JPH10195158A - Production of novolac phenolic resin - Google Patents

Production of novolac phenolic resin

Info

Publication number
JPH10195158A
JPH10195158A JP174197A JP174197A JPH10195158A JP H10195158 A JPH10195158 A JP H10195158A JP 174197 A JP174197 A JP 174197A JP 174197 A JP174197 A JP 174197A JP H10195158 A JPH10195158 A JP H10195158A
Authority
JP
Japan
Prior art keywords
phenol
reactor
reaction
novolak
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP174197A
Other languages
Japanese (ja)
Inventor
Masayuki Inagaki
昌幸 稲垣
Shoji Tomita
昭二 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP174197A priority Critical patent/JPH10195158A/en
Publication of JPH10195158A publication Critical patent/JPH10195158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high-ortho type novolac phenolic resin having a low content of ionic impurities and a high curing rate safely within a short time in good yields. SOLUTION: A phenol and an aldehyde are subjected to an addition condensation reaction in such a manner that formalin having a formic acid content lowered to 200ppm or below or paraformaldehyde (purity of 80% or above) mixed with a phenol is gradually added to and reacted with a phenol heated to 160 deg.C or above in a high-pressure reactor 2 having two-stage same-diameter turbine impellers 1 and pressurized with an inert gas to 0.5Mpa or above.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はノボラック型フェノ
ール樹脂の製造方法に関し、特にイオン性不純物が極め
て少なく、硬化性の優れたハイオルソタイプのノボラッ
ク型フェノール樹脂を効率よく製造する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a novolak-type phenolic resin, and more particularly to a method for efficiently producing a high-ortho-type novolak-type phenolic resin having very little ionic impurities and excellent curability. .

【0002】[0002]

【従来の技術】一般的なノボラック型フェノール樹脂の
製造方法としては、フェノール類とアルデヒド類を公知
の有機酸及び/又は無機酸を触媒に用い、常圧100℃
で数時間付加縮合反応し、その後脱水及び未反応モノマ
ー除去を行う方法が知られている。このような方法で作
られたノボラック型フェノール樹脂はフェノール類のオ
ルソ位のメチレン結合に対しパラ位の結合が多いもので
あり、本発明の目的とするところのオルソ位のメチレン
結合の多いハイオルソタイプのノボラック型フェノール
樹脂(以下、ハイオルソノボラックという)に比べ、硬
化性が劣るものであった。
2. Description of the Related Art A general method for producing a novolak type phenol resin is as follows. A phenol and an aldehyde are used as a catalyst with a known organic acid and / or an inorganic acid as a catalyst at normal pressure of 100.degree.
Is known for performing an addition condensation reaction for several hours, followed by dehydration and removal of unreacted monomers. The novolak-type phenolic resin produced by such a method has many para-position bonds to the ortho-position methylene bond of phenols. The curability was inferior to that of a novolak type phenol resin of the type (hereinafter referred to as high ortho novolak).

【0003】一方、従来工業的なハイオルソノボラック
の製造は、フェノール類とアルデヒド類を酢酸亜鉛、酢
酸鉛、ナフテン酸亜鉛等の金属塩触媒により弱酸性下で
付加縮合反応させた後、直接あるいは更に酸触媒を添加
し脱水しながら縮合反応を進め、更に必要により未反応
物を除去する工程を入れる方法が一般的である(例え
ば、特開昭55−90523号公報、特開昭59−80
418号公報、特開昭62−230815号公報に記
載)が、かかる方法においては反応及び脱水工程に時間
がかかるといった生産性の問題や、金属イオンが樹脂中
に含有し、その硬化物は耐熱性、耐水性、電気絶縁性な
どの特性が劣り、特にイオン性不純物の混入を嫌う電気
・電子分野向けの用途には使用できないといった問題が
あった。
On the other hand, the conventional industrial production of high ortho-novolaks is carried out by direct addition of phenols and aldehydes after weakly acidic addition-condensation reaction with a metal salt catalyst such as zinc acetate, lead acetate, zinc naphthenate or the like. Further, a method is generally used in which a condensation reaction is carried out while adding an acid catalyst while dehydrating, and a step for removing unreacted substances is further provided as necessary (for example, JP-A-55-90523, JP-A-59-80).
418, and JP-A-62-230815), but in such a method, there is a problem of productivity such as a long time in the reaction and dehydration steps, and a metal ion is contained in the resin and the cured product is heat resistant. There is a problem that properties such as water resistance, electrical insulation and the like are inferior and cannot be used particularly in applications in the electric and electronic fields where ionic impurities are rejected.

【0004】また、金属塩以外の触媒を用いるハイオル
ソノボラックの製造方法としては、フェノール類とアル
デヒド類の反応に際し、金属塩触媒以外の触媒として、
例えば蓚酸のような昇華分解する酸と非極性溶媒を添加
し、110℃以上の温度で水と溶媒を蒸発させ溶媒のみ
反応系に戻しながら、第一次反応を2〜10時間、第二
次反応を1〜10時間行う方法(例えば、特開平4−2
02312号公報)が知られているが、かかる方法は反
応時間が長いのみならず、イオン性不純物を低減するた
めには、触媒の昇化・分解工程が必須となるばかりでな
く、非極性溶媒の除去工程が必要となる問題がある。
[0004] As a method for producing a high orthonovolak using a catalyst other than a metal salt, a catalyst other than a metal salt catalyst is used in the reaction of a phenol with an aldehyde.
For example, an acid capable of sublimation decomposition such as oxalic acid and a non-polar solvent are added, and the water and the solvent are evaporated at a temperature of 110 ° C. or more, and only the solvent is returned to the reaction system. A method in which the reaction is carried out for 1 to 10 hours (for example, see
However, such a method not only requires a long reaction time, but also a step of raising and decomposing a catalyst in order to reduce ionic impurities, as well as a non-polar solvent. There is a problem that a removing step is required.

【0005】更に、触媒を用いないハイオルソノボラッ
クの製造方法としては、フェノール類とパラホルムアル
デヒドをキシレンの様な非極性溶媒を用い混合後、10
0〜220℃で12〜20時間加圧容器内で反応させる
方法(例えば、Casiraghi,他 Makrom
ol.Chem.182(11),2973,(198
1)や特開平6−345837号公報)が知られてい
る。特に、前記Makromol.Chem.には、か
かる製法によりオルソ位でのメチレン結合比率が非常に
高い樹脂が得られると述べられているが、一方これらの
方法においては反応に長時間を要すといった点や、文献
中にも述べられているが、反応温度を高くするとアルデ
ヒド類がはじめから所定量存在するため一度に反応し、
反応圧制御が出来ないと言った問題があり、更に非極性
溶媒を使用する方法の共通点として、溶媒除去工程が必
要な事や取り扱いの安全性、バッチ生産の場合のバッチ
当たりの収得量を多くすることが出来ないなどの問題点
があるため、工業的なハイオルソノボラックの製造方法
としては必ずしも優れているとは言えない。
Further, as a method for producing a high orthonovolak without using a catalyst, a phenol and paraformaldehyde are mixed using a non-polar solvent such as xylene, and then mixed.
A method in which the reaction is carried out in a pressurized vessel at 0 to 220 ° C. for 12 to 20 hours (for example, Casiraghi, et al., Makrom
ol. Chem. 182 (11), 2973, (198
1) and JP-A-6-345837). In particular, the Makromol. Chem. States that a resin having a very high ratio of methylene bonds at the ortho position can be obtained by such a production method.On the other hand, these methods require a long time for the reaction, and are described in the literature. However, when the reaction temperature is increased, the aldehydes react at once because a predetermined amount is present from the beginning,
There is a problem that the reaction pressure cannot be controlled.In addition, the common points of the method using a non-polar solvent are that the solvent removal step is necessary, the handling is safe, and the yield per batch in the case of batch production. It is not always excellent as an industrial method for producing high-ortho novolak because of the problems that it cannot be increased.

【0006】[0006]

【発明が解決しようとする課題】本発明者は、これらの
問題点を克服すべく鋭意研究した結果、反応器内で加熱
加圧したフェノール類中に触媒を使用することなくアル
デヒド類を逐次注入混合することにより、更には、好ま
しくはアルデヒド類として蟻酸を低減したホルマリン又
はフェノール類と混合したパラホルムアルデヒドを用
い、また、(好ましくは同径の)2段のタービン型攪拌
羽根を有した反応器を使用することにより、電気・電子
分野向け成形材料用、エポキシ樹脂の硬化剤用、積層板
用他幅広い用途に好適な、硬化性に優れ、イオン性不純
物が極めて少なく、その硬化物は耐水性、耐熱性、電気
絶縁性に優れたハイオルソノボラックを、反応上の安全
確保が容易で且つ非常に効率よく生産できることを見い
出し、本発明に至ったものである。
The present inventors have made intensive studies to overcome these problems, and as a result, successively inject aldehydes into phenols heated and pressurized in a reactor without using a catalyst. By mixing, more preferably, paraformaldehyde mixed with formalin or phenols in which formic acid is reduced as aldehydes, and a reactor having a two-stage (preferably the same diameter) turbine-type stirring blade Excellent in curability, extremely low in ionic impurities, suitable for molding materials for electric and electronic fields, curing agent for epoxy resin, laminated boards, etc. It has been found that high ortho-novolaks having excellent heat resistance and electrical insulation properties can be produced easily and very efficiently in terms of reaction safety, leading to the present invention. It is intended.

【0007】[0007]

【問題を解決するための手段】本発明は、フェノール類
とアルデヒド類を触媒を使用しないで反応させる際、フ
ェノール類を予め160℃以上まで加温した後不活性ガ
スにより0.5MPa以上迄加圧し、アルデヒド類を逐
次添加し反応温度を160℃以上に保ちながら付加縮合
反応をさせる事を特徴とするノボラック型フェノール樹
脂の製造方法に関するものであり、好ましくはアルデヒ
ド類の添加を反応器下部より行い、更にはアルデヒド類
として好ましくは蟻酸を200PPM以下まで除去した
ホルマリン又は純度80%以上のパラホルムアルデヒド
をフェノール類に溶解もしくは懸濁させたものを使用
し、反応器として(好ましくは同径の)2段のタービン
型攪拌羽根を有したものを使用することを特徴とする同
樹脂の製造方法に関するものである。
According to the present invention, when a phenol and an aldehyde are reacted without using a catalyst, the phenol is heated to 160 ° C. or more in advance and then heated to 0.5 MPa or more with an inert gas. Pressurization, the addition of aldehydes sequentially, the addition temperature while maintaining the reaction temperature of 160 ℃ or more, relates to a method for producing a novolak type phenolic resin, preferably the addition of aldehydes from the bottom of the reactor Further, as aldehydes, formalin from which formic acid is preferably removed to 200 PPM or less or paraformaldehyde having a purity of 80% or more dissolved or suspended in phenols is used, and a reactor (preferably having the same diameter) is used. The present invention relates to a method for producing the same resin, characterized in that a resin having a two-stage turbine type stirring blade is used. Is shall.

【0008】ここでフェノール類としては、フェノー
ル、クレゾール、ビスフェノール類などのフェノール性
水酸基を有する化合物の1種又は2種以上を用いる。こ
のフェノール類を反応器内で160℃以上、好ましくは
180〜230℃に加熱し、且つ窒素ガス等の公知の不
活性ガスにより0.5MPa以上、好ましくは0.7M
Pa以上に加圧する。フェノール類の初期加熱温度16
0℃以下の場合、アルデヒド類の添加開始時における反
応速度が遅くなるばかりでなく、パラ位のメチレン結合
が促進され目的とするハイオルソノボラックが得られに
くくなる。初期の不活性ガスによる加圧は、酸化着色の
防止の意味はもちろん含まれているが、原料中及び縮合
反応により生じる縮合水の蒸発潜熱による反応温度低下
を防止するものであり、0.5MPa以下の加圧では反
応開始直後の反応温度低下し目標温度を保てない。
Here, as the phenol, one or more compounds having a phenolic hydroxyl group such as phenol, cresol and bisphenol are used. The phenols are heated to 160 ° C. or higher, preferably 180 to 230 ° C. in a reactor, and 0.5 MPa or higher, preferably 0.7 M with a known inert gas such as nitrogen gas.
Pressurize to Pa or more. Initial heating temperature of phenols 16
When the temperature is 0 ° C. or lower, not only the reaction rate at the start of the addition of the aldehydes is slowed, but also the methylene bond at the para position is promoted, and it becomes difficult to obtain the target high ortho novolak. The initial pressurization with an inert gas, of course, includes the meaning of preventing oxidative coloring, but prevents the reaction temperature from decreasing due to latent heat of vaporization of the condensed water in the raw materials and the condensation reaction, and 0.5 MPa With the following pressurization, the reaction temperature decreases immediately after the start of the reaction, and the target temperature cannot be maintained.

【0009】次いで、アルデヒド類を逐次反応器内へ添
加するが、好ましくは、アルデヒドの反応効率の点で反
応器下部より添加することが好ましい。フェノール類に
対するアルデヒド類のモル比は特に限定しないが、一般
的には0.3〜1.0の範囲で行う。本発明に用いるア
ルデヒド類としては、ホルムアルデヒド、パラホルムア
ルデヒド、ポリオキシメチレンなどアルデヒド基を有す
るもの1種又は2種以上であるが、好適なものとしては
1つは公知のイオン交換樹脂等で処理して蟻酸を200
PPM以下としたホルマリンであり、もう1つは純度8
0%以上のパラホルムアルデヒドである。
Next, the aldehydes are successively added into the reactor, preferably from the lower part of the reactor in view of the reaction efficiency of the aldehyde. Although the molar ratio of the aldehyde to the phenol is not particularly limited, it is generally in the range of 0.3 to 1.0. The aldehyde used in the present invention is one or more having an aldehyde group such as formaldehyde, paraformaldehyde and polyoxymethylene, and one of them is preferably treated with a known ion exchange resin or the like. 200 formic acid
Formalin with PPM or less, and the other one with a purity of 8
0% or more paraformaldehyde.

【0010】ホルマリンはホルムアルデヒド水溶液のこ
とであるが、濃度37%以上のものが好ましく、更に好
ましくは濃度40%以上である。ホルムアルデヒドはカ
ニッツァーロ反応によりホルマリン生産時及び保管時に
蟻酸を生成しやすいが、この蟻酸は生成樹脂中に分解し
きれないものがイオン性不純物として含有されるばかり
ではなく、フェノール類とアルデヒド類の付加縮合反応
時に酸触媒として働いてしまい、パラ位のメチレン結合
を促進してしまうため、好ましくは200PPM以下、
更に好ましくは50PPM以下まで除去しておく必要が
ある。
[0010] Formalin is an aqueous formaldehyde solution, preferably having a concentration of 37% or more, more preferably 40% or more. Formaldehyde easily generates formic acid during the production and storage of formalin by the Cannizzaro reaction, but this formic acid contains not only ionic impurities that cannot be completely decomposed in the formed resin, but also the addition condensation of phenols and aldehydes. It acts as an acid catalyst during the reaction and promotes the methylene bond at the para-position.
More preferably, it must be removed to 50 PPM or less.

【0011】パラホルムアルデヒドとしては純度80%
以上のものを使用するのが好ましい。純度が低い場合オ
ルソ位のメチレン結合度が低下し好ましくない。また一
般にパラホルムアルデヒドは固形物であり、加温された
フェノール類を液中へ逐次添加させることが困難であ
る。本発明では、逐次添加を容易にするために、パラホ
ルムアルデヒドとフェノール類の一部を事前に混合し溶
解させるか、スラリー状にしておくことが必須である。
パラホルムアルデヒドとフェノール類の混合比は特に限
定するものではないが、公知の高圧ポンプまたはスラリ
ーポンプで扱える流動性を確保できる比率が好ましい。
またこの場合、パラホルムアルデヒドの混合に要したフ
ェノール類の量は、反応器内で加熱しているフェノール
類の一部と見なしモル比等の算出は行う。
[0011] Paraformaldehyde is 80% pure
It is preferable to use the above. If the purity is low, the degree of ortho-position methylene bond decreases, which is not preferable. Generally, paraformaldehyde is a solid substance, and it is difficult to sequentially add heated phenols to a liquid. In the present invention, in order to facilitate the sequential addition, it is essential that a part of paraformaldehyde and phenols are previously mixed and dissolved, or a slurry is formed.
The mixing ratio of paraformaldehyde and phenols is not particularly limited, but is preferably a ratio that can ensure fluidity that can be handled by a known high-pressure pump or slurry pump.
In this case, the amount of phenol required for mixing paraformaldehyde is regarded as a part of the phenol heated in the reactor, and the molar ratio and the like are calculated.

【0012】アルデヒド類の逐次添加に当たっては、公
知のプランジャータイプ及びダイヤフラムタイプ等の高
圧ポンプや回転容積型の一軸偏心ネジポンプ(例えば兵
神装備株式会社製モーノポンプ等)及びチューブポンプ
等のスラリーポンプなどを用い、好ましくは反応器下部
より加熱フェノール類中に定量的に供給する。この時の
添加速度は、反応温度160℃以上を保ち且つ急激な反
応による過度の反応熱発生や過度の圧力上昇を起こさな
い範囲として、添加時間を15分〜2時間に設定するこ
とが好ましいが、反応器伝熱面の汚れによる熱交換状況
の振れや、その他外部からの突発的な要因においても、
アルデヒド類の添加停止や添加速度の調整により、高温
下の反応においても直ちに安全確保及び生産の安定化が
図れるのが本発明の特徴でもある。
For the sequential addition of aldehydes, known high-pressure pumps such as plunger type and diaphragm type, single-shaft eccentric screw pumps of rotary displacement type (for example, Mono pump manufactured by Hyojin Kiki Co., Ltd.), and slurry pumps such as tube pumps, etc. And preferably supplied quantitatively into the heated phenols from the lower part of the reactor. At this time, the addition rate is preferably set to 15 minutes to 2 hours, as long as the reaction temperature is maintained at 160 ° C. or higher and excessive reaction heat is not generated by a sudden reaction or an excessive pressure rise is caused. , Due to fluctuations in the heat exchange situation due to contamination of the heat transfer surface of the reactor and other sudden factors from the outside,
It is also a feature of the present invention that by stopping the addition of aldehydes or adjusting the rate of addition, it is possible to immediately ensure safety and stabilize production even in reactions at high temperatures.

【0013】アルデヒド類の添加位置は一般的な反応器
上部からの添加もしくはフェノール類液面上の添加でも
よいが、降圧工程での臭気等の問題や、収率、得られる
分子量の安定性といった面から優れている反応器下部か
らの添加が好ましい。反応器下部より注入添加されたア
ルデヒド類は、直ちに反応すると同時に、一部は気化し
反応液面上部より蒸発されるまでの間で付加縮合反応を
完結するのに対し、上部からの添加では高温状態のフェ
ノール類の液面で蒸気圧の低いホルムアルデヒドが気化
してしまい、反応器気相部に滞留し反応できない可能性
があるからである。
The aldehydes may be added from the upper part of the general reactor or the phenols at the liquid level. However, there are problems such as odor in the pressure reduction step, yield, and stability of the obtained molecular weight. Addition from the lower part of the reactor, which is excellent in terms of aspect, is preferred. Aldehydes injected from the lower part of the reactor react immediately and at the same time, partially complete the addition condensation reaction until they evaporate from the upper part of the reaction liquid, whereas addition from the upper part causes high temperature. This is because formaldehyde having a low vapor pressure may be vaporized on the liquid surface of the phenols in the state, and may remain in the gas phase of the reactor and may not react.

【0014】本発明に使用する反応器は一般的な圧力反
応器であるが、アルデヒド類の反応器下部添加に有利な
上下に設置した(好ましくは同径の)2段のタービン型
攪拌羽根を有しているとより好ましい。
The reactor used in the present invention is a general pressure reactor. Two-stage turbine-type stirring blades (preferably having the same diameter) which are installed at the top and bottom, which are advantageous for adding aldehydes to the lower part of the reactor, are used. It is more preferable to have.

【0015】反応器下部より添加したアルデヒド類は直
ちに反応するが、一部は気化し液中を上昇する。この時
タービン型攪拌羽根を2段、好ましくは同径のものを2
段用いることにより、上下タービン型攪拌羽根の中間位
置でそれぞれの攪拌流がぶつかり滞留ゾーンが出来るこ
とにより、気化アルデヒドの上昇を妨げ反応を促進し、
収率も良くなり気相部のアルデヒドガス量も低下し、臭
気問題上も好適である。一方、タービン羽根1段又はそ
の他特に上下流を作り出す大型攪拌翼等では、アルデヒ
ド類の反応効率が悪く、所定の分子量が得られず収率も
低下する。
Aldehydes added from the lower part of the reactor react immediately, but partly evaporate and rise in the liquid. At this time, two stages of turbine type stirring blades, preferably two
By using a stage, the respective stirring flows collide at an intermediate position of the upper and lower turbine type stirring blades and a stagnation zone is formed, thereby preventing the rise of vaporized aldehyde and promoting the reaction,
The yield is improved, the amount of aldehyde gas in the gaseous phase is reduced, and this is also suitable for odor problems. On the other hand, in the case of a single-stage turbine blade or other large-scale stirring blades that produce upstream and downstream, the reaction efficiency of aldehydes is poor, a predetermined molecular weight cannot be obtained, and the yield decreases.

【0016】このようにして、フェノール類にアルデヒ
ド類を添加し付加縮合反応したものは、アルデヒド類添
加終了後更に数分間圧力保持後、反応器に付設した熱交
換器経由で降圧しながらフラッシュにより脱水するか、
フラッシュタンクに移送しつつ脱水し、更に必要により
減圧下で加熱し又は公知の薄膜蒸発器等を用い未反応モ
ノマーを除去し、イオン性不純物の極めて少ないハイオ
ルソタイプのノボラック型フェノール樹脂を得る。
[0016] In this way, the product obtained by the addition condensation reaction of the phenol with the aldehyde added thereto is kept under pressure for several minutes after the addition of the aldehyde, and then flashed while reducing the pressure via a heat exchanger attached to the reactor. Dehydrate or
Dehydration is carried out while being transferred to a flash tank, and if necessary, unreacted monomers are removed by heating under reduced pressure or using a known thin-film evaporator to obtain a high ortho-type novolak phenolic resin containing extremely few ionic impurities.

【0017】さらに本発明の一例を図1により説明する
が、かかる説明により本発明が限定されるものではな
い。図1は本発明の設備及びフローを示す概略図であ
り、(a)は正面図、(b)は平面図である。フェノー
ル類を上下2段のタービン型攪拌羽根(1)付き高圧反
応器(2)に入れた後、160℃以上となるまで加温
し、窒素ガス等の不活性ガスを加圧ライン(3)により
0.5MPa以上まで加圧する。所定の温度圧力到達
後、目的とする分子量とするのに必要なアルデヒド量を
高圧定量ポンプ(4)により反応器下部の注入ノズル
(5)から注入添加する。
Further, an example of the present invention will be described with reference to FIG. 1, but the present invention is not limited by the description. FIG. 1 is a schematic view showing the equipment and flow of the present invention, wherein (a) is a front view and (b) is a plan view. Phenols are put into a high-pressure reactor (2) equipped with upper and lower two-stage turbine-type stirring blades (1), and then heated to 160 ° C. or more, and an inert gas such as nitrogen gas is supplied to a pressure line (3). To 0.5 MPa or more. After reaching the predetermined temperature and pressure, the amount of aldehyde necessary to obtain the target molecular weight is injected and added from the injection nozzle (5) at the lower part of the reactor by the high-pressure metering pump (4).

【0018】注入されたアルデヒド類は液面まで上昇す
る間にフェノール類と反応温度160℃以上で保持され
た状態で付加縮合反応が完結する。反応終了後圧力調整
バルブ(6)を徐々に開き原料中の水と縮合水を蒸発さ
せ、熱交換器(7)で水を凝縮し反応系外に取り去ると
共に、反応器内の圧力を常圧まで低下させる。脱水の完
了した樹脂のみ反応器内に残る。この後更に反応器内を
減圧とし更に加熱し未反応モノマーを除去し、反応器内
より取り出し冷却固化することにより固形のイオン性不
純物の極めて少ないハイオルソタイプのノボラック型フ
ェノール樹脂が得られる。
While the injected aldehyde rises to the liquid level, the addition condensation reaction is completed with the phenol kept at a reaction temperature of 160 ° C. or higher. After completion of the reaction, the pressure regulating valve (6) is gradually opened to evaporate the water and the condensed water in the raw material, condensing the water in the heat exchanger (7) and removing the water out of the reaction system, and reducing the pressure in the reactor to normal pressure. To lower. Only the dehydrated resin remains in the reactor. Thereafter, the inside of the reactor is further reduced in pressure and further heated to remove unreacted monomers, taken out of the reactor, and cooled and solidified to obtain a high ortho-type novolak phenol resin having very few solid ionic impurities.

【0019】[0019]

【実施例】以下本発明を実施例、比較例を用いて具体的
に説明する。しかし、本発明はこれらの実施例によって
限定されるものではない。なお、文中に記載されている
「%」は、全て「重量%」を示す。
The present invention will be specifically described below with reference to examples and comparative examples. However, the present invention is not limited by these examples. It should be noted that all “%” described in the text indicate “% by weight”.

【0020】《実施例1》フェノール22.0Kgを熱
交換器、加熱装置及び同径の2段タービン型攪拌羽根を
有した容量50Lの高圧反応器で180℃まで加熱し、
窒素ガスにて0.7MPa迄加圧した後、ダイアフラム
式高圧定量ポンプにて予めイオン交換樹脂処理により蟻
酸含有量を50PPMまで低減した40%ホルマリン1
0.5Kgを60分間掛けて反応器下部より逐次添加し
付加縮合反応をさせた。この間の反応温度が180〜2
00℃となるように反応器のジャケット部の温度調節及
び添加速度は調整した。反応終了後、熱交換器経由で5
分間掛けて常圧に戻しながら脱水反応を行った。更にこ
の後1.3KPaまで減圧し反応液温度が180℃とな
るまで加熱し未反応フェノールの除去を行った後、冷却
バット上に取り出し固形のノボラック型フェノール樹脂
21.0Kgを得た。付加縮合開始から脱水終了までの
所要時間は65分であった。
Example 1 22.0 kg of phenol was heated to 180 ° C. in a high-pressure reactor having a capacity of 50 L having a heat exchanger, a heating device and a two-stage turbine type stirring blade of the same diameter,
After pressurizing to 0.7 MPa with nitrogen gas, 40% formalin 1 whose formic acid content was reduced to 50 PPM by ion exchange resin treatment in advance with a diaphragm type high pressure metering pump.
0.5 kg was added sequentially from the lower part of the reactor over 60 minutes to cause an addition condensation reaction. During this time, the reaction temperature is 180-2
The temperature of the jacket of the reactor and the rate of addition were adjusted so as to be 00 ° C. After the reaction, 5
The dehydration reaction was performed while returning to normal pressure over a period of minutes. Thereafter, the pressure was reduced to 1.3 KPa, and the reaction solution was heated until the temperature of the reaction solution reached 180 ° C. to remove unreacted phenol. Then, the reaction solution was taken out on a cooling vat to obtain 21.0 kg of a solid novolak phenol resin. The time required from the start of the addition condensation to the end of the dehydration was 65 minutes.

【0021】《実施例2》フェノール22.0Kg、初
期加熱温度を160℃、初期加圧0.5MPa、40%
ホルマリン添加量を13.5Kgとした以外は実施例1
と同様の方法で反応し23Kgの固形ノボラック型フェ
ノール樹脂を得た。
Example 2 22.0 Kg of phenol, initial heating temperature of 160 ° C., initial pressure of 0.5 MPa, 40%
Example 1 except that the amount of formalin added was 13.5 kg.
The reaction was carried out in the same manner as described above to obtain 23 kg of a solid novolak type phenol resin.

【0022】《実施例3》フェノール類としてm−クレ
ゾール・p−クレゾール混合物(60:40)30.0
Kgを使用し、40%ホルマリン量を11.9Kgとし
た以外は、すべて実施例1と同様の方法で固形ノボラッ
ク型フェノール樹脂28Kgを得た。
<< Example 3 >> m-cresol / p-cresol mixture (60:40) 30.0 as phenols
28 kg of solid novolak type phenol resin was obtained in the same manner as in Example 1 except that Kg was used and the amount of 40% formalin was changed to 11.9 kg.

【0023】《実施例4》反応器内にフェノール20.
0Kgを入れ、アルデヒド類として88%パラホルムア
ルデヒド6.1Kgを使用し、更にパラホルムアルデヒ
ドは8.0Kgのフェノールと事前に混合し、懸濁状態
液となったものをプランジャー式高圧定量ポンプにて反
応器下部より供給すること以外は、すべて実施例2と同
様の方法でノボラック型フェノール樹脂27.0Kgを
得た。
Example 4 Phenol 20.
Add 0 kg, and use 6.1 kg of 88% paraformaldehyde as aldehydes. Further, paraformaldehyde was previously mixed with 8.0 kg of phenol, and a suspension was obtained using a plunger-type high-pressure metering pump. Except for feeding from the lower part of the reactor, 27.0 kg of novolak type phenol resin was obtained in the same manner as in Example 2.

【0024】《実施例5》88%パラホルムアルデヒド
を7.8Kgとした以外は、すべて実施例4と同様の方
法でノボラック型フェノール樹脂28.0Kgを得た。
Example 5 28.0 kg of a novolak phenol resin was obtained in the same manner as in Example 4 except that 8.8 kg of 88% paraformaldehyde was used.

【0025】《実施例6》反応器内にフェノール類とし
てm/p−クレゾール20.0Kgを入れ、88%パラ
ホルムアルデヒド7.3Kgと10.0Kgのm/p−
クレゾールを混合したものを反応器下部より供給するこ
と以外は、すべて実施例2と同様の方法でノボラック型
フェノール樹脂30.0Kgを得た。
Example 6 20.0 kg of m / p-cresol as a phenol was placed in a reactor, and 7.3 kg of 88% paraformaldehyde and 10.0 kg of m / p-cresol were added.
A novolak-type phenol resin (30.0 kg) was obtained in the same manner as in Example 2 except that a mixture of cresol was supplied from the lower part of the reactor.

【0026】《実施例7》40%ホルマリンを反応器上
部より液面に添加させる方法以外は実施例1と同じ方法
で実施し、ノボラック型フェノール樹脂18.0Kgを
得た。
Example 7 The procedure of Example 1 was repeated, except that 40% formalin was added to the liquid surface from the upper part of the reactor, to obtain 18.0 kg of a novolak-type phenol resin.

【0027】《実施例8》蟻酸濃度が400PPMの一
般的な40%ホルマリンを使用すること以外は、すべて
実施例1と同様の方法で実施し、ノボラック型フェノー
ル樹脂22.0Kgを得た。
Example 8 The same procedure as in Example 1 was carried out except that a general 40% formalin having a formic acid concentration of 400 PPM was used, to obtain 22.0 kg of a novolak-type phenol resin.

【0028】《比較例1》実施例1で使用した反応器に
フェノール22.0Kgと代表的なノボラック化触媒で
ある蓚酸0.22Kgを入れ常圧で100℃となるまで
加熱した後、40%ホルマリン10.5Kgを90分間
で徐々に添加した後、100℃を保ち60分間反応を続
行した。更にこの樹脂を温度常圧で130℃となるまで
加熱しながら脱水した後、1.3KPaまで減圧し反応
液温度180℃となるまで未反応フェノールの除去を行
った。その後冷却バットに取り出し21.0Kgのノボ
ラック型フェノール樹脂を得た。付加縮合反応開始から
脱水終了までの所要時間は4時間30分であった。
Comparative Example 1 22.0 kg of phenol and 0.22 kg of oxalic acid, which is a typical novolak catalyst, were put into the reactor used in Example 1 and heated to 100 ° C. under normal pressure, and then 40% After gradually adding 10.5 kg of formalin for 90 minutes, the reaction was continued at 60 ° C. for 60 minutes. Further, the resin was dehydrated while being heated at a normal temperature to 130 ° C., and then the pressure was reduced to 1.3 KPa, and unreacted phenol was removed until the temperature of the reaction solution reached 180 ° C. Then, it was taken out into a cooling vat to obtain 21.0 kg of a novolak type phenol resin. The time required from the start of the addition condensation reaction to the end of the dehydration was 4 hours and 30 minutes.

【0029】《比較例2》40%ホルマリンの量を1
4.7Kgとした以外は、すべて比較例1と同様の方法
でノボラック型フェノール樹脂23.0Kgを得た。
Comparative Example 2 The amount of 40% formalin was changed to 1
A novolak-type phenol resin (23.0 kg) was obtained in the same manner as in Comparative Example 1 except that the amount was 4.7 kg.

【0030】《比較例3》実施例1で使用した反応器
に、フェノール22.0Kgと88%パラホルムアルデ
ヒド4.8Kg及びハイオルソノボラック化触媒として
2価金属塩の代表の酢酸亜鉛0.22Kgを入れ、常圧
で100℃となるまで加熱し、100℃を保ち3時間反
応を継続した後、一旦90℃まで冷却しここに縮合反応
促進触媒として蓚酸0.11Kgと水0.33Kgを混
合したものを添加し、30分混合後再度100℃まで昇
温し1時間反応を行った。更に常圧で130℃となるま
で脱水した後、1.3KPaまで減圧し反応液温度が1
80℃となるまで未反応フェノール除去を行い、冷却バ
ットに取り出し20.0Kgのノボラック型フェノール
樹脂を得た。付加縮合開始から脱水終了までの所要時間
は7時間であった。
Comparative Example 3 Into the reactor used in Example 1, 22.0 kg of phenol, 4.8 kg of 88% paraformaldehyde, and 0.22 kg of zinc acetate, a representative of a divalent metal salt, as a high orthonovolacation catalyst were placed. Then, the mixture was heated to 100 ° C. under normal pressure, kept at 100 ° C., and the reaction was continued for 3 hours. Thereafter, the mixture was cooled to 90 ° C. and mixed with 0.11 kg of oxalic acid and 0.33 kg of water as a condensation reaction promoting catalyst. The mixture was added, mixed for 30 minutes, heated to 100 ° C. again, and reacted for 1 hour. Further, after dehydration at normal pressure to 130 ° C., the pressure was reduced to 1.3 KPa, and the temperature of the reaction solution was 1
Unreacted phenol was removed until the temperature reached 80 ° C., taken out into a cooling vat, and 20.0 kg of a novolak type phenol resin was obtained. The time required from the start of the addition condensation to the end of the dehydration was 7 hours.

【0031】《比較例4》実施例1で使用した反応器
に、フェノール15.0Kgと88%パラホルムアルデ
ヒド4.8K及びキシレン15.0Kgを入れ、反応器
を密閉し150℃まで加熱後、150℃の温度を保持し
ながら2時間反応させた。この液を冷却して分析したと
ころ、重量平均分子量が150程度と殆ど反応していな
い状態であった。
Comparative Example 4 The reactor used in Example 1 was charged with 15.0 kg of phenol, 4.8 K of 88% paraformaldehyde and 15.0 kg of xylene. The reactor was sealed and heated to 150 ° C. The reaction was carried out for 2 hours while maintaining the temperature of ° C. When this liquid was cooled and analyzed, it was found that the weight-average molecular weight was about 150, which was almost unreacted.

【0032】《比較例5》比較例6と同じ方法で20時
間反応し付加縮合反応を完結させた後、反応器内圧力が
大気圧となるまで冷却し、常圧150℃となるまで加熱
し脱水及びキシレン除去を行った。更に1.33KPa
まで減圧して反応液温度が180℃となるまで未反応フ
ェノール除去を行い、冷却バットに取り出し13.0K
gのノボラック型フェノール樹脂を得た。付加縮合開始
から脱水終了までの所要時間は24時間であった。
<Comparative Example 5> After completion of the addition condensation reaction by reacting for 20 hours in the same manner as in Comparative Example 6, the reactor was cooled until the pressure in the reactor became atmospheric pressure, and heated until the pressure in the reactor became 150 ° C. Dehydration and xylene removal were performed. Further 1.33 KPa
Unreacted phenol is removed until the temperature of the reaction solution reaches 180 ° C., taken out to a cooling vat, and 13.0 K
g of novolak type phenol resin was obtained. The time required from the start of the addition condensation to the end of the dehydration was 24 hours.

【0033】《比較例6》窒素ガスによる初期加圧を行
わない以外はすべて実施例1と同じ方法で反応したとこ
ろ、ホルマリン添加開始時より反応液温度が低下し、所
定反応液温度が維持できないまま続行し、ノボラック型
フェノール樹脂16.0Kgを得たが、実施例に比べ収
率が大変悪かった。
Comparative Example 6 The reaction was performed in the same manner as in Example 1 except that the initial pressurization with nitrogen gas was not performed. As a result, the temperature of the reaction solution was lowered from the start of formalin addition, and the predetermined reaction solution temperature could not be maintained. The procedure was continued as it was to obtain 16.0 kg of a novolak type phenol resin, but the yield was very poor as compared with the examples.

【0034】以上の各例により得られた樹脂の特性を測
定し、その結果を表1に示す。
The properties of the resin obtained in each of the above examples were measured, and the results are shown in Table 1.

【表1】 [Table 1]

【0035】測定方法は以下の通りである。 1.重量平均分子量は、ポリスチレンを標準物質とした
紫外線吸収スペクトル検出器を用いたゲルパーミッショ
ンクロマトグラフィー(GPC)法により測定した。比
較例5に関してはテトラヒドロフラン可溶部の測定とな
った。 2.モノマー含量は、キャピラリーガスクロマトグラフ
ィー法により測定した。比較例5はメタノール可溶部の
測定となった。 3.オルソ/パラ結合比は、テトラヒドロフランに溶解
後、13C−NMRスペクトル法により求めたメチレン基
結合量を、下式に代入し算出した。尚比較例5はテトラ
ヒドロフラン可溶部の測定となった。 オルソ/パラ結合比=[2×(o−o結合)+(o−p
結合)]/[2×(p−p結合)+(o−p結合)] o−o結合:オルソ−オルソ位結合メチレン基の数 o−p結合:オルソ−パラ位結合メチレン基の数 p−p結合:パラ−パラ位結合メチレン基の数 4.硬化時間は、得られた固形樹脂に対し10%のヘキ
サメチレンテトラミンを配合し粉砕混合したものを、J
IS K 6909に基づき、150℃熱板上でゲル化
点までの時間を測定した。 5.抽出水電気伝導度は、樹脂中のイオン性不純物を把
握する項目であり、数値が小さい方がイオン性不純物が
少ない事を表している。今回は固形樹脂6gと純水40
mlをプレッシャークッカー用容器に入れ密閉し、恒温
槽で125℃20時間熱処理後、抽出水を電気伝導度計
(東亜電波工業(株)製CM−2A)により電気伝導度
を測定した。
The measuring method is as follows. 1. The weight average molecular weight was measured by a gel permission chromatography (GPC) method using an ultraviolet absorption spectrum detector using polystyrene as a standard substance. As for Comparative Example 5, the measurement was made on the tetrahydrofuran-soluble portion. 2. The monomer content was measured by a capillary gas chromatography method. Comparative Example 5 was a measurement of a methanol-soluble portion. 3. The ortho / para bond ratio was calculated by substituting the methylene group bond amount determined by 13 C-NMR spectroscopy after dissolution in tetrahydrofuran into the following equation. In Comparative Example 5, the measurement of the tetrahydrofuran-soluble portion was performed. Ortho / para bond ratio = [2 × (oo bond) + (op
Bond)] / [2 × (pp bond) + (op bond)] oo bond: number of ortho-ortho-bond methylene groups op bond: number of ortho-para bond methylene groups p 3. -p bond: the number of methylene groups bonded in the para-para position. The curing time was determined by mixing and pulverizing and mixing 10% of hexamethylenetetramine with the obtained solid resin.
Based on IS K 6909, the time to the gel point on a hot plate at 150 ° C. was measured. 5. The extracted water electric conductivity is an item for grasping the ionic impurities in the resin, and the smaller the numerical value, the smaller the ionic impurities. This time 6g of solid resin and 40 of pure water
ml was placed in a pressure cooker container, sealed, and heat-treated in a thermostat at 125 ° C. for 20 hours. The extracted water was measured for electric conductivity using an electric conductivity meter (CM-2A, manufactured by Toa Denpa Kogyo Co., Ltd.).

【0036】これらの測定値より明らかなように、本発
明の実施例で製造されたノボラック型フェノール樹脂
は、オルソ位のメチレン結合がパラ位のメチレン結合よ
り多い(オルソ/パラ結合比>2.0)ハイオルソノボ
ラックであり、その硬化速度が一般の酸触媒を用いたノ
ボラック比較例1,2に比較して速く、且つイオン性不
純物が少ないことが判る。また他のハイオルソノボラッ
クの製法と比べても短時間で付加縮合反応及び脱水反応
が完結するばかりでなく、反応器容積当たりの収量も多
くすることができる。
As is clear from these measured values, the novolak-type phenolic resin produced in the examples of the present invention has more ortho-methylene bonds than para-methylene bonds (ortho / para bond ratio> 2. 0) It is a high-ortho novolak, the curing speed of which is higher than that of the novolak comparative examples 1 and 2 using a general acid catalyst, and less ionic impurities. In addition, not only the addition condensation reaction and the dehydration reaction can be completed in a short time, but also the yield per reactor volume can be increased as compared with other methods for producing a high-ortho novolak.

【0037】[0037]

【発明の効果】本発明の方法に従うと、従来同時に成り
立たなかったイオン性不純物が少なく且つ硬化性に優れ
たハイオルソノボラックを高効率で生産することが可能
となる。即ち、高温反応時における反応圧力の制御が容
易であり、このため安全性が十分確保され、短時間の反
応で高い収率が得られる。そして、その硬化物は耐熱
性、電気絶縁性、耐湿性に優れているため、電気・電子
関連分野を始め幅広い用途への適応が可能となり、工業
的なノボラック型フェノール樹脂の製造方法として好適
である。
According to the method of the present invention, it is possible to efficiently produce a high-ortho novolac having a small amount of ionic impurities and excellent curability, which have not been simultaneously realized conventionally. That is, it is easy to control the reaction pressure during the high-temperature reaction, so that safety is sufficiently ensured, and a high yield can be obtained in a short-time reaction. And since the cured product is excellent in heat resistance, electrical insulation, and moisture resistance, it can be applied to a wide range of applications including electric and electronic fields, and is suitable as an industrial method for producing a novolak type phenol resin. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の設備の概略図であり、(a)は縦断
面図、(b)は横断面図。
FIG. 1 is a schematic view of the equipment of the present invention, wherein (a) is a longitudinal sectional view and (b) is a transverse sectional view.

【符号の説明】[Explanation of symbols]

1 タービン型攪拌羽根 2 高圧反応器 3 窒素ガス封入ライン 4 アルデヒド類高圧定量ポンプ 5 アルデヒド類注入ノズル 6 圧力調整バルブ 7 熱交換器 DESCRIPTION OF SYMBOLS 1 Turbine-type stirring blade 2 High-pressure reactor 3 Nitrogen gas filling line 4 Aldehydes high-pressure metering pump 5 Aldehydes injection nozzle 6 Pressure control valve 7 Heat exchanger

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 フェノール類とアルデヒド類とを触媒
を使用しないで反応させる際に、フェノール類を予め1
60℃以上まで加温した後不活性ガスにより0.5MP
a以上に加圧し、アルデヒド類を逐次添加し反応温度を
160℃以上に保ちながら付加縮合反応をさせる事を特
徴とするノボラック型フェノール樹脂の製造方法。
1. When reacting a phenol with an aldehyde without using a catalyst, the phenol is previously reacted with 1
After heating to 60 ° C or more, 0.5MP with inert gas
A method for producing a novolak-type phenol resin, characterized in that an addition condensation reaction is carried out while maintaining the reaction temperature at 160 ° C. or higher by pressurizing the mixture to a pressure of not less than a.
【請求項2】 アルデヒド類の添加を反応器の下部より
行う請求項1記載のノボラック型フェノール樹脂の製造
方法。
2. The method according to claim 1, wherein the aldehyde is added from a lower part of the reactor.
【請求項3】 アルデヒド類として、蟻酸を200PP
M以下まで除去したホルマリンを使用する請求項1又は
2記載のノボラック型フェノール樹脂の製造方法。
3. As a aldehyde, formic acid is 200 PP.
The method for producing a novolak-type phenol resin according to claim 1 or 2, wherein formalin removed to M or less is used.
【請求項4】 アルデヒド類として純度80%以上のパ
ラホルムアルデヒドを用い、これをフェノール類に溶解
もしくは懸濁させて使用する請求項1又2記載のノボラ
ック型フェノール樹脂の製造方法。
4. The method for producing a novolak-type phenolic resin according to claim 1, wherein paraformaldehyde having a purity of 80% or more is used as the aldehyde, and this is dissolved or suspended in a phenol.
【請求項5】 反応器として2段のタービン型攪拌羽根
を有したものを使用する請求項1,2,3又は4記載の
ノボラック型フェノール樹脂の製造方法。
5. The method for producing a novolak-type phenolic resin according to claim 1, wherein the reactor has a two-stage turbine-type stirring blade.
JP174197A 1997-01-08 1997-01-08 Production of novolac phenolic resin Pending JPH10195158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP174197A JPH10195158A (en) 1997-01-08 1997-01-08 Production of novolac phenolic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP174197A JPH10195158A (en) 1997-01-08 1997-01-08 Production of novolac phenolic resin

Publications (1)

Publication Number Publication Date
JPH10195158A true JPH10195158A (en) 1998-07-28

Family

ID=11509998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP174197A Pending JPH10195158A (en) 1997-01-08 1997-01-08 Production of novolac phenolic resin

Country Status (1)

Country Link
JP (1) JPH10195158A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184488A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Phenolic resin molding material and molded article
JP2009074004A (en) * 2007-09-25 2009-04-09 Sumitomo Bakelite Co Ltd Novolac type phenolic resin and production method of the same
JP2009242648A (en) * 2008-03-31 2009-10-22 Arakawa Chem Ind Co Ltd Rosin-modified phenolic resin, manufacturing method, printing ink resin varnish and printing ink
CN111592631A (en) * 2020-05-28 2020-08-28 山东阳谷华泰化工股份有限公司 Method for green synthesis of alkylphenol-acetaldehyde resin by one-pot method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184488A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Phenolic resin molding material and molded article
JP2009074004A (en) * 2007-09-25 2009-04-09 Sumitomo Bakelite Co Ltd Novolac type phenolic resin and production method of the same
JP2009242648A (en) * 2008-03-31 2009-10-22 Arakawa Chem Ind Co Ltd Rosin-modified phenolic resin, manufacturing method, printing ink resin varnish and printing ink
CN111592631A (en) * 2020-05-28 2020-08-28 山东阳谷华泰化工股份有限公司 Method for green synthesis of alkylphenol-acetaldehyde resin by one-pot method
CN111592631B (en) * 2020-05-28 2022-08-26 山东阳谷华泰化工股份有限公司 Method for green synthesis of alkylphenol-acetaldehyde resin by one-pot method

Similar Documents

Publication Publication Date Title
Astarloa-Aierbe et al. Kinetics of phenolic resol resin formation by HPLC. 2. Barium hydroxide
US4140845A (en) Control of procedures for formation of water-immiscible thermosetting phenol-formaldehyde resins
JPH10195158A (en) Production of novolac phenolic resin
GB595607A (en) Continuous process for the manufacture of synthetic resins
US5986035A (en) High-molecular weight high-ortho novolak type phenolic resin
JPH10204139A (en) Production of novolac phenolic resin
TWI537294B (en) A narrowly dispersed phenol novolak resin and its manufacturing method
US4297473A (en) Quick-curing phenolic resin and process for preparing same
JP3439654B2 (en) High molecular weight high ortho novalac phenolic resin
JPH10298257A (en) Production of novolak phenol resin
KR100561898B1 (en) High Molecular Weight High Ortho Novolac Phenolic Resin
JPS6159324B2 (en)
JPH10316730A (en) Production of novolac phenolic resin
JPS62252412A (en) Production of phenolic resin
JPS62275120A (en) Novolac phenolic resin
US3640932A (en) Compositions for sand core mold elements
JPH0791351B2 (en) Novolac type phenolic resin
US4184032A (en) Control of procedures for formation of water-immiscible thermosetting phenol-formaldehyde resins
JPH09255744A (en) Production of phenol resin
JPS5924715A (en) Normally solid phenolic resin
JPS62267313A (en) Novolak type phenolic resin
EP0789041A1 (en) Novolak type phenolic resins and methods of manufacturing thereof
CN118702881A (en) Method for continuously preparing phenolic resin
JPH111533A (en) High molecular weight high ortho novolak type phenol resin
JP2000273133A (en) Production of novolak type phenolic resin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040713