信信号と同様に変調されて配電線に
送出される。
When each of the distributed power supplies 19a to 19d receives the data request signal from the control device 18, the address # 1 of each of the distributed power supplies 19a to 19d is added to the operation control information signal on the distributed power supply side of each inverter 22. # 4 (source address), address # 0 (destination address) of the control device 18 and the like are added to form an upstream transmission signal, and this upstream transmission signal is transmitted to the transmitter 21 of the distributed power supplies 19a to 19d.
By a, the signal is modulated in the same manner as the downstream transmission signal and transmitted to the distribution line.

【0066】したがって、この図1の場合は配電線2’
を制御装置18と各分散電源19a〜19dとの運転制
御情報の伝送路に利用した配電線搬送の通信により、共
通の1台の制御装置18で各分散電源19a〜19dの
運転を制御し、各分散電源19a〜19dがそれぞれの
制御で個別運転される場合の不都合を解消することがで
きる。
Therefore, in the case of FIG.
By controlling the operation of each of the distributed power supplies 19a to 19d by one common control apparatus 18 by communication of distribution line conveyance using a transmission path of operation control information between the control device 18 and each of the distributed power supplies 19a to 19d, The inconvenience when each of the distributed power supplies 19a to 19d is individually operated by each control can be eliminated.

【0067】そして、制御装置18と各分散電源19a
〜19dとの間に運転制御情報の専用の信号線を敷設す
る必要がなく、そのための信号線(通信ケーブル)が不
要でその敷設工事も不要になるため、著しく簡単かつ安
価に装置を構築することができる。
Then, the controller 18 and each distributed power source 19a
It is not necessary to lay a dedicated signal line for the operation control information between the device and the device, and no signal line (communication cable) is required for the signal line and the laying work is not required. be able to.

【0068】なお、制御装置18と各分散電源19a〜
19dとの間の通信方式としては、制御装置18から各
分散電源19a〜19dを呼出すポーリング通信方式等
の種々の方式を採用することができるのは勿論である。
The control device 18 and each of the distributed power sources 19a to 19a
It goes without saying that various systems such as a polling communication system for calling each of the distributed power supplies 19a to 19d from the control device 18 can be adopted as a communication system between the control device 18 and the communication device 19d.

【0069】また、制御装置18及び各分散電源19a
〜19dの送受信周波数(周波数帯),変調方式等は、
通信方式等に応じて、同一又は装置毎或いは上り,下り
毎に異なるように設定すればよい。
The control device 18 and each distributed power source 19a
The transmission / reception frequency (frequency band) to 19d, modulation method, etc.
Depending on the communication method or the like, the setting may be the same or different for each device or different for each of the upstream and downstream.

【0070】(実施の第2の形態)つぎに、請求項2の
太陽光発電装置に対応する本発明の実施の第2の形態に
つき、図2を参照して説明する。図2において、図1と
同一符号は同一もしくは相当するものを示す。
(Second Embodiment) Next, a second embodiment of the present invention corresponding to the photovoltaic power generator of claim 2 will be described with reference to FIG. 2, the same reference numerals as those in FIG. 1 denote the same or corresponding components.

【0071】そして、図2においては制御装置18及び
各分散電源19a〜19dに、図1の配電線搬送通信装
置21の代わりに、変復調用の変換器26a及び無線の
送信器26b,受信器26cからなる無線通信装置26
を設けた点である。
In FIG. 2, the control device 18 and each of the distributed power supplies 19a to 19d are provided with a modulation / demodulation converter 26a, a radio transmitter 26b, and a receiver 26c instead of the distribution line carrier communication device 21 of FIG. Wireless communication device 26 comprising
Is provided.

【0072】この場合、制御装置18の下りの運転制御
情報の信号,各分散電源19a〜19dの上りの運転制
御情報の信号は、それぞれの変換装置26aにより変調
されて送信器26bから無線送信される。
In this case, the signal of the downstream operation control information of the control device 18 and the signal of the upstream operation control information of each of the distributed power supplies 19a to 19d are modulated by the respective converters 26a and transmitted wirelessly from the transmitter 26b. You.

【0073】そして、無線送信された信号が各分散電源
19a〜19d,制御装置18の受信器26cにより受
信されてそれぞれの変換器26aにより復調される。
The signals transmitted by radio are received by the distributed power supplies 19a to 19d and the receiver 26c of the control device 18 and demodulated by the respective converters 26a.

【0074】したがって、この図2にあっては無線通信
により制御装置18と各分散電源19a〜19dとの間
の運転情報の伝送が行われ、この場合も図1の場合と同
様の効果が得られる。
Therefore, in FIG. 2, the operation information is transmitted between the control device 18 and each of the distributed power sources 19a to 19d by wireless communication. In this case, the same effect as in the case of FIG. 1 is obtained. Can be

【0075】しかも、配電線搬送方式の場合のような系
統電力の影響が少なく、送受信周波数の制約もなく、設
計の自由度等が図1の場合より大きくなるとともに通信
の信頼性が向上する。
Moreover, the influence of the system power as in the case of the distribution line transport system is small, there is no restriction on the transmission / reception frequency, the degree of freedom in design and the like is greater than in the case of FIG. 1, and the reliability of communication is improved.

【0076】そして、無線信号はAM,FM,FSK等
の種々の方式で変調して形成してよいのは勿論である。
The radio signal may be modulated by various methods such as AM, FM, and FSK.

【0077】ところで、分散電源の個数等はどのようで
あってもよい。また、各分散電源は建物に設けたもので
なくてもよく、例えば高速道路や新幹線路等の鉄道路の
防音壁等の代わりに設けたものであってもよい。
By the way, the number of distributed power sources and the like may be any. Further, each distributed power source may not be provided in a building, and may be provided in place of, for example, a soundproof wall of a railway such as an expressway or a bullet train.

【0078】さらに、各分散電源19a〜19dの静止
型の電力変換装置はインバータ以外の電力変換器構成で
あってもよい。
Furthermore, the stationary power converters of the distributed power supplies 19a to 19d may have a power converter configuration other than the inverter.

【0079】つぎに、前記両実施の形態において、制御
装置18と一部の分散電源,例えば分散電源19aとの
間の通信又は制御装置18と各分散電源19a〜19d
との間の主要な一部の情報の通信を光ファイバ等の有線
通信で確保するようにして信頼性の一層の向上を図るよ
うにしてもよい。
Next, in both of the above embodiments, communication between the control device 18 and a part of the distributed power source, for example, the distributed power source 19a, or the control device 18 and the distributed power sources 19a to 19d
The communication of the main part of the information between them may be secured by wired communication such as an optical fiber to further improve the reliability.

【0080】[0080]

【発明の効果】本発明は、以下に記載する効果を奏す
る。まず、請求項1の場合は、共通の1台の制御装置1
8と各分散電源19a〜19dとの間の各分散電源19
a〜19dの電力変換装置(インバータ22)の運転制
御情報の通信を専用の信号線を敷設することなく、系統
2の電力線(配電線2’)を利用した配電線搬送により
行うことができ、各分散電源19a〜19dの制御装置
の共通化を図るとともに通信工事の削減を図って大幅な
労力の軽減やコストダウン等を実現することができる。
The present invention has the following effects. First, in the case of claim 1, one common control device 1
8 and each distributed power supply 19 between the distributed power supplies 19a to 19d.
The communication of the operation control information of the power converters (inverter 22) of a to 19d can be performed by the distribution line conveyance using the power line (distribution line 2 ′) of the system 2 without laying a dedicated signal line, A common control device for each of the distributed power supplies 19a to 19d can be used, and communication work can be reduced, thereby greatly reducing labor and cost.

【0081】しかも、制御装置の共通化により各分散電
源19a〜19dに個別に制御装置を設けた場合の不都
合が一掃され、性能の向上が図れ、信頼性が向上する。
Furthermore, the common use of the control device eliminates the inconvenience of providing the control device individually for each of the distributed power supplies 19a to 19d, thereby improving the performance and improving the reliability.

【0082】つぎに、請求項2の場合は、共通の制御装
置18及び各分散電源19a〜19dに無線通信装置2
6を設けたため、制御装置18と各分散電源19a〜1
9dとの間の各分散電源19a〜19dの電力変換装置
(インバータ22)の運転制御情報の通信を、専用の信
号線を敷設することなく、無線通信で行うことができ
る。
Next, in the case of claim 2, the wireless communication device 2 is connected to the common control device 18 and each of the distributed power sources 19a to 19d.
6, the control device 18 and each of the distributed power sources 19a to 19a-1
Communication of the operation control information of the power converter (inverter 22) of each of the distributed power supplies 19a to 19d with the power supply 9d can be performed by wireless communication without laying a dedicated signal line.

【0083】この場合、請求項1の場合と同様の効果が
得られるとともに、系統2の影響に伴う通信条件の制約
等がほとんどなく、設計の自由度等が大きくなる利点も
ある。
In this case, the same effect as that of the first aspect can be obtained, and there is also an advantage that there is almost no restriction on the communication conditions due to the influence of the system 2 and the degree of freedom in design is increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1の形態の結線図である。FIG. 1 is a connection diagram of a first embodiment of the present invention.

【図2】本発明の実施の第2の形態の結線図である。FIG. 2 is a connection diagram of a second embodiment of the present invention.

【図3】従来例の結線図である。FIG. 3 is a connection diagram of a conventional example.

【符号の説明】[Explanation of symbols]

2 系統 2’ 配電線 18 制御装置 19a〜19d 分散電源 21 配電線搬送通信装置 22 インバータ 26 無線通信装置 2 system 2 'distribution line 18 controller 19a to 19d distributed power supply 21 distribution line carrier communication device 22 inverter 26 wireless communication device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 系統に接続された複数の分散電源の静止
型の電力変換装置の運転を共通の1台の制御装置により
制御し、前記各分散電源の太陽電池の出力を交流電力に
変換して系統負荷に給電する太陽光発電装置において、 前記制御装置及び前記各分散電源に、 系統の電力線に接続され,前記制御装置と前記各分散電
源との間で前記電力変換装置の運転制御情報をやりとり
する配電線搬送通信装置を設け、 前記制御装置により前記系統の配電線を介して前記各分
散電源の前記電力変換装置を制御するようにしたことを
特徴とする太陽光発電装置。
An operation of a stationary power converter of a plurality of distributed power supplies connected to a system is controlled by a common controller, and an output of a solar cell of each of the distributed power supplies is converted into AC power. A photovoltaic power generator that supplies power to a system load by connecting the control device and each of the distributed power sources to a power line of a system and transmitting operation control information of the power conversion device between the control device and each of the distributed power sources. A photovoltaic power generator, comprising: a distribution line carrier communication device for communication, wherein the control device controls the power converters of the respective distributed power sources via the distribution line of the system.
【請求項2】 系統に接続された複数の分散電源の静止
型の電力変換装置の運転を共通の1台の制御装置により
制御し、前記各分散電源の太陽電池の出力を交流電力に
変換して系統負荷に給電する太陽光発電装置において、 前記制御装置及び前記各分散電源に、 前記制御装置と前記各分散電源との間で前記電力変換装
置の運転制御情報をやりとりする無線通信装置を設け、 前記制御装置により無線通信で前記各分散電源の前記電
力変換装置を制御するようにしたことを特徴とする太陽
光発電装置。
2. The operation of a stationary power converter of a plurality of distributed power supplies connected to a grid is controlled by a common controller, and the output of a solar cell of each of the distributed power supplies is converted into AC power. A photovoltaic power generator that feeds power to a system load by providing a wireless communication device for exchanging operation control information of the power conversion device between the control device and each of the distributed power sources. The solar power generation device, wherein the control device controls the power conversion devices of the respective distributed power sources by wireless communication.
JP9017560A 1997-01-14 1997-01-14 Photovoltaic power generation system Pending JPH10201105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9017560A JPH10201105A (en) 1997-01-14 1997-01-14 Photovoltaic power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9017560A JPH10201105A (en) 1997-01-14 1997-01-14 Photovoltaic power generation system

Publications (1)

Publication Number Publication Date
JPH10201105A true JPH10201105A (en) 1998-07-31

Family

ID=11947305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9017560A Pending JPH10201105A (en) 1997-01-14 1997-01-14 Photovoltaic power generation system

Country Status (1)

Country Link
JP (1) JPH10201105A (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352682A (en) * 2000-06-09 2001-12-21 Sharp Corp Inverter device and method for reversing power flow to direct it to commercial system
JP2003061364A (en) * 2001-08-09 2003-02-28 Matsushita Electric Works Ltd Photovoltaic power generating system
JP2005033923A (en) * 2003-07-14 2005-02-03 Sanken Electric Co Ltd Parallel operation control system for uninterruptible power supply unit
JP2009017758A (en) * 2007-07-09 2009-01-22 Toshiba Corp Distributed power supply and method of suppressing increase in voltage of low-voltage distribution system linked to the distributed power supply
JP2009189143A (en) * 2008-02-06 2009-08-20 Sharp Corp Power system
EP2149183A2 (en) * 2007-05-17 2010-02-03 Enphase Energy, Inc. Photovoltaic module-mounted ac inverter
JP2010186795A (en) * 2009-02-10 2010-08-26 Sony Corp Photoelectric cell device and method for determining failure
WO2010125612A1 (en) * 2009-05-01 2010-11-04 オーナンバ株式会社 Apparatus for detecting abnormality of solar cell power generation system and method therefor
JP2011507465A (en) * 2007-12-05 2011-03-03 ソラレッジ テクノロジーズ リミテッド Safety mechanism, wake-up method and shutdown method in distributed power installation
JP2012125052A (en) * 2010-12-08 2012-06-28 Daihen Corp Control system, control circuit constituting the same, distributed power supply equipped with the same, and server constituting control system
JP2012531756A (en) * 2009-07-03 2012-12-10 クルーズ、イングマール Method for monitoring individual photovoltaic modules in an apparatus comprising several photovoltaic modules and device for performing the method
JP2012533976A (en) * 2009-07-16 2012-12-27 ジェネラル サイバーネイション グループ インコーポレイテッド Intelligent and scalable power inverter
WO2013014879A1 (en) * 2011-07-28 2013-01-31 パナソニック株式会社 Power line communication device, solar power generation system, power line communication method, and power line communication program
JP2013537025A (en) * 2010-08-31 2013-09-26 エスエムエー ソーラー テクノロジー アーゲー Inverter with AC interface for AC module connection
US8581441B2 (en) 2007-05-17 2013-11-12 Enphase Energy, Inc. Distributed inverter and intelligent gateway
JP2014039374A (en) * 2012-08-13 2014-02-27 Toshiba Corp Controller, power source device and power source system
JP2014087244A (en) * 2012-10-26 2014-05-12 Toshiba Corp Inverter device and inverter system
JP2014197882A (en) * 2009-08-28 2014-10-16 エンフェイズ エナジー インコーポレイテッド Power line communication system
KR101666014B1 (en) * 2016-06-20 2016-10-13 (주)아세아이엔티 Parallel ups synchronization system using power line communication of inverter output, and method thereof
JP2016214066A (en) * 2015-04-28 2016-12-15 台達電子企業管理(上海)有限公司 Power supply system and power conversion device
JP2017501672A (en) * 2013-12-20 2017-01-12 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Power plant equipment
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10910834B2 (en) 2003-05-28 2021-02-02 Solaredge Technologies Ltd. Power converter for a solar panel
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
JPWO2021157087A1 (en) * 2020-02-07 2021-08-12
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US12003107B2 (en) 2013-03-14 2024-06-04 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US12027849B2 (en) 2006-12-06 2024-07-02 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US12027970B2 (en) 2006-12-06 2024-07-02 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352682A (en) * 2000-06-09 2001-12-21 Sharp Corp Inverter device and method for reversing power flow to direct it to commercial system
JP2003061364A (en) * 2001-08-09 2003-02-28 Matsushita Electric Works Ltd Photovoltaic power generating system
US11075518B2 (en) 2003-05-28 2021-07-27 Solaredge Technologies Ltd. Power converter for a solar panel
US11476663B2 (en) 2003-05-28 2022-10-18 Solaredge Technologies Ltd. Power converter for a solar panel
US10910834B2 (en) 2003-05-28 2021-02-02 Solaredge Technologies Ltd. Power converter for a solar panel
US11658508B2 (en) 2003-05-28 2023-05-23 Solaredge Technologies Ltd. Power converter for a solar panel
US11817699B2 (en) 2003-05-28 2023-11-14 Solaredge Technologies Ltd. Power converter for a solar panel
US11824398B2 (en) 2003-05-28 2023-11-21 Solaredge Technologies Ltd. Power converter for a solar panel
JP2005033923A (en) * 2003-07-14 2005-02-03 Sanken Electric Co Ltd Parallel operation control system for uninterruptible power supply unit
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US12027849B2 (en) 2006-12-06 2024-07-02 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12027970B2 (en) 2006-12-06 2024-07-02 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12032080B2 (en) 2006-12-06 2024-07-09 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US12046940B2 (en) 2006-12-06 2024-07-23 Solaredge Technologies Ltd. Battery power control
US12068599B2 (en) 2006-12-06 2024-08-20 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12107417B2 (en) 2006-12-06 2024-10-01 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
EP2149183A2 (en) * 2007-05-17 2010-02-03 Enphase Energy, Inc. Photovoltaic module-mounted ac inverter
US10892619B2 (en) 2007-05-17 2021-01-12 Enphase Energy, Inc. Distributed inverter and intelligent gateway
US11444549B2 (en) 2007-05-17 2022-09-13 Enphase Energy, Inc. Distributed inverter and intelligent gateway
US10468993B2 (en) 2007-05-17 2019-11-05 Enphase Energy, Inc. Inverter for use in photovoltaic module
JP2014241616A (en) * 2007-05-17 2014-12-25 エンフェイズ エナジー インコーポレイテッド Distributed inverter and intelligent gateway
US8581441B2 (en) 2007-05-17 2013-11-12 Enphase Energy, Inc. Distributed inverter and intelligent gateway
JP2009017758A (en) * 2007-07-09 2009-01-22 Toshiba Corp Distributed power supply and method of suppressing increase in voltage of low-voltage distribution system linked to the distributed power supply
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US12055647B2 (en) 2007-12-05 2024-08-06 Solaredge Technologies Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
JP2011507465A (en) * 2007-12-05 2011-03-03 ソラレッジ テクノロジーズ リミテッド Safety mechanism, wake-up method and shutdown method in distributed power installation
JP2009189143A (en) * 2008-02-06 2009-08-20 Sharp Corp Power system
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
JP2010186795A (en) * 2009-02-10 2010-08-26 Sony Corp Photoelectric cell device and method for determining failure
JP4673921B2 (en) * 2009-05-01 2011-04-20 オーナンバ株式会社 Anomaly detection apparatus and method for solar cell power generation system
JP2010263027A (en) * 2009-05-01 2010-11-18 Onamba Co Ltd Apparatus for detecting abnormality of solar cell power generation system and method therefor
WO2010125612A1 (en) * 2009-05-01 2010-11-04 オーナンバ株式会社 Apparatus for detecting abnormality of solar cell power generation system and method therefor
US8581608B2 (en) 2009-05-01 2013-11-12 Onamba Co., Ltd. Apparatus and method for detecting abnormality in solar cell power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
JP2012531756A (en) * 2009-07-03 2012-12-10 クルーズ、イングマール Method for monitoring individual photovoltaic modules in an apparatus comprising several photovoltaic modules and device for performing the method
JP2012533976A (en) * 2009-07-16 2012-12-27 ジェネラル サイバーネイション グループ インコーポレイテッド Intelligent and scalable power inverter
JP2014197882A (en) * 2009-08-28 2014-10-16 エンフェイズ エナジー インコーポレイテッド Power line communication system
JP2013537025A (en) * 2010-08-31 2013-09-26 エスエムエー ソーラー テクノロジー アーゲー Inverter with AC interface for AC module connection
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US12003215B2 (en) 2010-11-09 2024-06-04 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
JP2012125052A (en) * 2010-12-08 2012-06-28 Daihen Corp Control system, control circuit constituting the same, distributed power supply equipped with the same, and server constituting control system
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
WO2013014879A1 (en) * 2011-07-28 2013-01-31 パナソニック株式会社 Power line communication device, solar power generation system, power line communication method, and power line communication program
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US12094306B2 (en) 2012-01-30 2024-09-17 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
JP2014039374A (en) * 2012-08-13 2014-02-27 Toshiba Corp Controller, power source device and power source system
US9728975B2 (en) 2012-08-13 2017-08-08 Kabushiki Kaisha Toshiba Power supply unit that outputs electric power to a load together with another power supply unit
US9337747B2 (en) 2012-10-26 2016-05-10 Kabushiki Kaisha Toshiba Inverter apparatus and inverter system
JP2014087244A (en) * 2012-10-26 2014-05-12 Toshiba Corp Inverter device and inverter system
US12003107B2 (en) 2013-03-14 2024-06-04 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
JP2017501672A (en) * 2013-12-20 2017-01-12 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Power plant equipment
US9837930B2 (en) 2015-04-28 2017-12-05 Delta Electronics (Shanghai) Co., Ltd Power supply system and power conversion device
JP2016214066A (en) * 2015-04-28 2016-12-15 台達電子企業管理(上海)有限公司 Power supply system and power conversion device
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
KR101666014B1 (en) * 2016-06-20 2016-10-13 (주)아세아이엔티 Parallel ups synchronization system using power line communication of inverter output, and method thereof
US11901737B2 (en) 2020-02-07 2024-02-13 Toshiba Mitsubishi-Electric Industrial Systems Corporation Distributed-power-supply power conversion system
JPWO2021157087A1 (en) * 2020-02-07 2021-08-12
WO2021157087A1 (en) * 2020-02-07 2021-08-12 東芝三菱電機産業システム株式会社 Power conversion system for dispersed power source

Similar Documents

Publication Publication Date Title
JPH10201105A (en) Photovoltaic power generation system
US10998833B2 (en) Distributed voltage source inverters
JP2000358330A (en) Photovoltaic power generating apparatus
JP3144323B2 (en) Solar power generator
US7701085B2 (en) Grid interconnection device, grid interconnection system and power control system
US8766479B2 (en) System and method for paralleling electrical power generators
JPH10201086A (en) Solar beam power generation system
EP2612433B1 (en) Inverter with an ac interface for the connection of ac modules
EP2487770A1 (en) Power supply system
JP2006320149A (en) Distributed power source system
WO2013047595A1 (en) Power connection control system and method
JP6024929B2 (en) Control device and power distribution system
US20220368132A1 (en) Microgrid controllers and associated methodologies
WO2018193395A1 (en) A system and a method for providing uninterrupted power in a microgrid system
Martirano et al. Implementation of SCADA systems for a real microgrid lab testbed
JPH0991049A (en) Solar photovoltaic power generation system
JP2000270482A (en) System linkage method of natural energy generator
JPH1141815A (en) Solar generator
CN115603356A (en) New energy direct current collecting and sending system based on direct current transformer and control method thereof
JP2006288079A (en) Power equipment connection device, power supply system, power equipment connection method, and power system operation method
JPH1141818A (en) Distributed power generation system
JP2001078363A (en) Photovoltaic power generator
WO2019053824A1 (en) Power adjusting apparatus for solar power plant, power generation system, and power adjusting method for solar power plant
JPH09182316A (en) Decentralized power facility
JPH1141816A (en) Solar generator