JPH10125504A - Organic positive characteristic thermistor and its manufacture - Google Patents

Organic positive characteristic thermistor and its manufacture

Info

Publication number
JPH10125504A
JPH10125504A JP27464896A JP27464896A JPH10125504A JP H10125504 A JPH10125504 A JP H10125504A JP 27464896 A JP27464896 A JP 27464896A JP 27464896 A JP27464896 A JP 27464896A JP H10125504 A JPH10125504 A JP H10125504A
Authority
JP
Japan
Prior art keywords
resistor
conductive particles
electrode
anchor
back surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27464896A
Other languages
Japanese (ja)
Inventor
Hisanao Tosaka
久直 戸坂
Shigeru Moriya
滋 守矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP27464896A priority Critical patent/JPH10125504A/en
Publication of JPH10125504A publication Critical patent/JPH10125504A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To bond an electrode and a resistor firmly and reduce and uniformize a surface resistance between both thereof by applying anchor conductive grain to front and rear surfaces of a resistor by burying a part thereof in organic polymer and by forming a metallic layer in front and rear of the resistor. SOLUTION: A resistor 3 is formed by mixing conductive grain 2 to organic polymer 1. Anchor conductive grain 4 is partially buried and applied to front and rear surfaces of the resistor 3. An electrode 5 is mounted thereon. In the process, an average grain diameter of the anchor conductive grain 4 is made larger than that of the conductive grain 2 dispersed in the organic polymer 1, and an average grain diameter of the anchor conductive grain 4 is set about 1 to about 50μm. Thereby, a highly reliable organic positive characteristic thermistor is manufactured in which a face resistance between the electrode 5 and the resistor 3 is small and uniform, a resistance value is small and on-off repetition characteristic is excellent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機ポリマーに導
電粒子を分散させてなる組成物をシート状に成形して抵
抗体とし、該抵抗体の表裏面に電極を形成してなる有機
質正特性サーミスタとその製造方法に係り、特に電極の
構造とその形成方法に関する。
[0001] The present invention relates to a positive organic material comprising a resistor formed by forming a composition obtained by dispersing conductive particles in an organic polymer into a sheet, and forming electrodes on the front and back surfaces of the resistor. The present invention relates to a thermistor and a method of manufacturing the thermistor, and more particularly, to a structure of an electrode and a method of forming the electrode.

【0002】[0002]

【従来の技術】有機質正特性サーミスタにおいて、シー
ト状抵抗体の表裏面に電極を形成するため、シート状抵
抗体の表裏面に金属箔を加熱圧着したもの(米国特許第
4426633号)や、有機ポリマー内に導電粒子を分
散させてなるシート状抵抗体の表裏面をエッチングする
ことによって導電粒子を表裏面に露出させ、電気メッキ
または化学メッキ等により電極層を形成したもの(特公
平4−44401号)等がある。
2. Description of the Related Art In an organic positive temperature coefficient thermistor, in order to form electrodes on the front and back surfaces of a sheet-shaped resistor, a metal foil is heat-pressed on the front and back surfaces of a sheet-shaped resistor (US Pat. No. 4,426,633). A sheet-shaped resistor in which conductive particles are dispersed in a polymer is etched on the front and back surfaces to expose the conductive particles on the front and back surfaces, and an electrode layer is formed by electroplating or chemical plating (Japanese Patent Publication No. 4-44401). No.).

【0003】[0003]

【発明が解決しようとする課題】しかし、米国特許第4
426633号に記載のように、シート状抵抗体の表裏
面に金属箔を加熱圧着したサーミスタは、抵抗体表面と
金属箔でなる電極との間の界面の接触抵抗が大きく、ま
た、接触抵抗が不均一であるため、高抵抗層を形成し、
オン−オフの繰り返しによりこの界面部が発熱し、電極
部と界面の熱膨張差から抵抗値が上昇していくという問
題点があり、信頼性上の問題があった。
However, US Pat.
As described in Japanese Patent No. 426633, a thermistor in which a metal foil is heated and pressed on the front and back surfaces of a sheet-shaped resistor has a large contact resistance at an interface between the surface of the resistor and an electrode made of the metal foil, and has a high contact resistance. Because it is non-uniform, a high resistance layer is formed,
There is a problem in that the interface generates heat due to the repetition of on-off, and the resistance value increases due to a difference in thermal expansion between the electrode and the interface, and there is a problem in reliability.

【0004】また、特公平4−44401号に記載のよ
うに、抵抗体の表裏面にエッチングにより導電粒子を露
出させて電極をメッキしたものは、エッチングにより抵
抗体表裏面の導電粒子と電極との接触は増えるが、サー
ミスタの特性を確保するため、抵抗体内の導電粒子の含
有率は20体積%〜30体積%程度の低い密度に制限さ
れるので、電極のアンカー効果を得るための十分な密着
強度が得られないという問題点があった。
Further, as described in Japanese Patent Publication No. 4-44001, an electrode is plated by exposing conductive particles on the front and back surfaces of a resistor by etching, and the conductive particles on the front and back surfaces of the resistor and the electrode are etched by etching. However, in order to secure the characteristics of the thermistor, the content of the conductive particles in the resistor is limited to a low density of about 20% to 30% by volume. There was a problem that adhesion strength could not be obtained.

【0005】本発明は、上記問題点に鑑み、電極と抵抗
体とが強固に密着して両者間の界面抵抗を小さく、かつ
界面抵抗を電極面全面について均一にすることができ、
もって抵抗値が小さく、オンーオフ繰り返し性が優れた
有機質正特性サーミスタとその製造方法を提供すること
を目的とする。
[0005] In view of the above problems, the present invention makes it possible to make the electrode and the resistor firmly adhere to each other, reduce the interface resistance between them, and make the interface resistance uniform over the entire electrode surface.
Accordingly, it is an object of the present invention to provide an organic positive temperature coefficient thermistor having a low resistance value and excellent on-off repetition properties, and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】この目的を達成するた
め、本発明の有機質正特性サーミスタは、有機ポリマー
に導電粒子を分散させてなる組成物をシート状に成形し
て抵抗体とし、該抵抗体の両面に電極を形成してなる有
機質正特性サーミスタにおいて、前記抵抗体の表裏面
に、有機ポリマー内に一部を埋込んで電極のアンカー用
導電粒子を被着し、該アンカー用導電粒子を被着した抵
抗体の表裏面に金属層を成膜して電極を形成したことを
特徴とする(請求項1)。
In order to achieve the above object, an organic positive temperature coefficient thermistor of the present invention is formed into a sheet by forming a composition obtained by dispersing conductive particles in an organic polymer into a sheet, and the resistor is formed. In an organic positive temperature coefficient thermistor having electrodes formed on both surfaces of a body, the conductive particles for anchoring an electrode are partially embedded in an organic polymer on the front and back surfaces of the resistor, and the conductive particles for anchor of the electrode are adhered. Wherein a metal layer is formed on the front and back surfaces of the resistor on which an electrode is formed to form an electrode (claim 1).

【0007】有機ポリマーとしては、結晶性ポリマーで
あれば特に制限なく用いることができ、例えばポリエチ
レン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩
化ビニル、ポリ酢酸ビニル、アイオノマー樹脂またはこ
れらの共重合体が一般的には用いられるが、同様の特性
が得られれば他の有機ポリマーを用いてもよい。また、
これらの有機ポリマーに分散させる導電粒子としては、
カーボンブラック、グラファイト、またはニッケル等の
金属粉、あるいはチタンカーバイト、タングステンカー
バイト等の導電性セラミック粉等を用いることができる
が、要求される導電性や耐熱性等を満たすものであれば
他の導電粒子を用いてもよい。
As the organic polymer, any crystalline polymer can be used without any particular limitation. For example, polyethylene, polypropylene, polyvinylidene fluoride, polyvinyl chloride, polyvinyl acetate, ionomer resin or a copolymer thereof is generally used. Is used, but other organic polymers may be used as long as similar properties can be obtained. Also,
As the conductive particles dispersed in these organic polymers,
Metal powder such as carbon black, graphite or nickel, or conductive ceramic powder such as titanium carbide or tungsten carbide can be used, but any other powder that satisfies the required conductivity and heat resistance can be used. May be used.

【0008】有機ポリマーに導電粒子を分散させてなる
有機質正特性サーミスタ組成物は、バンバリミキサ、ミ
キシングロール等の混練機により加熱混練して作製され
る。このとき、抗酸化剤や分散剤等の混練助剤を添加し
てもよい。さらに、押出機または熱プレスによりシート
またはフィルム状に成形する。この場合、必ずしも必要
ではないが、架橋効率を高めるために、電子線の照射
や、架橋助剤を添加した電子線架橋や化学架橋を行った
り、シラン化合物を遊離基発生剤の存在下でポリマーに
グラフトさせた後、シラノール縮合触媒の存在下に水あ
るいは水性媒体と接触させて行う水架橋を行う等の方法
により、PTC発現後の重合体の流動性を抑制し抵抗値
の安定化を図ることができる。
[0008] The organic positive temperature coefficient thermistor composition obtained by dispersing conductive particles in an organic polymer is prepared by heating and kneading with a kneading machine such as a Banbury mixer and a mixing roll. At this time, kneading aids such as antioxidants and dispersants may be added. Further, it is formed into a sheet or film by an extruder or a hot press. In this case, although not necessary, in order to enhance the crosslinking efficiency, irradiation with electron beams, electron beam crosslinking or chemical crosslinking with the addition of a crosslinking aid, or silane compound polymerization in the presence of a free radical generator are performed. After grafting to PTC, the polymer is subjected to water crosslinking in the presence of a silanol condensation catalyst to perform water crosslinking, thereby suppressing the fluidity of the polymer after PTC expression and stabilizing the resistance value. be able to.

【0009】こうして得られた成形体でなる抵抗体の表
面に、アンカー用導電粒子をちりばめて被着する。ここ
で、抵抗体表面に被着するアンカー用導電粒子は有機ポ
リマー内に分散させる導電粒子と異種のものとしてもよ
い(請求項5)。アンカー用導電粒子として、好ましく
は、抵抗体と電極との界面抵抗を小さくする目的から、
金属粉を用いることが好ましく、特に耐熱性(耐酸化
性)に優れたニッケル粉を用いることが好ましい。ま
た、耐熱性が優れていることから、導電性セラミックも
用いることができる。
The conductive particles for anchoring are stuck and adhered to the surface of the resistor made of the molded body thus obtained. In this case, the conductive particles for anchor attached to the surface of the resistor may be different from the conductive particles dispersed in the organic polymer. As the conductive particles for anchor, preferably, for the purpose of reducing the interface resistance between the resistor and the electrode,
It is preferable to use metal powder, and particularly to use nickel powder excellent in heat resistance (oxidation resistance). Further, conductive ceramics can be used because of their excellent heat resistance.

【0010】アンカー用導電粒子の形状には特に制限は
なく、球状、針状、リン片状、表面に突起のあるスパイ
ク状、スパイク状の微粒子が連なったフィラメント状等
があげられる。また、アンカー用導電粒子の平均粒径
は、抵抗体への密着(アンカー効果)や、抵抗体内の導
電粒子との接触を得るためには1μm以上とし、またサ
ーミスタの薄型化を図る上で50μm以下とする(請求
項3)ことが好ましい。有機質正特性サーミスタにおい
ては、有機ポリマー内に分散させる導電粒子として金属
粉またはセラミック粉を用いた場合には、これらの導電
粒子として5μm未満の平均粒径のものが用いられる
が、アンカー用導電粒子としては、前記有機ポリマーに
分散させた導電粒子より、平均粒径を大とする(請求項
2)ことが好ましい。また、近年、二次電池や自動車用
小型モータ等に組み込むためのサーミスタの用途におい
て、さらなるサーミスタの薄型化が要求されており、サ
ーミスタの厚みを例えば300μm程度に抑制するため
には、電極層の下地となるアンカー用導電粒子の粒径は
あまり大きくすることはできず、これらの要求に応える
ことと、優れたアンカー効果を得る上で、アンカー用導
電粒子の平均粒径は、さらに好ましくは、5μm以上、
15μm以下である。
The shape of the conductive particles for anchor is not particularly limited, and examples thereof include spherical, needle-like, scaly, spike-like having projections on the surface, and filament-like spike-like fine particles. The average particle size of the conductive particles for anchoring is set to 1 μm or more in order to obtain close contact with the resistor (anchor effect) and contact with the conductive particles in the resistor, and 50 μm to reduce the thickness of the thermistor. It is preferable to set the following (claim 3). In the organic positive temperature coefficient thermistor, when metal powder or ceramic powder is used as the conductive particles dispersed in the organic polymer, these conductive particles having an average particle size of less than 5 μm are used. Preferably, the average particle diameter is larger than the conductive particles dispersed in the organic polymer (claim 2). In recent years, in the use of a thermistor for incorporation in a secondary battery or a small motor for automobiles, further reduction in the thickness of the thermistor has been demanded. The average particle size of the conductive particles for anchor cannot be so large, and in order to meet these requirements and to obtain an excellent anchor effect, the average particle size of the conductive particles for anchor is more preferably 5 μm or more,
It is 15 μm or less.

【0011】また、本発明のサーミスタにおいて、前記
有機ポリマーに分散させた導電粒子と、前記アンカー用
導電粒子の材質は必ずしも同じである必要はなく、この
材質を異ならせたものとする構造(請求項4)も採用さ
れる。
Further, in the thermistor of the present invention, the material of the conductive particles dispersed in the organic polymer and the material of the conductive particles for the anchor need not necessarily be the same, and a structure in which the materials are different (claim) Item 4) is also adopted.

【0012】また、本発明のサーミスタにおいて、前記
電極の成膜は、メッキによることが好ましく、特に、ニ
ッケルメッキ、クロムメッキ、あるいはニッケルメッキ
上に半田メッキによることが好ましい(請求項5)。
In the thermistor according to the present invention, the electrode is preferably formed by plating, and more preferably, by nickel plating, chromium plating, or solder plating on nickel plating.

【0013】本発明のサーミスタの製造方法は、有機ポ
リマーに導電粒子を分散させてなる組成物をシート状に
成形して抵抗体とし、前記抵抗体の表裏面に、電極のア
ンカー用導電粒子を被着し、該アンカー用導電粒子の一
部を抵抗体に埋め込み、該アンカー用導電粒子を被着し
た抵抗体の表裏面に金属層をメッキして電極を形成する
ことを特徴とする(請求項6)。
[0013] In the method for producing a thermistor of the present invention, a composition formed by dispersing conductive particles in an organic polymer is formed into a sheet to form a resistor, and conductive particles for anchoring an electrode are formed on the front and back surfaces of the resistor. And depositing a part of the conductive particles for anchor into a resistor, and plating the metal layer on the front and back surfaces of the resistor with the conductive particles for anchor attached to form an electrode. Item 6).

【0014】本発明の方法を実施する場合、アンカー用
導電粒子を抵抗体表裏面に被着する前に、抵抗体表裏面
をサンドペーパーやサンドブラスト等により機械的にエ
ッチングするか、あるいは化学的にエッチング処理する
ことにより、予め粗面化しておいてもよい。アンカー用
導電粒子を抵抗体表裏面に被着する方法についても特に
制限はないが、例えば成形体に熱を加え、表裏面を軟化
させた状態で直接吹付けたり、導電粒子が例えば40体
積%〜70体積%の含有率で高充填されたペーストを作
製し、ドクターブレード法等により抵抗体表裏面に印刷
し乾燥させる方法、複写機のトナーの定着やサンドペー
パーの製法と同じように静電塗装法により抵抗体表裏面
に導電粒子を吸着させる方法、抵抗体に超音波により振
動を与える融着法を用い、振動によって導電粒子を抵抗
体表裏面にすり込ませる方法等があげられる。なお、メ
ッキ法としては、化学メッキ、電気メッキ以外に、スパ
ッタリングや真空蒸着等の気相メッキ法が用いられる。
When the method of the present invention is carried out, before the conductive particles for anchor are attached to the front and back surfaces of the resistor, the front and back surfaces of the resistor are mechanically etched by sandpaper or sandblasting or chemically etched. The surface may be roughened in advance by performing an etching process. The method of applying the conductive particles for anchoring to the front and back surfaces of the resistor is not particularly limited. For example, heat is applied to the molded body to directly blow the front and back surfaces in a softened state. A method of preparing a highly-filled paste with a content of about 70% by volume, printing it on the front and back surfaces of a resistor by a doctor blade method or the like, and drying the same, fixing toner in a copying machine, and forming an electrostatic capacitor in the same manner as in a sandpaper manufacturing method. Examples of the method include a method in which conductive particles are adsorbed on the front and back surfaces of the resistor by a coating method, and a method in which conductive particles are rubbed into the front and back surfaces of the resistor by vibration using a fusion method in which vibration is applied to the resistor by ultrasonic waves. In addition, as a plating method, a vapor phase plating method such as sputtering or vacuum deposition is used in addition to chemical plating and electroplating.

【0015】[0015]

【作用】請求項1においては、抵抗体の表裏面にアンカ
ー用導電粒子の一部を埋め込み、該導電粒子により表裏
面をあたかも粗面化したような状態で電極となる金属を
成膜したので、電極の固着強度が大となり、また、アン
カー用導電粒子の抵抗体表裏面密度を均一化することに
より、電極と抵抗体との間の界面抵抗を抵抗体全面につ
いて均一化できる。また、電極のアンカーとして、抵抗
体内の導電粒子を利用するのではなく、抵抗体とは別個
に設ける導電粒子をアンカーとして利用するため、アン
カー用導電粒子の抵抗体表裏面における密度は抵抗体内
の導電粒子の密度に拘束されず、好適なより大きい密度
に設定できるため、電極の固着強度が増大し、前記粗面
化効果と相まって界面抵抗がさらに低下する。
According to the first aspect of the present invention, a part of the conductive particles for anchoring is buried in the front and back surfaces of the resistor, and the metal serving as the electrode is formed as if the front and back surfaces were roughened by the conductive particles. In addition, the adhesion strength of the electrode is increased, and the interface resistance between the electrode and the resistor can be made uniform over the entire surface of the resistor by making the surface density of the resistor of the conductive particles for anchor uniform. In addition, since the conductive particles provided separately from the resistor are used as the anchor instead of using the conductive particles in the resistor as the anchor of the electrode, the density of the conductive particles for the anchor on the front and back surfaces of the resistor is equal to the density in the resistor. Since the density can be set to a suitable higher density without being restricted by the density of the conductive particles, the bonding strength of the electrode is increased, and the interface resistance is further reduced in combination with the roughening effect.

【0016】請求項2においては、前記有機ポリマーに
分散させた導電粒子より、前記アンカー用導電粒子の平
均粒径を大とすること、すなわち、一般に抵抗体内に分
散される導電粒子とアンカー用導電粒子の平均粒径を異
ならせ、アンカー用導電粒子の平均粒径を大きくするこ
とにより、優れたアンカー効果が得られる。
In the present invention, the average particle size of the conductive particles for the anchor is larger than that of the conductive particles dispersed in the organic polymer, that is, the conductive particles generally dispersed in the resistor and the conductive particles for the anchor. By making the average particle size of the particles different and increasing the average particle size of the conductive particles for anchor, an excellent anchor effect can be obtained.

【0017】請求項3においては、前記アンカー用導電
粒子の平均粒径を1μm以上としているので、導電粒子
の抵抗体への埋め込みと抵抗体の粗面化の目的が達成で
きる。また、アンカー用導電粒子の平均粒径を50μm
以下とすることにより、サーミスタの薄型化の要求に応
えることができる。
According to the third aspect, since the average particle diameter of the conductive particles for anchor is 1 μm or more, the object of embedding the conductive particles in the resistor and roughening the surface of the resistor can be achieved. Further, the average particle diameter of the conductive particles for anchor is 50 μm.
By the following, it is possible to meet the demand for a thin thermistor.

【0018】請求項4においては、抵抗体内の導電粒子
と抵抗体表面のアンカー用導電粒子の材質を異ならせる
ことにより、これらの導電粒子として、用途に適合した
特性のものを用いることが可能となる。
According to the present invention, the conductive particles in the resistor and the conductive particles for anchoring on the surface of the resistor are made of different materials, so that the conductive particles having characteristics suitable for the intended use can be used. Become.

【0019】請求項5においては、電極が、ニッケルメ
ッキ、クロムメッキ、あるいはニッケルメッキ上に半田
メッキした金属層により構成されるため、比較的耐熱性
(耐酸化性)に優れた電極が得られ、かつリードの半田
付けも可能である。
According to the fifth aspect of the present invention, since the electrode is formed of a metal layer formed by nickel plating, chromium plating, or solder plating on nickel plating, an electrode having relatively excellent heat resistance (oxidation resistance) can be obtained. Also, lead soldering is possible.

【0020】請求項6のサーミスタの製造方法において
は、抵抗体表面にアンカー用導電粒子を被着した後、ア
ンカー用導電粒子の一部を抵抗体内部に埋め込むことに
より、アンカー用導電粒子が抵抗体に強固に固着される
と共に、アンカー用導電粒子が抵抗体内の導電粒子とも
接触して電気的導通がなされ、さらに、アンカー用導電
粒子により粗面化された抵抗体表面に金属等の電極をメ
ッキして電極とすることにより、電極層が抵抗体に強固
に固着される。
In the method of manufacturing a thermistor according to the present invention, the conductive particles for anchor are deposited on the surface of the resistor, and then a part of the conductive particles for anchor is embedded in the resistor, so that the conductive particles for anchor become resistant. In addition to being firmly fixed to the body, the conductive particles for the anchor also come into contact with the conductive particles in the resistor to establish electrical continuity, and further, an electrode such as a metal is provided on the surface of the resistor roughened by the conductive particles for the anchor. By forming the electrode by plating, the electrode layer is firmly fixed to the resistor.

【0021】[0021]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例)ポリフッ化ビニリデンに導電粒子としてタン
グステンカーバイト粉を30体積%の割合で混合し、ミ
ルにより200℃、30分の条件で混練後、図2(A)
に示すように、熱プレスで厚み0.3mmのシート状成
形体(抵抗体)3を得た。このシート状成形体3を17
0℃のホットプレート上に置き、加熱した状態で平均粒
径12μmのニッケル粒子をエアガンでシート状成形体
の表面に吹き付けた。同様にシート状成形体の裏面にも
ニッケル粒子を吹き付けた。この状態は図2(B)に示
す通り、アンカー用導電粒子となるニッケル粒子4は、
殆どの導電粒子がシート状成形体3の表裏面に単に付着
しているだけの状態なので、再度熱プレスによりシート
状成形体に導電粒子の一部を図2(C)に示すように埋
め込ませた。
(Example) Tungsten carbide powder as conductive particles was mixed with polyvinylidene fluoride at a ratio of 30% by volume and kneaded by a mill at 200 ° C. for 30 minutes.
As shown in (1), a sheet-shaped formed body (resistor) 3 having a thickness of 0.3 mm was obtained by hot pressing. This sheet-like molded body 3
It was placed on a hot plate at 0 ° C., and while heated, nickel particles having an average particle size of 12 μm were sprayed on the surface of the sheet-like molded body with an air gun. Similarly, nickel particles were sprayed on the back surface of the sheet-like molded body. In this state, as shown in FIG. 2 (B), the nickel particles 4 serving as the conductive particles for the anchor are:
Since most of the conductive particles are merely attached to the front and back surfaces of the sheet-like molded body 3, a part of the conductive particles is embedded in the sheet-like molded body again by hot pressing as shown in FIG. Was.

【0022】その後、約20μm厚のニッケルメッキに
より図2(D)に示す電極5を形成した。このニッケル
メッキは、ニッケル−リン(Ni−P)系の無電解メッ
キ液(リン濃度約10%)にて1μm程度の無電解メッ
キを施した後、ワット浴(硫酸ニッケル、塩化ニッケ
ル、ホウ酸の混合液)にて電気メッキを行い、トータル
20μm厚のニッケルメッキを施した。
Thereafter, an electrode 5 shown in FIG. 2D was formed by nickel plating having a thickness of about 20 μm. This nickel plating is performed by performing electroless plating of about 1 μm with a nickel-phosphorus (Ni-P) -based electroless plating solution (phosphorus concentration: about 10%) and then using a Watt bath (nickel sulfate, nickel chloride, boric acid). ), And nickel plating with a total thickness of 20 μm was performed.

【0023】(比較例)実施例と同じシート状成形体の
表裏面を#320のサンドペーパーでエッチング処理し
た後、前記と同様の工程によりニッケルメッキを20μ
mの厚みに形成した。
(Comparative Example) After the front and back surfaces of the same sheet-shaped molded body as in the example were etched with sandpaper # 320, nickel plating was applied to a thickness of 20 μm by the same process as described above.
m.

【0024】上記実施例と比較例のシート状成形体を1
0mmの直径の円形に打ち抜き、有機質正特性サーミス
タサンプルを得た。図1(A)は本発明の実施例の断面
図、図1(B)はその部分拡大図、図1(C)は(A)
の縮小平面図である。図1(B)から分かるように、有
機ポリマー(ポリフッ化ビニリデン)1に導電粒子(タ
ングステンカーバイト粉)2が混合されて抵抗体3が形
成され、抵抗体3の表裏面にアンカー用導電粒子(ニッ
ケル粒子)4が一部埋め込まれて被着され、その上に電
極(ニッケルメッキ層)5が形成される。
The sheet-like molded articles of the above Examples and Comparative Examples were
It was punched into a circle having a diameter of 0 mm to obtain an organic positive temperature coefficient thermistor sample. 1A is a sectional view of an embodiment of the present invention, FIG. 1B is a partially enlarged view thereof, and FIG.
FIG. As can be seen from FIG. 1B, the conductive particles (tungsten carbide powder) 2 are mixed with the organic polymer (polyvinylidene fluoride) 1 to form the resistor 3, and the conductive particles for anchor are provided on the front and back surfaces of the resistor 3. (Nickel particles) 4 are partially embedded and applied, and an electrode (nickel plating layer) 5 is formed thereon.

【0025】これらのサンプルについて、初期抵抗
(Ω)と、オン−オフサイクル試験(DC16V、15
Aで15秒オン、165秒オフを100回繰り返す試
験)後の抵抗、および抵抗変化率(前記サイクル試験後
の抵抗/初期抵抗)を求めた。その結果は表1に示す通
りである。
For these samples, an initial resistance (Ω) and an on-off cycle test (DC 16 V, 15
A, a resistance after 15 seconds on and 165 seconds off for 100 times) and a resistance change rate (resistance after the cycle test / initial resistance) were determined. The results are as shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】表1から明らかなように、本発明の実施例
による場合、比較例に比較し、初期抵抗が小さくなり、
かつサイクル試験による抵抗変化率が大幅に小さくな
る。
As is clear from Table 1, in the case of the embodiment of the present invention, the initial resistance is smaller than that of the comparative example.
In addition, the rate of resistance change by the cycle test is significantly reduced.

【0028】[0028]

【発明の効果】請求項1によれば、抵抗体の表面に、有
機ポリマー内に一部を埋込んで電極のアンカー用導電粒
子を被着し、該アンカー用導電粒子を被着した抵抗体の
表裏面に金属層を成膜して電極を形成したので、電極と
抵抗体との間の界面抵抗を小さくかつ均一にすることが
でき、もって抵抗値が小さく、オンーオフ繰り返し性が
優れ、しかも電極と抵抗体との密着が強固な信頼性の高
い有機質正特性サーミスタが得られる。
According to the first aspect of the present invention, the conductive particles for anchoring the electrode are applied to the surface of the resistor by partially burying the organic polymer in the organic polymer, and the conductive particles for anchor are applied to the resistor. Since the electrodes are formed by forming a metal layer on the front and back surfaces, the interface resistance between the electrodes and the resistor can be reduced and made uniform, so that the resistance value is small, the on-off repetition is excellent, and A highly reliable organic positive temperature coefficient thermistor having strong contact between the electrode and the resistor can be obtained.

【0029】請求項2によれば、前記有機ポリマーに分
散させた導電粒子より、前記アンカー用導電粒子の平均
粒径を大としたので、優れたアンカー効果が得られ、請
求項1の効果が助長されると共に、平均粒径の選択の自
由度が大となる。
According to the second aspect, since the average particle diameter of the conductive particles for anchor is larger than the conductive particles dispersed in the organic polymer, a superior anchor effect can be obtained. This facilitates the process and increases the degree of freedom in selecting the average particle size.

【0030】請求項3によれば、前記アンカー用導電粒
子の平均粒径を1μm以上、50μm以下としたので、
導電粒子の抵抗体への埋め込みと抵抗体の粗面化の目的
が達成でき、かつサーミスタの薄型化の要求に応えるこ
とができる。
According to the third aspect, the average particle diameter of the conductive particles for anchor is 1 μm or more and 50 μm or less.
The object of embedding the conductive particles in the resistor and roughening the resistor can be achieved, and the demand for a thin thermistor can be met.

【0031】請求項4によれば、前記有機ポリマーに分
散させた導電粒子と、前記アンカー用導電粒子の材質を
異ならせたので、これらの導電粒子として、用途に適合
した特性のものを用いることが可能となり、かつ導電粒
子の材質の選択の自由度が得られる。
According to the fourth aspect, the conductive particles dispersed in the organic polymer and the conductive particles for the anchor are made of different materials. Therefore, these conductive particles having characteristics suitable for the intended use are used. And the degree of freedom in selecting the material of the conductive particles can be obtained.

【0032】請求項5によれば、前記電極が、ニッケル
メッキ、クロムメッキ、あるいはニッケルメッキ上に半
田メッキしたものからなるので、比較的耐熱性(耐酸化
性)に優れた電極が得られ、かつリードの半田付けも可
能である。
According to the fifth aspect, since the electrode is made of nickel-plated, chrome-plated or nickel-plated solder, an electrode having relatively excellent heat resistance (oxidation resistance) can be obtained. In addition, lead soldering is also possible.

【0033】請求項6によれば、有機ポリマーに導電粒
子を分散させてなる組成物をシート状に成形して抵抗体
とし、前記抵抗体の表裏面に、電極のアンカー用導電粒
子を被着し、該アンカー用導電粒子の一部を抵抗体に埋
め込み、該アンカー用導電粒子を被着した抵抗体の表裏
面に金属層をメッキして電極を形成することにより有機
質正特性サーミスタを製造するため、アンカー用導電粒
子が抵抗体に強固に固着されると共に、アンカー用導電
粒子が抵抗体内の導電粒子とも接触して電気的導通がな
され、さらに、アンカー用導電粒子により粗面化された
抵抗体表裏面に金属等の電極をメッキして電極とするこ
とにより、電極層が抵抗体に強固に固着され、抵抗値が
小さく、オンオフ繰り返し特性の優れた有機質正特性サ
ーミスタが得られる。
According to the sixth aspect, a composition formed by dispersing conductive particles in an organic polymer is formed into a sheet to form a resistor, and the conductive particles for anchoring an electrode are attached to the front and back surfaces of the resistor. Then, a part of the conductive particles for anchor is embedded in a resistor, and a metal layer is plated on the front and back surfaces of the resistor on which the conductive particles for anchor are applied to form an electrode, thereby manufacturing an organic positive temperature coefficient thermistor. Therefore, the conductive particles for anchoring are firmly fixed to the resistor, the conductive particles for anchoring come into contact with the conductive particles in the resistor for electrical conduction, and the resistance is further roughened by the conductive particles for anchoring. By plating electrodes such as metal on the front and back of the body to form electrodes, the electrode layer is firmly fixed to the resistor, and an organic positive temperature coefficient thermistor with low resistance and excellent on / off repetition characteristics can be obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は本発明によるサーミスタの一実施例を
示す断面図、(B)は(A)の部分拡大図、(C)は
(A)の縮小平面図である。
1A is a cross-sectional view showing one embodiment of a thermistor according to the present invention, FIG. 1B is a partially enlarged view of FIG. 1A, and FIG. 1C is a reduced plan view of FIG.

【図2】(A)〜(D)は本実施例の製造工程を示す図
である。
FIGS. 2A to 2D are diagrams showing manufacturing steps of the present embodiment.

【符号の説明】[Explanation of symbols]

1:有機ポリマー、2:導電粒子、3:抵抗体、4:ア
ンカー用導電粒子、5:電極
1: organic polymer, 2: conductive particles, 3: resistor, 4: conductive particles for anchor, 5: electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】有機ポリマーに導電粒子を分散させてなる
組成物をシート状に成形して抵抗体とし、該抵抗体の表
裏面に電極を形成してなる有機質正特性サーミスタにお
いて、 前記抵抗体の表裏面に、有機ポリマー内に一部を埋込ん
で電極のアンカー用導電粒子を被着し、 該アンカー用導電粒子を被着した抵抗体の表裏面に金属
を成膜して電極を形成してなることを特徴とする有機質
正特性サーミスタ。
An organic positive temperature coefficient thermistor obtained by forming a composition obtained by dispersing conductive particles in an organic polymer into a sheet to form a resistor, and forming electrodes on the front and back surfaces of said resistor. An electrode is formed by depositing a part of the organic polymer on the front and back surfaces of the resistor, and applying conductive particles for anchoring the electrode, and forming a metal film on the front and back surfaces of the resistor on which the conductive particles for anchoring are applied. An organic positive temperature coefficient thermistor characterized by comprising:
【請求項2】請求項1において、 前記有機ポリマー内に分散させた導電粒子より、前記ア
ンカー用導電粒子の平均粒径を大としたことを特徴とす
る有機質正特性サーミスタ。
2. The organic positive temperature coefficient thermistor according to claim 1, wherein an average particle diameter of the conductive particles for anchor is larger than that of the conductive particles dispersed in the organic polymer.
【請求項3】請求項1または2において、 前記アンカー用導電粒子の平均粒径を1μm以上、50
μm以下としたことを特徴とする有機質正特性サーミス
タ。
3. The method according to claim 1, wherein the conductive particles for anchor have an average particle size of 1 μm or more and 50 μm or more.
An organic positive temperature coefficient thermistor characterized in that the thickness is not more than μm.
【請求項4】請求項1から3までのいずれかにおいて、 前記有機ポリマーに分散させた導電粒子と、前記アンカ
ー用導電粒子の材質を異ならせたことを特徴とする有機
質正特性サーミスタ。
4. The organic positive temperature coefficient thermistor according to claim 1, wherein the conductive particles dispersed in the organic polymer and the conductive particles for the anchor are made of different materials.
【請求項5】請求項1から4までのいずれかにおいて、 前記電極が、ニッケルメッキ、クロムメッキ、あるいは
ニッケルメッキ上に半田メッキしたものからなることを
特徴とする有機質正特性サーミスタ。
5. The organic positive temperature coefficient thermistor according to claim 1, wherein said electrode is made of nickel plating, chromium plating, or nickel plating.
【請求項6】有機ポリマーに導電粒子を分散させてなる
組成物をシート状に成形して抵抗体とし、 前記抵抗体の表裏面に、電極のアンカー用導電粒子を被
着し、 該アンカー用導電粒子の一部を抵抗体に埋め込み、 該アンカー用導電粒子を被着した抵抗体の表裏面に金属
層をメッキして電極を形成することを特徴とする有機質
正特性サーミスタの製造方法。
6. A resistor formed by forming a composition obtained by dispersing conductive particles in an organic polymer into a sheet, and applying conductive particles for anchoring an electrode to the front and back surfaces of the resistor. A method for producing an organic positive temperature coefficient thermistor, comprising: embedding a part of conductive particles in a resistor; and forming electrodes by plating metal layers on the front and back surfaces of the resistor having the anchor conductive particles applied thereto.
JP27464896A 1996-10-17 1996-10-17 Organic positive characteristic thermistor and its manufacture Withdrawn JPH10125504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27464896A JPH10125504A (en) 1996-10-17 1996-10-17 Organic positive characteristic thermistor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27464896A JPH10125504A (en) 1996-10-17 1996-10-17 Organic positive characteristic thermistor and its manufacture

Publications (1)

Publication Number Publication Date
JPH10125504A true JPH10125504A (en) 1998-05-15

Family

ID=17544636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27464896A Withdrawn JPH10125504A (en) 1996-10-17 1996-10-17 Organic positive characteristic thermistor and its manufacture

Country Status (1)

Country Link
JP (1) JPH10125504A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004916A1 (en) * 1999-07-13 2001-01-18 Unitika Ltd. Ptc device
WO2001006521A1 (en) * 1999-07-16 2001-01-25 Kabushiki Kaisha Tokin Ptc device and method for producing the same
US6522237B1 (en) 1999-05-10 2003-02-18 Matsushita Electric Industrial Co., Ltd. Electrode for PTC thermistor and method for producing the same, and PTC thermistor
CN103854816A (en) * 2012-11-29 2014-06-11 聚鼎科技股份有限公司 Surface-mounted overcurrent protection element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6522237B1 (en) 1999-05-10 2003-02-18 Matsushita Electric Industrial Co., Ltd. Electrode for PTC thermistor and method for producing the same, and PTC thermistor
US6558616B2 (en) 1999-05-10 2003-05-06 Matsushita Electric Industrial Co., Ltd. Electrode for PTC thermistor and method for producing the same, and PTC thermistor
WO2001004916A1 (en) * 1999-07-13 2001-01-18 Unitika Ltd. Ptc device
WO2001006521A1 (en) * 1999-07-16 2001-01-25 Kabushiki Kaisha Tokin Ptc device and method for producing the same
EP1126478A1 (en) * 1999-07-16 2001-08-22 Kabushiki Kaisha Tokin Ptc device and method for producing the same
EP1126478A4 (en) * 1999-07-16 2002-01-09 Tokiin Corp Ptc device and method for producing the same
CN103854816A (en) * 2012-11-29 2014-06-11 聚鼎科技股份有限公司 Surface-mounted overcurrent protection element

Similar Documents

Publication Publication Date Title
EP1324388B1 (en) Method for cooling electronic components and thermally conductive sheet for use therewith
JPH11505060A (en) Heating element, manufacturing method and utilization
TW200403963A (en) Flexible printed circuit board and manufacturing method thereof
CN110678704A (en) Fluid heater and method for producing a fluid heater
JP6333552B2 (en) Conductive particles, conductive materials, and connection structures
JPH10125504A (en) Organic positive characteristic thermistor and its manufacture
JPH02304946A (en) Electrostatic chuck
JP3979694B2 (en) Electrostatic chuck device and manufacturing method thereof
JP7268442B2 (en) Electrode manufacturing method and electrode
US6320129B1 (en) Method for making electrode of polymer composite
JPH10208902A (en) Production of organic ptc thermistor
JP3214546B2 (en) Organic positive temperature coefficient thermistor manufacturing method and organic positive temperature coefficient thermistor
JP3833538B2 (en) Electrical device comprising a PTC conductive polymer
JPH10209256A (en) Electrostatic chuck device and its manufacture
WO2001006521A1 (en) Ptc device and method for producing the same
JP2936057B2 (en) Organic PTC thermistor
JPWO2019013219A1 (en) Method for manufacturing laminate for electrochemical device and member for electrochemical device
CN1201553A (en) Earth plate for electrodde base of secondary cell, secondary cell electrode base, process for producing same
JP3586178B2 (en) Organic positive temperature coefficient thermistor and manufacturing method thereof
JPH0589952A (en) Manufacture of planar heating element
TWI254324B (en) Manufacturing method of metal conductive electrode of thermistor
JPH0935906A (en) Polymer based ptc element and its manufacture
JPH0817557A (en) Sheet heating device
JPH0426521B2 (en)
JP2000252102A (en) Protective element and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106