JPH10175800A - Speed regulating device of forklift truck - Google Patents
Speed regulating device of forklift truckInfo
- Publication number
- JPH10175800A JPH10175800A JP33723096A JP33723096A JPH10175800A JP H10175800 A JPH10175800 A JP H10175800A JP 33723096 A JP33723096 A JP 33723096A JP 33723096 A JP33723096 A JP 33723096A JP H10175800 A JPH10175800 A JP H10175800A
- Authority
- JP
- Japan
- Prior art keywords
- forklift
- reach
- speed
- forklift truck
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Controls For Constant Speed Travelling (AREA)
- Forklifts And Lifting Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、バッテリフォ−ク
リフト等の旋回時における車速を規制してフォ−クリフ
トの転倒を防止するフォ−クリフトの速度規制装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a forklift speed regulating device for regulating a vehicle speed during turning of a battery forklift or the like to prevent the forklift from tipping over.
【0002】[0002]
【従来の技術】従来、フォ−クリフトの走行制御装置と
して図12に示すような構成のものがある。図12に示
すように、アクセル踏み角に対応した信号がアクセルポ
テンショメ−タ51から走行制御装置の中枢を成すコン
ピュ−タCPUに出力されると、コンピュ−タCPU
は、内蔵した電流マップを参照してアクセル踏み角信号
に対応した電流指令値を電流指令出力変換回路52に出
力するとともにチョッパ出力回路53にチョッパ制御信
号を出力する。チョッパ出力回路53は、出力制限回路
54を介して出力トランジスタ55を駆動し、走行モ−
タ56に対してデュ−ティ制御による駆動電流を通電す
る。この制御において、コンピュ−タCPUは、電流セ
ンサ57からの実際のモ−タ電流と電流指令値とを比較
器58で比較し、実際のモ−タ電流が大きい場合は出力
制限回路54によりモ−タ電流を制限するものである。
尚、回転センサ59から出力される信号がコンピュ−タ
CPUに入力されると、コンピュ−タCPUはこの信号
に基づいて車速を認識する。このように、上記従来のフ
ォ−クリフトの走行制御装置は、アクセルの踏み角に応
じてフォ−クリフトを走行させるように構成されてい
る。2. Description of the Related Art Conventionally, there is a forklift traveling control device having a structure as shown in FIG. As shown in FIG. 12, when a signal corresponding to the accelerator pedal depression angle is output from the accelerator potentiometer 51 to the computer CPU which forms the center of the travel control device, the computer CPU
Outputs a current command value corresponding to the accelerator pedal depression angle signal to the current command output conversion circuit 52 and outputs a chopper control signal to the chopper output circuit 53 with reference to a built-in current map. The chopper output circuit 53 drives the output transistor 55 via the output limiting circuit 54, and
A drive current by duty control is supplied to the data 56. In this control, the computer CPU compares the actual motor current from the current sensor 57 with the current command value by the comparator 58, and when the actual motor current is large, the output limiting circuit 54 causes To limit the data current.
When a signal output from the rotation sensor 59 is input to the computer CPU, the computer CPU recognizes the vehicle speed based on this signal. As described above, the conventional forklift traveling control device is configured to cause the forklift to travel according to the depression angle of the accelerator.
【0003】[0003]
【発明が解決しようとする課題】上記従来のフォ−クリ
フトの走行制御装置は、アクセル踏み角に応じてフォ−
クリフトの走行速度が変化するため、例えばアクセル踏
み角いっぱいのまま急旋回すると遠心力によりフォ−ク
リフトが転倒することがある。そこで本発明では、フォ
−クリフトが急旋回しても転倒しないようにフォ−クリ
フトの積載状態での重心にかかる力に基づいて速度規制
をするフォ−クリフトの速度規制装置を提供することを
課題とする。The above-described conventional forklift traveling control device is designed to control the forklift in accordance with the accelerator pedal depression angle.
Since the traveling speed of the clift changes, for example, if the vehicle turns sharply while the accelerator pedal is fully depressed, the forklift may fall over due to centrifugal force. Accordingly, an object of the present invention is to provide a forklift speed regulating device that regulates the speed based on the force applied to the center of gravity in a loaded state of the forklift so that the forklift does not fall down even if the forklift turns sharply. And
【0004】[0004]
【課題を解決するための手段】請求項1の発明は、フォ
−クリフトの速度規制装置を、フォ−クリフトの操舵量
を検出する手段と、前記フォ−クリフトの積載物の位置
を検出する手段と、前記積載物の重量を検出する手段
と、前記積載物の位置及び重量に基づいて前記フォ−ク
リフトの重心及び転倒限界角度を演算し、前記重心と前
記操舵量及び前記積載物の重量とに基づいて前記重心に
かかるフォ−クリフト転倒方向の力と所定方向との成す
角度が前記転倒限界角度となる転倒限界速度を演算し、
前記転倒限界速度に基づいて前記フォ−クリフトの車速
を規制する手段とを備えた構成にすることである。According to a first aspect of the present invention, there is provided a forklift speed regulating device, comprising: means for detecting a steering amount of the forklift; and means for detecting a position of a load on the forklift. Means for detecting the weight of the load; calculating the center of gravity and the overturn limit angle of the forklift based on the position and weight of the load; calculating the center of gravity, the steering amount, and the weight of the load; Calculating the overturn limit speed at which the angle between the force in the forklift overturn direction applied to the center of gravity and the predetermined direction becomes the overturn limit angle, based on
Means for regulating the vehicle speed of the forklift based on the overturn limit speed.
【0005】請求項1の発明によれば、積載物の位置及
び重量に基づいて積載状態でのフォ−クリフトの重心及
び転倒限界角度を演算し、重心と操舵量及び積載物の重
量とに基づいて重心にかかるフォ−クリフト転倒方向の
力と所定方向との成す角度が転倒限界角度となる転倒限
界速度を演算し、その転倒限界速度に基づいてフォ−ク
リフトの車速を規制するため、フォ−クリフトは急旋回
しても転倒しない車速に規制される。According to the first aspect of the present invention, the center of gravity and the overturn limit angle of the forklift in the loaded state are calculated based on the position and weight of the load, and based on the center of gravity, the steering amount, and the weight of the load. To calculate the overturn limit speed at which the angle between the force in the forklift overturn direction applied to the center of gravity and the predetermined direction becomes the overturn limit angle, and regulates the forklift vehicle speed based on the overturn limit speed. The clift is regulated at a vehicle speed that does not cause the vehicle to fall even if it turns sharply.
【0006】請求項2の発明は、請求項1の発明におい
て、前記フォ−クリフトの積載物の位置を3次元で検出
する手段を備えることである。According to a second aspect of the present invention, in the first aspect of the present invention, there is provided means for three-dimensionally detecting the position of the load on the forklift.
【0007】請求項2の発明によれば、フォ−クリフト
の積載物の位置を3次元で検出することができるため、
重心の位置が3次元の座標で演算され、フォ−クリフト
上の積載物が偏荷重状態でも重心の位置が正確に演算さ
れる。そのため、フォ−クリフト上の積載物の偏荷重状
態に応じた転倒限界速度が演算される。According to the second aspect of the present invention, since the position of the load of the forklift can be detected three-dimensionally,
The position of the center of gravity is calculated by three-dimensional coordinates, and the position of the center of gravity is accurately calculated even when the load on the forklift is in an eccentric load state. Therefore, the overturn limit speed according to the state of the eccentric load of the load on the forklift is calculated.
【0008】[0008]
【発明の実施の形態】次に、本発明の実施の形態を図面
を参照しながら説明する。図1はリ−チフォ−クリフト
1の斜視外観図であり、本実施の形態ではリ−チフォ−
クリフトの速度規制装置について説明する。Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective external view of a reach forklift 1, and in this embodiment, a reach forklift 1 is shown.
The clift speed regulating device will be described.
【0009】リ−チフォ−クリフト1は、車体2の前方
向に突出する二つのストラドルア−ム3に沿って前後方
向に移動可能なマスト4と、このマスト4に沿って昇降
可能な左右一対のフォ−ク5とを備え、ハンドル6で旋
回等の操舵操作を行うとともにレバ−7によりリ−チイ
ン、リ−チアウト、フォ−ク等の荷役操作を行うように
構成されている。車体2の後部に配置されたドライブホ
イ−ル8Aは、アクセル9Aの踏み角に応じて作動する
アクセルポテンショメ−タ9からの信号に対応した速度
で駆動される。尚、ドライブホイ−ル8Aは、走行モ−
タ(図2参照)24により駆動されるとともにハンドル
6の操作に伴って操舵される。またキャスタ−ホイ−ル
8Bは車体2の後部右側に配置されている。The reach forklift 1 has a mast 4 movable in the front-rear direction along two straddle arms 3 protruding forward of the vehicle body 2, and a pair of right and left movable up and down along the mast 4. A fork 5 is provided, and a steering operation such as turning is performed by the handle 6 and a cargo handling operation such as reach-in, reach-out, and fork is performed by the lever 7. A drive wheel 8A disposed at the rear of the vehicle body 2 is driven at a speed corresponding to a signal from an accelerator potentiometer 9 that operates according to the depression angle of an accelerator 9A. The drive wheel 8A is a driving motor.
2 (see FIG. 2), and is steered with the operation of the steering wheel 6. The caster wheel 8B is disposed on the rear right side of the vehicle body 2.
【0010】二つのストラドルア−ム3の先端部それぞ
れに従動輪10が設けられており、この従動輪10の回
転を検出する回転センサ11が設けられている。この回
転センサ11として例えばエンコ−ダが用いられ、エン
コ−ダから出力されるパルス信号を後述のコンピュ−タ
CPUがカウントすることにより走行速度が検出され
る。また、ドライブホイ−ル8Aの切れ角を検出するス
テアリングポテンショメ−タ12が図示していないステ
アリング機構部に取り付けられている。A driven wheel 10 is provided at each of the distal ends of the two straddle arms 3, and a rotation sensor 11 for detecting the rotation of the driven wheel 10 is provided. For example, an encoder is used as the rotation sensor 11, and a running speed is detected by counting a pulse signal output from the encoder by a computer CPU described later. A steering potentiometer 12 for detecting the turning angle of the drive wheel 8A is attached to a steering mechanism (not shown).
【0011】前記マスト4に沿って昇降するフォ−ク5
の揚高を検出するため、マスト4に揚高センサ13が設
けられている。また、フォ−ク5に載荷された積荷の重
さを検出するため、マスト4近傍にあるリフトシリンダ
4Aの下端部分には圧力検出タイプの重量センサ14が
設けられている。更に、前記ストラドルア−ム3にはリ
−チ量を検出するためのリ−チセンサ15が設けられて
いる。A fork 5 which moves up and down along the mast 4
The mast 4 is provided with a lift sensor 13 in order to detect the lift. In order to detect the weight of the load loaded on the fork 5, a pressure detection type weight sensor 14 is provided at the lower end of the lift cylinder 4A near the mast 4. Further, the straddle arm 3 is provided with a reach sensor 15 for detecting a reach amount.
【0012】次に、リ−チフォ−クリフト1の制御につ
いて図2の制御ブロック図を参照しながら説明する。図
2に示すように、リ−チフォ−クリフト1の基本的な走
行制御は、前記従来のフォ−クリフトの走行制御と同じ
である。従って、アクセル踏み角に対応した信号がアク
セルポテンショメ−タ9から走行制御装置の中枢を成す
コンピュ−タCPUに出力されると、コンピュ−タCP
Uは、内蔵した電流マップを参照してアクセル踏み角信
号に対応した電流指令値を電流指令出力変換回路21に
出力するとともにチョッパ出力回路22にチョッパ制御
信号を出力すると、チョッパ出力回路22は、チョッパ
制御信号に基づいて出力トランジスタ23をデュ−ティ
制御し、走行モ−タ24に駆動電流を通電する。この制
御において、コンピュ−タCPUは、電流センサ25か
ら出力される電流検出信号に基づいた実際のモ−タ電流
と上記電流指令値とを比較器26で比較し、実際のモ−
タ電流が大きい場合は出力制限回路27によりモ−タ電
流を制限するというフィ−ドバック制御をする。Next, the control of the reach forklift 1 will be described with reference to the control block diagram of FIG. As shown in FIG. 2, basic travel control of the reach forklift 1 is the same as the travel control of the conventional forklift. Therefore, when a signal corresponding to the accelerator pedal depression angle is output from the accelerator potentiometer 9 to the computer CPU which forms the center of the travel control device, the computer CP
U outputs a current command value corresponding to the accelerator pedal depression angle signal to the current command output conversion circuit 21 and outputs a chopper control signal to the chopper output circuit 22 with reference to the built-in current map, and the chopper output circuit 22 The output transistor 23 is duty-controlled based on the chopper control signal, and a drive current is supplied to the traveling motor 24. In this control, the computer CPU compares the actual motor current based on the current detection signal output from the current sensor 25 with the current command value by the comparator 26, and
If the motor current is large, feedback control for limiting the motor current by the output limiting circuit 27 is performed.
【0013】次に、前記ステアリングポテンショメ−タ
12からの信号と、揚高センサ13からの信号と、重量
センサ14からの信号と、リ−チセンサ15からの信号
とを入力することにより、リ−チフォ−クリフト1が急
旋回しても転倒をしない安全速度に規制するための制御
について説明する。Next, a signal from the steering potentiometer 12, a signal from the lift sensor 13, a signal from the weight sensor 14, and a signal from the reach sensor 15 are input, so that A description will be given of control for regulating the safety speed so that the forklift 1 does not overturn even if the forklift 1 turns sharply.
【0014】尚、一般的なフォ−クリフトにおいて、積
載状態の重量(総重量)をm、旋回半径をr、走行速度
をvとすると、フォ−クリフトを転倒させる遠心力F
は、図3、図4、及び図5に示すように重量mが大きく
なるほど、旋回半径rが小さくなるほど、走行速度vが
大きくなるほど大になるという特性がある。従って、フ
ォ−クリフトが転倒しない安全速度をvsとすれば、図
6に示すように遠心力Fが大きくなれば安全速度vsを
小さくする必要がある。尚、旋回半径rはステアリング
ポテンショメ−タ12からの信号に基づいて求められ
る。In a general forklift, assuming that the weight (total weight) of the loaded state is m, the turning radius is r, and the traveling speed is v, the centrifugal force F overturns the forklift.
Has the characteristic that as the weight m increases, the turning radius r decreases, and the traveling speed v increases, as shown in FIGS. 3, 4, and 5, the characteristics increase. Therefore, assuming that the safe speed at which the forklift does not overturn is vs, as shown in FIG. 6, if the centrifugal force F increases, the safe speed vs. must be reduced. The turning radius r is determined based on a signal from the steering potentiometer 12.
【0015】上記のようにフォ−クリフトを転倒させる
力は、フォ−クリフトの総重量m、旋回半径r、及び走
行速度vに関係するが、重心の位置にも関係する。図1
のようなリ−チフォ−クリフト1の場合、フォ−ク5に
載荷したとき、フォ−ク5の揚高とリ−チ量と積載荷重
とに応じてリ−チフォ−クリフト1の重心の位置が変化
する。As described above, the force for overturning the forklift is related to the total weight m of the forklift, the turning radius r, and the traveling speed v, but also to the position of the center of gravity. FIG.
In the case of the reach forklift 1 as described above, when the fork 5 is loaded, the position of the center of gravity of the reach forklift 1 is determined according to the lift of the fork 5, the amount of reach, and the load. Changes.
【0016】リ−チフォ−クリフト1の重心は、左右の
バランスを考慮しなければ、図7において斜線で示した
2次元領域にあるものと考えられる。この2次元領域に
おける重心移動範囲を量子化し、図8に示すように2次
元(x,y)の行列として定義してコンピュ−タCPU
の記憶部に格納しておく。そして、前記リ−チセンサ1
5からの検知信号に基づくリ−チ量X、揚高センサ13
からの検知信号に基づくフォ−ク5の揚高Y、重量セン
サ14からの検知信号に基づく積載荷重Mより重心が積
載荷重Mに対応する上記行列のどの座標に位置するかを
コンピュ−タCPUが算出する。The center of gravity of the reach forklift 1 is considered to be in a two-dimensional area indicated by oblique lines in FIG. The center-of-gravity movement range in this two-dimensional area is quantized and defined as a two-dimensional (x, y) matrix as shown in FIG.
Is stored in the storage unit. And the reach sensor 1
5, the amount of reach X based on the detection signal from 5, the lift sensor 13
The height of the fork 5 based on the detection signal from the fork 5 and the computer CPU determine the coordinates of the center of gravity of the matrix corresponding to the load M from the load M based on the detection signal from the weight sensor 14. Is calculated.
【0017】リ−チフォ−クリフト1の総重量(フォ−
クリフト1の重量と積載荷重Mの合計)をm、車速を
v、旋回半径をr、重心にかかる機台向心力をFrとす
れば、図9に示すように、重心にかかる機台向心力Fr
は、Fr=mv2 /rとなり、重心にかかる機台向心力
Frと重心にかかる重力Fgの合成ベクトルが転倒方向
に作用する力Fとなる。尚、揚高センサ13及びリ−チ
センサ15は積載物の位置を検出する手段を構成する。The total weight of the reach forklift 1 (fork
Assuming that m is the sum of the weight of the lift 1 and the load M), v is the vehicle speed, r is the turning radius, and Fr is the centripetal force applied to the center of gravity, Fr as shown in FIG.
Is Fr = mv 2 / r, and the combined vector of the machine base centrifugal force Fr applied to the center of gravity and the gravitational force Fg applied to the center of gravity becomes the force F acting in the overturning direction. The height sensor 13 and the reach sensor 15 constitute a means for detecting the position of the load.
【0018】また、図10に示すようにリ−チフォ−ク
リフト1の機台の転倒軸は左旋回ではドライブホイ−ル
8Aと左側従動輪10を結ぶ線Aとなり、右旋回ではキ
ャスタ−ホイ−ル8Bと右従動輪10を結ぶ線Bとな
る。そして、上記転倒方向に作用する力Fの方向が転倒
軸A又はBの外に出るとき、リ−チフォ−クリフト1は
転倒状態になる。As shown in FIG. 10, the overturn axis of the machine of the reach forklift 1 is a line A connecting the drive wheel 8A and the left driven wheel 10 when turning left, and a caster hoist when turning right. A line B connecting the right wheel 8B and the right driven wheel 10; When the direction of the force F acting in the overturning direction goes out of the overturning axis A or B, the reach forklift 1 becomes overturned.
【0019】図11に示すように上記転倒方向に作用す
る力Fと重心にかかる重力Fgとの成す角度をθとすれ
ば、tanθ=Fr/Fg=v2 /rgとなり、 v=(rgtanθ)1/2 となる。・・・・・・(1)As shown in FIG. 11, assuming that the angle between the force F acting in the overturning direction and the gravitational force Fg applied to the center of gravity is θ, tan θ = Fr / Fg = v 2 / rg, and v = (rgtan θ) 1/2 .・ ・ ・ ・ ・ ・ (1)
【0020】リ−チフォ−クリフト1の各重心位置に対
して転倒に到る転倒限界角度θS の値は個別に決まる。
そこで、転倒限界角度θS を図8に示した重心位置の行
列の関数、即ちθS (x,y)として定義する。従って
θS (x,y)は、重心位置(x,y)における転倒状
態となる角度である。このように、重心位置が決まると
θS が決まるため、上記式(1)にθS (x,y)を代
入すれば、転倒限界速度vS (x,y)={rgtan
θS (x,y)}1/2 が求められる。The value of the overturn limit angle θS at which the reach forklift 1 is overturned with respect to each position of the center of gravity of the reach forklift 1 is determined individually.
Therefore, the overturn limit angle θS is defined as a function of the matrix of the position of the center of gravity shown in FIG. 8, that is, θS (x, y). Therefore, .theta.s (x, y) is the angle at which the state of overturn occurs at the position of the center of gravity (x, y). Thus, since θS is determined when the position of the center of gravity is determined, by substituting θS (x, y) into the above equation (1), the overturn limit speed vS (x, y) = {rgtan
θS (x, y)} 1/2 is obtained.
【0021】上記の転倒限界速度vS (x,y)におい
て安全率を考慮した目標速度vtを設定すれば、vt=
vS (x,y)×Sとなる。但し、Sは安全率である。
このように走行制御装置が旋回時の速度を目標速度vt
を超えないように制御すればリ−チフォ−クリフト1の
転倒を防止することができる。If the target speed vt considering the safety factor is set at the above-mentioned overturn limit speed v S (x, y), vt =
v S (x, y) × S. Here, S is a safety factor.
As described above, the traveling control device sets the speed at the time of turning to the target speed vt.
Is controlled so as not to exceed, the overturn of the reach forklift 1 can be prevented.
【0022】以上の実施の形態では重心位置を2次元座
標で求めたが、フォ−ク5の積載物が偏荷重の状態で載
荷されるような場合を考慮し、重心位置を3次元で求め
ることも可能である。この際、フォ−ク5の積載物の位
置を3次元位置で検出する載荷センサを設け、リ−チフ
ォ−クリフト1の重心位置は、フォ−ク5の揚高と、リ
−チ量と、積載物の3次元載荷位置と、積載荷重とに基
づいて算出される。尚、上記実施の形態ではリ−チフォ
−クリフト1の例を示したが、非リ−チ式のフォ−クリ
フトの場合はリ−チセンサ15を設けないで、フォ−ク
に載荷された積荷の位置は揚高センサ13で検出され
る。In the above embodiment, the position of the center of gravity is obtained by two-dimensional coordinates. However, the position of the center of gravity is obtained in three dimensions in consideration of a case where the load of the fork 5 is loaded under an uneven load. It is also possible. At this time, a loading sensor for detecting the position of the load on the fork 5 in a three-dimensional position is provided, and the center of gravity of the reach fork lift 1 is determined by the lift of the fork 5, the reach amount, It is calculated based on the three-dimensional loading position of the load and the load. In the above-described embodiment, an example of the reach forklift 1 has been described. However, in the case of a non-reach type forklift, the reach sensor 15 is not provided, and the load loaded on the fork is not provided. The position is detected by the elevation sensor 13.
【0023】[0023]
【発明の効果】請求項1の発明によれば、積載物の位置
及び重量に基づいて積載状態でのフォ−クリフトの重心
及び転倒限界角度を演算し、重心と操舵量及び積載物の
重量とに基づいて重心にかかるフォ−クリフト転倒方向
の力と所定方向との成す角度が転倒限界角度となる転倒
限界速度を演算し、その転倒限界速度に基づいてフォ−
クリフトの車速を規制するため、フォ−クリフトを急旋
回させても転倒しない。そのため、オペレ−タの操作性
及び安全性を向上させることができる。According to the first aspect of the present invention, the center of gravity and the overturn limit angle of the forklift in the loaded state are calculated based on the position and weight of the load, and the center of gravity, the steering amount, and the weight of the load are calculated. Is calculated based on the forklift overturning force acting on the center of gravity and the angle formed by the predetermined direction and the predetermined direction.
In order to regulate the speed of the clift, the forklift does not fall even if it turns sharply. Therefore, the operability and safety of the operator can be improved.
【0024】請求項2の発明によれば、フォ−クリフト
の積載物が偏荷重状態でも重心の位置が正確に演算さ
れ、フォ−クリフトの積載物の偏荷重状態に応じた転倒
限界速度が演算されるため、偏荷重状態で急旋回しても
フォ−クリフトは転倒しない速度に規制される。According to the second aspect of the present invention, the position of the center of gravity is accurately calculated even when the forklift load is in an eccentric load state, and the overturn limit speed according to the eccentric load state of the forklift load is calculated. Therefore, the forklift is restricted to a speed at which the forklift does not overturn even if the vehicle turns sharply under an eccentric load.
【図1】リ−チフォ−クリフトの斜視図である。FIG. 1 is a perspective view of a reach forklift.
【図2】リ−チフォ−クリフトの制御ブロック図であ
る。FIG. 2 is a control block diagram of a reach forklift;
【図3】フォ−クリフトを転倒させる力と積載重量との
関係を示す特性図である。FIG. 3 is a characteristic diagram showing a relationship between a force for tipping a forklift and a load weight.
【図4】フォ−クリフトを転倒させる力と旋回半径との
関係を示す特性図である。FIG. 4 is a characteristic diagram showing a relationship between a force for tipping a forklift and a turning radius.
【図5】フォ−クリフトを転倒させる力と旋回速度との
関係を示す特性図である。FIG. 5 is a characteristic diagram showing a relationship between a force for tipping a forklift and a turning speed.
【図6】フォ−クリフトを転倒させる力と安全速度との
関係を示す特性図である。FIG. 6 is a characteristic diagram showing a relationship between a force for tipping a forklift and a safe speed.
【図7】リ−チフォ−クリフトの重心算出説明図であ
る。FIG. 7 is an explanatory diagram of calculating a center of gravity of a reach forklift;
【図8】リ−チフォ−クリフトの重心を2次元の行列で
示した説明図である。FIG. 8 is an explanatory diagram showing a center of gravity of a reach forklift as a two-dimensional matrix.
【図9】リ−チフォ−クリフトの転倒方向に作用する力
を求めるための説明図である。FIG. 9 is an explanatory diagram for obtaining a force acting in the overturn direction of the reach forklift.
【図10】リ−チフォ−クリフトの転倒軸の説明図であ
る。FIG. 10 is an explanatory view of an overturn axis of a reach forklift;
【図11】リ−チフォ−クリフトの転倒限界速度を求め
るための説明図である。FIG. 11 is an explanatory diagram for obtaining a overturn limit speed of a reach forklift;
【図12】従来のフォ−クリフトの制御ブロック図であ
る。FIG. 12 is a control block diagram of a conventional forklift.
1 リ−チフォ−クリフト 11 回転センサ 12 ステアリングポテンショメ−タ 13 揚高センサ 14 重量センサ 15 リ−チセンサ 24 走行モ−タ CPU コンピュ−タ DESCRIPTION OF SYMBOLS 1 Reach forklift 11 Rotation sensor 12 Steering potentiometer 13 Lift sensor 14 Weight sensor 15 Reach sensor 24 Running motor CPU Computer
Claims (2)
と、前記フォ−クリフトの積載物の位置を検出する手段
と、前記積載物の重量を検出する手段と、前記積載物の
位置及び重量に基づいて前記フォ−クリフトの重心及び
転倒限界角度を演算し、前記重心と前記操舵量及び前記
積載物の重量とに基づいて前記重心にかかるフォ−クリ
フト転倒方向の力と所定方向との成す角度が前記転倒限
界角度となる転倒限界速度を演算し、前記転倒限界速度
に基づいて前記フォ−クリフトの車速を規制する手段と
を備えたフォ−クリフトの速度規制装置。1. A means for detecting a steering amount of a forklift, a means for detecting a position of a load of the forklift, a means for detecting a weight of the load, a position and a weight of the load. And the center of gravity and the overturn limit angle of the forklift are calculated based on the weight of the load and the weight of the load. A forklift speed restricting device, comprising: means for calculating a tipping limit speed at which the angle becomes the tipping limit angle, and means for restricting the forklift vehicle speed based on the tipping limit speed.
次元位置で検出する手段を備えた請求項1に記載のフォ
−クリフトの速度規制装置。2. The position of a load on the forklift is 3
2. The forklift speed regulating device according to claim 1, further comprising means for detecting a three-dimensional position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33723096A JP3743091B2 (en) | 1996-12-17 | 1996-12-17 | Forklift speed control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33723096A JP3743091B2 (en) | 1996-12-17 | 1996-12-17 | Forklift speed control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10175800A true JPH10175800A (en) | 1998-06-30 |
JP3743091B2 JP3743091B2 (en) | 2006-02-08 |
Family
ID=18306675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33723096A Expired - Fee Related JP3743091B2 (en) | 1996-12-17 | 1996-12-17 | Forklift speed control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3743091B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2412902A (en) * | 2004-04-07 | 2005-10-12 | Linde Ag | Drive control for industrial truck stability |
WO2006054678A1 (en) * | 2004-11-19 | 2006-05-26 | Mitsubishi Heavy Industries, Ltd. | Overturning prevention device for forklift truck |
WO2006118541A1 (en) * | 2005-05-04 | 2006-11-09 | Scania Cv Ab (Publ) | A method and a device for stabilizing of trucks |
KR100655332B1 (en) * | 1999-12-29 | 2006-12-08 | 두산인프라코어 주식회사 | Apparatus for limiting working-height of mast and drive-speed of vehicles in a folk lift truck |
EP2233427A1 (en) * | 2009-03-27 | 2010-09-29 | The Raymond Corporation | Method and system for dynamically maintaining the stability of a material handling vehicle having a vertical lift. |
JP2011201505A (en) * | 2010-03-26 | 2011-10-13 | Equos Research Co Ltd | Vehicle |
CN105955256A (en) * | 2016-04-28 | 2016-09-21 | 四川九鼎智远知识产权运营有限公司 | Detection robot and control system thereof |
JP2017210306A (en) * | 2016-05-23 | 2017-11-30 | 株式会社豊田自動織機 | Travel control device of industrial vehicle |
WO2020095341A1 (en) | 2018-11-05 | 2020-05-14 | 株式会社島津製作所 | Industrial vehicle |
JP2021149125A (en) * | 2020-03-16 | 2021-09-27 | 日本精工株式会社 | Autonomous moving device and autonomous moving device control method |
US11352243B2 (en) | 2018-09-13 | 2022-06-07 | Crown Equipment Corporation | System and method for controlling a maximum vehicle speed for an industrial vehicle based on a calculated load |
-
1996
- 1996-12-17 JP JP33723096A patent/JP3743091B2/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100655332B1 (en) * | 1999-12-29 | 2006-12-08 | 두산인프라코어 주식회사 | Apparatus for limiting working-height of mast and drive-speed of vehicles in a folk lift truck |
GB2412902A (en) * | 2004-04-07 | 2005-10-12 | Linde Ag | Drive control for industrial truck stability |
GB2412902B (en) * | 2004-04-07 | 2008-04-09 | Linde Ag | Industrial truck having increased static or quasi-static tipping stability |
WO2006054678A1 (en) * | 2004-11-19 | 2006-05-26 | Mitsubishi Heavy Industries, Ltd. | Overturning prevention device for forklift truck |
WO2006118541A1 (en) * | 2005-05-04 | 2006-11-09 | Scania Cv Ab (Publ) | A method and a device for stabilizing of trucks |
US8140228B2 (en) | 2009-03-27 | 2012-03-20 | The Raymond Corporation | System and method for dynamically maintaining the stability of a material handling vehicle having a vertical lift |
CN101844559A (en) * | 2009-03-27 | 2010-09-29 | 雷蒙德股份有限公司 | Be used to keep the system and method for the dynamic stability of materials handling vehicle |
EP2233427A1 (en) * | 2009-03-27 | 2010-09-29 | The Raymond Corporation | Method and system for dynamically maintaining the stability of a material handling vehicle having a vertical lift. |
JP2011201505A (en) * | 2010-03-26 | 2011-10-13 | Equos Research Co Ltd | Vehicle |
CN105955256A (en) * | 2016-04-28 | 2016-09-21 | 四川九鼎智远知识产权运营有限公司 | Detection robot and control system thereof |
CN105955256B (en) * | 2016-04-28 | 2019-02-26 | 石家庄求实通信设备有限公司 | A kind of Detecting Robot and its control system |
JP2017210306A (en) * | 2016-05-23 | 2017-11-30 | 株式会社豊田自動織機 | Travel control device of industrial vehicle |
US11352243B2 (en) | 2018-09-13 | 2022-06-07 | Crown Equipment Corporation | System and method for controlling a maximum vehicle speed for an industrial vehicle based on a calculated load |
US11945705B2 (en) | 2018-09-13 | 2024-04-02 | Crown Equipment Corporation | System and method for controlling a maximum vehicle speed for an industrial vehicle based on a calculated load |
WO2020095341A1 (en) | 2018-11-05 | 2020-05-14 | 株式会社島津製作所 | Industrial vehicle |
KR20210075167A (en) | 2018-11-05 | 2021-06-22 | 가부시키가이샤 시마즈세이사쿠쇼 | industrial vehicle |
JP2021149125A (en) * | 2020-03-16 | 2021-09-27 | 日本精工株式会社 | Autonomous moving device and autonomous moving device control method |
Also Published As
Publication number | Publication date |
---|---|
JP3743091B2 (en) | 2006-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE47554E1 (en) | Power assisted steering for motorized pallet truck | |
CN110872088B (en) | Dynamic stability determination system for lift truck | |
JP4905156B2 (en) | Industrial vehicle travel control device | |
US6850828B2 (en) | Control apparatus and control method for a forklift and forklift | |
JP4062085B2 (en) | Electric industrial vehicle steering system | |
US20130184960A1 (en) | Materials handling vehicle having a control apparatus for determining an acceleration value | |
EP2213563A1 (en) | Coaxial two-wheel vehicle and method of controlling the same | |
JP3743091B2 (en) | Forklift speed control device | |
WO2018088000A1 (en) | Standup-type cargo handling vehicle | |
JP3536785B2 (en) | Travel control device for industrial vehicles | |
AU2004203317A1 (en) | Control system for material handling vehicle with dual control handles | |
US6697722B2 (en) | Steering apparatus in vehicle and industrial vehicle | |
JP4006823B2 (en) | Industrial vehicle travel speed control device | |
WO2022215115A1 (en) | Moving body | |
CN114286796B (en) | Adaptive acceleration of materials handling vehicle | |
JP6634956B2 (en) | Travel control device for industrial vehicles | |
JP2001226095A (en) | Control device for forklift | |
JP2619586B2 (en) | Reach type forklift braking system | |
JPH09110392A (en) | Industrial vehicle | |
JP3359022B2 (en) | Cargo handling vehicle | |
JP2017081662A (en) | Cargo handling work vehicle | |
JPS6338239Y2 (en) | ||
KR20220156012A (en) | Adaptive Acceleration for Material Handling Vehicles | |
KR20220155314A (en) | Reset stored data related to monitored operating parameters based on detected initiation of pick-up operation | |
JP2003267678A (en) | Forklift |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20051025 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20051107 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081125 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20111125 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111125 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20121125 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121125 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131125 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |