JPH09318321A - Length-measuring apparatus - Google Patents
Length-measuring apparatusInfo
- Publication number
- JPH09318321A JPH09318321A JP13644996A JP13644996A JPH09318321A JP H09318321 A JPH09318321 A JP H09318321A JP 13644996 A JP13644996 A JP 13644996A JP 13644996 A JP13644996 A JP 13644996A JP H09318321 A JPH09318321 A JP H09318321A
- Authority
- JP
- Japan
- Prior art keywords
- stage
- amount
- length measuring
- linear encoder
- moving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Details Of Measuring And Other Instruments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、2次元方向に移動
可能なステージの移動量を測長するための測長装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a length measuring device for measuring a moving amount of a stage movable in two dimensions.
【0002】[0002]
【従来の技術】従来、この種の測長装置は、2次元方向
に移動可能なXYステージの移動量をリニアエンコーダ
によって測長することができるように構成されている。
このため、例えば、図1(a),図2(a)〜(c)に
示すように、上記測長装置には、固定ベース10上をX
方向に移動可能なXステージ12と、このXステージ1
2上をY方向に移動可能であって且つ試料2を載置可能
なYステージ4と、固定ベース10に固定され且つXス
テージ12の移動量を検出するX用リニアエンコーダ6
と、Xステージ12に固定され且つYステージ4の移動
量を検出するY用リニアエンコーダ8と、Yステージ4
に載置された試料2を光学的に観察可能であって且つ固
定ベース10に固定された観察光学系18とが設けられ
ている。2. Description of the Related Art Conventionally, this type of length measuring device is constructed so that the moving amount of an XY stage movable in two dimensions can be measured by a linear encoder.
Therefore, for example, as shown in FIGS. 1 (a) and 2 (a) to (c), the length measuring device has an X on the fixed base 10.
X stage 12 that can move in any direction, and this X stage 1
Y stage 4 which is movable in the Y direction on which the sample 2 can be mounted, and an X linear encoder 6 which is fixed to a fixed base 10 and detects the amount of movement of the X stage 12.
A Y linear encoder 8 that is fixed to the X stage 12 and detects the amount of movement of the Y stage 4, and the Y stage 4
An observation optical system 18 which is capable of optically observing the sample 2 placed on the fixed base 10 and is fixed to the fixed base 10 is provided.
【0003】[0003]
【発明が解決しようとする課題】ここで、上記測長装置
において、図2(a)〜(c)に示すように、試料2を
XY方向(図1(a)参照)に移動させる場合を考え
る。この場合、観察光学系18及びX用リニアエンコー
ダ6は、共に固定ベース10に固定されており、その位
置関係は、常時一定に維持されている。このため、観察
光学系18の観察点PとX用リニアエンコーダ6との間
の距離Mは、常時一定値に維持される。この結果、X方
向の測長データについては、アッベ(abbe)の誤差は常時
一定値となるため、簡単な演算処理によって誤差量を除
去することができる。従って、試料2の移動量とX用リ
ニアエンコーダ6の検出データとの間には、常時、一定
の線形性が維持されることになる。Here, in the above length measuring apparatus, as shown in FIGS. 2A to 2C, the case where the sample 2 is moved in the XY directions (see FIG. 1A) is described. Think In this case, the observation optical system 18 and the X linear encoder 6 are both fixed to the fixed base 10, and the positional relationship thereof is always maintained constant. Therefore, the distance M between the observation point P of the observation optical system 18 and the X linear encoder 6 is always maintained at a constant value. As a result, with respect to the length measurement data in the X direction, the error of Abbe is always a constant value, so that the error amount can be removed by a simple calculation process. Therefore, a constant linearity is always maintained between the movement amount of the sample 2 and the detection data of the X linear encoder 6.
【0004】これに対して、観察光学系18の観察点P
とY用リニアエンコーダ8との間の距離Hは、Yステー
ジ4の移動に伴って変動するため、Y方向の測長データ
に生じるアッベの誤差が変動しまうことになる。このよ
うにアッベの誤差が変動すると、簡単な演算処理によっ
て誤差量を除去することができなくなるといった問題が
生じる。On the other hand, the observation point P of the observation optical system 18
The distance H between the Y linear encoder 8 and the linear encoder 8 for Y varies with the movement of the Y stage 4, so that the Abbe error generated in the length measurement data in the Y direction varies. When the Abbe error fluctuates in this way, there arises a problem that the error amount cannot be removed by a simple arithmetic process.
【0005】具体的に説明すると、まず、Y用リニアエ
ンコーダ8上に任意の基準点Sを規定する。そして、Y
ステージ4を移動させることによって、基準点Sから距
離H1の位置に観察光学系18の観察点Pを位置付ける
(図2(a)参照)。この状態でYステージをY方向に
移動させると、X及びYステージ12,4の機械的な誤
差によって、Yステージ4は、所定の軌跡を描いて移動
することとなる(図2(d)参照)。Specifically, first, an arbitrary reference point S is defined on the Y linear encoder 8. And Y
By moving the stage 4, the observation point P of the observation optical system 18 is positioned at the position of the distance H1 from the reference point S (see FIG. 2A). When the Y stage is moved in the Y direction in this state, the Y stage 4 moves along a predetermined locus due to mechanical errors of the X and Y stages 12 and 4 (see FIG. 2D). ).
【0006】続いて、基準点Sから距離H2,H3の位
置(図2(b),(c)参照)に観察点Pを位置付けた
状態で上記同様の操作を行う。この場合でも、Yステー
ジ4は、図2(d)に示されたような軌跡を描く。Subsequently, the same operation as described above is performed with the observation point P being positioned at positions H2 and H3 from the reference point S (see FIGS. 2B and 2C). Even in this case, the Y stage 4 draws a locus as shown in FIG.
【0007】このような操作を行った場合、図2(d)
に示されたYステージ4の軌跡から明らかなように、距
離Hが変動するとアッベの誤差が変化してしまい簡単な
演算処理によってY方向の測長データの誤差量を除去す
ることができないため、この誤差量以上の測定精度を望
むことができなかった。When such an operation is performed, FIG. 2 (d)
As is clear from the locus of the Y stage 4 shown in FIG. 3, when the distance H changes, the Abbe error changes, and the error amount of the length measurement data in the Y direction cannot be removed by a simple calculation process. It was not possible to expect a measurement accuracy higher than this error amount.
【0008】本発明は、このような課題を解決するため
になされており、その目的は、アッベの誤差の変動状態
の影響を受けること無くステージの移動量を測長可能な
測長装置を提供することにある。The present invention has been made to solve such a problem, and an object thereof is to provide a length measuring device capable of measuring the movement amount of a stage without being affected by the fluctuation state of the Abbe error. To do.
【0009】[0009]
【課題を解決するための手段】このような目的を達成す
るために、本発明の測長装置は、任意の方向に試料を移
動させるように、2次元方向に移動可能なステージ手段
と、このステージ手段の移動量を検出する測長手段と、
前記測長手段によって検出された前記ステージ手段の移
動量に基づいて算出した校正値を用いて、前記測長手段
の検出データに電気的な校正を施す校正装置とを備えて
いる。In order to achieve such an object, the length measuring apparatus of the present invention comprises stage means movable in two dimensions so as to move a sample in an arbitrary direction. Length measuring means for detecting the amount of movement of the stage means,
A calibration device for electrically calibrating the detection data of the length measuring means using a calibration value calculated based on the amount of movement of the stage means detected by the length measuring means.
【0010】[0010]
【発明の実施の形態】以下、本発明の一実施の形態に係
る測長装置について、図1を参照して説明する。なお、
本実施の形態の説明に際し、上記の測長装置と同一の構
成には、同一符号を付して、その説明を省略する。BEST MODE FOR CARRYING OUT THE INVENTION A length measuring apparatus according to an embodiment of the present invention will be described below with reference to FIG. In addition,
In the description of this embodiment, the same components as those of the above-described length measuring device are designated by the same reference numerals, and the description thereof will be omitted.
【0011】図1(a)に示すように、本実施の形態の
測長装置は、任意の方向に試料2を移動させるように、
2次元方向に移動可能なステージ手段と、このステージ
手段の移動量を検出する測長手段と、測長手段とステー
ジ手段との間の距離量に基づいて算出した校正値を用い
て、測長手段の検出データに電気的な校正を施す校正装
置20とを備えている。As shown in FIG. 1A, the length measuring apparatus according to the present embodiment moves the sample 2 in an arbitrary direction.
Length measurement is performed using stage means that can move in two dimensions, length measurement means that detects the amount of movement of this stage means, and a calibration value that is calculated based on the amount of distance between the length measurement means and the stage means. A calibration device 20 for electrically calibrating the detection data of the means.
【0012】ステージ手段は、固定ベース10上をX方
向に移動可能なXステージ12と、X方向に直交するY
方向にXステージ12上を移動可能であって且つ試料2
を載置可能なYステージ4とを備えている。The stage means includes an X stage 12 movable on the fixed base 10 in the X direction and a Y stage orthogonal to the X direction.
That can move on the X stage 12 in the direction
And a Y stage 4 capable of mounting the.
【0013】Xステージ12には、X用駆動装置14が
接続されており、このX用駆動装置14を駆動させるこ
とによって、Xステージ12は、固定ベース10に形成
されたVガイド10a及びフラットガイド10bに沿っ
てX方向に移動する。また、Yステージ4には、Y用駆
動装置16が接続されており、このY用駆動装置16を
駆動させることによって、Yステージ4は、Xステージ
12上に形成されたVガイド12a及びフラットガイド
12bに沿ってY方向に移動する。An X drive unit 14 is connected to the X stage 12, and by driving the X drive unit 14, the X stage 12 is moved to the V guide 10a and the flat guide formed on the fixed base 10. Move in the X direction along 10b. Further, a Y drive device 16 is connected to the Y stage 4, and by driving the Y drive device 16, the Y stage 4 is moved to the V guide 12 a and the flat guide formed on the X stage 12. Move in Y direction along 12b.
【0014】測長手段は、固定ベース10に固定され且
つXステージ12の移動量を検出するX用リニアエンコ
ーダ6と、Xステージ12に固定され且つYステージ4
の移動量を検出するY用リニアエンコーダ8とを備えて
いる。The length measuring means is fixed to the fixed base 10 and detects the moving amount of the X stage 12, and the X linear encoder 6 is fixed to the X stage 12 and the Y stage 4.
And a Y linear encoder 8 for detecting the movement amount of the.
【0015】これらX用及びY用リニアエンコーダ6,
8の検出機能としては、光学的検出機能、機械的検出機
能、電気的検出機能を適用することが可能であるが、本
実施の形態に適用したX用及びY用リニアエンコーダ
6,8は、その一例として、X及びYステージ12,4
の移動量を光学的に検出することができるように構成さ
れている。These X and Y linear encoders 6,
Although it is possible to apply an optical detection function, a mechanical detection function, and an electrical detection function as the detection function of 8, the linear encoders 6 and 8 for X and Y applied to the present embodiment are As an example, the X and Y stages 12 and 4
Is configured to be able to optically detect the movement amount of the.
【0016】また、本実施の形態において、X用リニア
エンコーダ6には、予め設定された基準位置(図示しな
い)に対するXステージ12の移動量及び移動方向を光
学的に検出可能なアブソリュートタイプのリニアエンコ
ーダが適用されており、一方、Y用リニアエンコーダ8
には、現時点の位置(例えば、図2に示された基準点S
が該当する)に対するYステージ4の移動量及び移動方
向を光学的に検出可能なインクリメンタルタイプのリニ
アエンコーダが適用されている。なお、Y用リニアエン
コーダ8として上記アブソリュートタイプのリニアエン
コーダを適用しても良い。In the present embodiment, the X linear encoder 6 is an absolute type linear encoder capable of optically detecting the moving amount and moving direction of the X stage 12 with respect to a preset reference position (not shown). Encoder is applied, while Y linear encoder 8
At the current position (for example, the reference point S shown in FIG. 2).
In this case, an incremental linear encoder capable of optically detecting the movement amount and the movement direction of the Y stage 4 is applied. The absolute type linear encoder may be applied as the Y linear encoder 8.
【0017】次に、本実施の形態の動作について説明す
る。観察光学系18によって光学的に観察しながら、X
及びYステージ12,4を移動させる場合、上述したよ
うに(図2(a)〜(d)参照)、観察光学系18の観
察点PとX用リニアエンコーダ6との間の距離Mは、常
時一定値に維持されるため、X方向の測長データについ
ては、アッベ(abbe)の誤差は常時一定値に維持される。
従って、試料2の移動量とX用リニアエンコーダ6の検
出データとの間には、常時、一定の線形性が維持される
ことになる。Next, the operation of this embodiment will be described. While optically observing with the observation optical system 18, X
When moving the Y stages 12 and 4, the distance M between the observation point P of the observation optical system 18 and the X linear encoder 6 is as described above (see FIGS. 2A to 2D). Since it is always maintained at a constant value, the error of the Abbe is always maintained at a constant value for the length measurement data in the X direction.
Therefore, a constant linearity is always maintained between the movement amount of the sample 2 and the detection data of the X linear encoder 6.
【0018】これに対して、観察光学系18の観察点P
とY用リニアエンコーダ8との間の距離Hは、Yステー
ジ4の移動に伴って変動するため、Y方向の測長データ
に生じるアッベの誤差が変動することとなる。このよう
にアッベの誤差が変動すると、簡単な演算処理によって
変動誤差を除去することができなくなるため、試料2の
移動量とY用リニアエンコーダ8の検出データとの間に
は、線形性を維持させることが困難になってしまうとい
った問題が生じる。On the other hand, the observation point P of the observation optical system 18
The distance H between the Y linear encoder 8 and the Y linear encoder 8 varies with the movement of the Y stage 4, and thus the Abbe error generated in the length measurement data in the Y direction varies. When the Abbe's error fluctuates in this way, the fluctuation error cannot be removed by simple arithmetic processing, so that linearity is maintained between the movement amount of the sample 2 and the detection data of the Y linear encoder 8. There is a problem that it will be difficult to do.
【0019】そこで、本実施の形態の測長装置には、校
正装置20が設けられており、X用及びY用リニアエン
コーダ6,8によって光学的に検出されたX及びYステ
ージ12,4の夫々の移動量に基づいて算出した校正値
を用いて、Y方向の測長データに電気的な校正を施して
いる。Therefore, the length measuring apparatus according to the present embodiment is provided with the calibration apparatus 20 for the X and Y stages 12 and 4 optically detected by the X and Y linear encoders 6 and 8. The calibration value calculated based on each movement amount is used to electrically calibrate the length measurement data in the Y direction.
【0020】具体的には、上記基準位置に対するXステ
ージ12の移動量をΔX、Yステージ4の移動量をΔ
Y、Yステージ4の移動時の真直度をθとすると、 ΔY−(ΔX×sinθ) なる校正値を用いて、Y用リニアエンコーダ8の検出デ
ータに電気的な校正が施されることになる。なお、真直
度θは、Yステージ4のヨーイング方向の値として予め
測定されたデータを用いる。Specifically, the movement amount of the X stage 12 with respect to the reference position is ΔX, and the movement amount of the Y stage 4 is Δ.
Assuming that the straightness of the Y and Y stages 4 when moving is θ, the detection data of the Y linear encoder 8 is electrically calibrated using a calibration value of ΔY− (ΔX × sin θ). . The straightness θ uses data measured in advance as a value in the yawing direction of the Y stage 4.
【0021】本実施の形態によれば、校正装置20によ
ってアッベの誤差の変動量を電気的に校正することがで
きるため、X用及びY用リニアエンコーダ6,8と試料
2の移動量との間に、一定の線形性を維持させることが
できる。このため、例えば試料2の寸法や座標等を高精
度に測長することが可能となる。According to the present embodiment, since the variation amount of the Abbe error can be electrically calibrated by the calibration device 20, the linear encoders 6 and 8 for X and Y and the movement amount of the sample 2 can be adjusted. In the meantime, a constant linearity can be maintained. Therefore, for example, it becomes possible to measure the dimensions, coordinates, etc. of the sample 2 with high accuracy.
【0022】なお、上記基準位置は、校正装置20によ
ってアッベの誤差の変動量を校正するために規定された
ものであり、その位置は任意に設定することができる。
また、上記実施の形態において、上記基準位置は、アブ
ソリュートタイプのX用リニアエンコーダ6を適用する
ことによって規定したが、例えば、図1(b)に示すよ
うに、Xステージ12の基準位置を検出可能な基準位置
検出器22を固定ベース10に固定することによって、
基準位置に対するXステージ12の移動量ΔXを検出し
ても良い。この場合、X用リニアエンコーダ6として
は、インクリメンタルタイプのリニアエンコーダを用い
れば良い。なお、かかる変形例の測長装置(図1(b)
参照)の作用効果は、上記実施の形態と同様であるた
め、その説明は省略する。The reference position is defined by the calibration device 20 for calibrating the variation amount of the Abbe error, and the position can be set arbitrarily.
Further, in the above embodiment, the reference position is defined by applying the absolute type linear encoder 6 for X. However, for example, as shown in FIG. 1B, the reference position of the X stage 12 is detected. By fixing the possible reference position detector 22 to the fixed base 10,
The movement amount ΔX of the X stage 12 with respect to the reference position may be detected. In this case, as the X linear encoder 6, an incremental type linear encoder may be used. It should be noted that such a length measuring device (Fig. 1 (b))
Since the operation and effect of the reference) is the same as that of the above-mentioned embodiment, the description thereof is omitted.
【0023】[0023]
【発明の効果】本発明によれば、アッベの誤差の変動状
態の影響を受けること無くステージの移動量を測長可能
な測長装置を提供することが可能となる。According to the present invention, it is possible to provide a length measuring device capable of measuring the amount of movement of the stage without being affected by the fluctuation state of the Abbe error.
【図1】(a)は、本発明の一実施の形態に係る測長装
置の構成を概略的に示す斜視図、(b)は、本発明の変
形例に係る測長装置の構成を概略的に示す斜視図。1A is a perspective view schematically showing a configuration of a length measuring device according to an embodiment of the present invention, and FIG. 1B is a schematic diagram of a configuration of a length measuring device according to a modification of the present invention. FIG.
【図2】(a)〜(c)は、基準点Sから距離H1,H
2,H3の位置に観察光学系の観察点を位置付けた状態
でYステージを移動させた際に生じるアッベの誤差を説
明するための動作説明図、(d)は、同図(a)〜
(c)の操作を行った際に、アッベの誤差によって生じ
るYステージの移動軌跡を示す図。2A to 2C are distances H1 and H from a reference point S.
2, H3 is an operation explanatory view for explaining an Abbe error generated when the Y stage is moved in a state where the observation point of the observation optical system is positioned at positions H2 and H3.
The figure which shows the movement locus of the Y stage which arises by the error of Abbe, when the operation of (c) is performed.
2…試料、4…Yステージ、6…X用リニアエンコー
ダ、8…Y用リニアエンコーダ、20…校正装置。2 ... sample, 4 ... Y stage, 6 ... X linear encoder, 8 ... Y linear encoder, 20 ... calibration device.
Claims (3)
2次元方向に移動可能なステージ手段と、 このステージ手段の移動量を検出する測長手段と、 前記測長手段によって検出された前記ステージ手段の移
動量に基づいて算出した校正値を用いて、前記測長手段
の検出データに電気的な校正を施す校正装置とを備えて
いることを特徴とする測長装置。1. A method for moving a sample in an arbitrary direction,
Using stage means movable in two-dimensional directions, length measuring means for detecting the movement amount of the stage means, and calibration values calculated based on the movement amount of the stage means detected by the length measuring means, A length measuring device comprising: a calibration device for electrically correcting the detection data of the length measuring means.
方向に移動可能なXステージと、前記X方向に直交する
Y方向に前記Xステージ上を移動可能なYステージとを
備えており、また、前記測長手段は、前記固定ベースに
固定され且つ前記Xステージの移動量を検出するX用リ
ニアエンコーダと、前記Xステージに固定され且つ前記
Yステージの移動量を検出するY用リニアエンコーダと
を備えていることを特徴とする請求項1に記載の測長装
置。2. The stage means is arranged to move X on a fixed base.
And an Y stage movable on the X stage in a Y direction orthogonal to the X direction, and the length measuring means is fixed to the fixed base and The linear encoder for X which detects the amount of movement of the X stage, and the linear encoder for Y which is fixed to the X stage and detects the amount of movement of the Y stage are provided. Length measuring device.
ステージの移動量をΔY、前記Yステージの移動時の真
直度をθとすると、前記校正装置の校正値は、 ΔY−(ΔX×sinθ) なる値を満足することを特徴とする請求項2に記載の測
長装置。3. The moving amount of the X stage is ΔX, and the Y is
The calibration value of the calibration device satisfies a value of ΔY− (ΔX × sin θ), where ΔY is a movement amount of the stage and θ is a straightness when the Y stage is moved. The measuring device described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13644996A JPH09318321A (en) | 1996-05-30 | 1996-05-30 | Length-measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13644996A JPH09318321A (en) | 1996-05-30 | 1996-05-30 | Length-measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09318321A true JPH09318321A (en) | 1997-12-12 |
Family
ID=15175378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13644996A Withdrawn JPH09318321A (en) | 1996-05-30 | 1996-05-30 | Length-measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09318321A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008026739A1 (en) * | 2006-08-31 | 2008-03-06 | Nikon Corporation | Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
WO2008026742A1 (en) * | 2006-08-31 | 2008-03-06 | Nikon Corporation | Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
WO2008026732A1 (en) * | 2006-08-31 | 2008-03-06 | Nikon Corporation | Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method |
WO2008029758A1 (en) * | 2006-09-01 | 2008-03-13 | Nikon Corporation | Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method |
JP2014007411A (en) * | 2006-09-01 | 2014-01-16 | Nikon Corp | Exposure device, exposure method and device manufacturing method |
KR20160003308A (en) * | 2008-04-30 | 2016-01-08 | 가부시키가이샤 니콘 | Stage apparatus, patterning apparatus, exposure apparatus, stage drive apparatus, exposure method, and device fabrication method |
-
1996
- 1996-05-30 JP JP13644996A patent/JPH09318321A/en not_active Withdrawn
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016114950A (en) * | 2006-08-31 | 2016-06-23 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
US10353302B2 (en) | 2006-08-31 | 2019-07-16 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
WO2008026732A1 (en) * | 2006-08-31 | 2008-03-06 | Nikon Corporation | Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method |
US10353301B2 (en) | 2006-08-31 | 2019-07-16 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
JPWO2008026742A1 (en) * | 2006-08-31 | 2010-01-21 | 株式会社ニコン | Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, and device manufacturing method |
JP5035245B2 (en) * | 2006-08-31 | 2012-09-26 | 株式会社ニコン | Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, and device manufacturing method |
WO2008026739A1 (en) * | 2006-08-31 | 2008-03-06 | Nikon Corporation | Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
US10338482B2 (en) | 2006-08-31 | 2019-07-02 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
US10162274B2 (en) | 2006-08-31 | 2018-12-25 | Nikon Corporation | Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method |
US10101673B2 (en) | 2006-08-31 | 2018-10-16 | Nikon Corporation | Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method |
US8937710B2 (en) | 2006-08-31 | 2015-01-20 | Nikon Corporation | Exposure method and apparatus compensating measuring error of encoder due to grating section and displacement of movable body in Z direction |
US8947639B2 (en) | 2006-08-31 | 2015-02-03 | Nikon Corporation | Exposure method and apparatus measuring position of movable body based on information on flatness of encoder grating section |
US10073359B2 (en) | 2006-08-31 | 2018-09-11 | Nikon Corporation | Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method |
US10067428B2 (en) | 2006-08-31 | 2018-09-04 | Nikon Corporation | Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method |
JP2018124570A (en) * | 2006-08-31 | 2018-08-09 | 株式会社ニコン | Exposure apparatus, exposure method, and method of manufacturing device |
JP2016197244A (en) * | 2006-08-31 | 2016-11-24 | 株式会社ニコン | Exposure apparatus and exposure method, and method for producing device |
US9983486B2 (en) | 2006-08-31 | 2018-05-29 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
US9958792B2 (en) | 2006-08-31 | 2018-05-01 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
JP2016106252A (en) * | 2006-08-31 | 2016-06-16 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
WO2008026742A1 (en) * | 2006-08-31 | 2008-03-06 | Nikon Corporation | Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
WO2008029758A1 (en) * | 2006-09-01 | 2008-03-13 | Nikon Corporation | Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method |
JP2018112752A (en) * | 2006-09-01 | 2018-07-19 | 株式会社ニコン | Exposure device and exposure method, and production method for device |
KR20150119494A (en) * | 2006-09-01 | 2015-10-23 | 가부시키가이샤 니콘 | Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method |
US9625834B2 (en) | 2006-09-01 | 2017-04-18 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
US9740114B2 (en) | 2006-09-01 | 2017-08-22 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
US9760021B2 (en) | 2006-09-01 | 2017-09-12 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
US9846374B2 (en) | 2006-09-01 | 2017-12-19 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
US9874822B2 (en) | 2006-09-01 | 2018-01-23 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
JP2016029490A (en) * | 2006-09-01 | 2016-03-03 | 株式会社ニコン | Exposure apparatus and exposure method, and method for manufacturing device |
US9971253B2 (en) | 2006-09-01 | 2018-05-15 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
US9377698B2 (en) | 2006-09-01 | 2016-06-28 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
JP2016106253A (en) * | 2006-09-01 | 2016-06-16 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
KR20150117715A (en) * | 2006-09-01 | 2015-10-20 | 가부시키가이샤 니콘 | Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method |
JP2015111695A (en) * | 2006-09-01 | 2015-06-18 | 株式会社ニコン | Exposure method and exposure device, and method of manufacturing device |
JP2015065476A (en) * | 2006-09-01 | 2015-04-09 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
JP2015008306A (en) * | 2006-09-01 | 2015-01-15 | 株式会社ニコン | Exposure method, exposure apparatus and device manufacturing method |
JP2014197703A (en) * | 2006-09-01 | 2014-10-16 | 株式会社ニコン | Exposing method and exposing apparatus, and method for manufacturing device |
US10197924B2 (en) | 2006-09-01 | 2019-02-05 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
US10289010B2 (en) | 2006-09-01 | 2019-05-14 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
US10289012B2 (en) | 2006-09-01 | 2019-05-14 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method |
JP2014007411A (en) * | 2006-09-01 | 2014-01-16 | Nikon Corp | Exposure device, exposure method and device manufacturing method |
CN102749813A (en) * | 2006-09-01 | 2012-10-24 | 株式会社尼康 | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
KR20160003308A (en) * | 2008-04-30 | 2016-01-08 | 가부시키가이샤 니콘 | Stage apparatus, patterning apparatus, exposure apparatus, stage drive apparatus, exposure method, and device fabrication method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7615993B2 (en) | Magnetic line-type position-angle detecting device | |
JPH0513445B2 (en) | ||
JP2001116869A (en) | Sample inspection and/or process device | |
JP2009068957A (en) | Straightness measuring apparatus, thickness fluctuation measuring apparatus, and orthogonality measuring apparatus | |
JPH09318321A (en) | Length-measuring apparatus | |
KR101854177B1 (en) | Processing implement position alignment device for component and method thereof | |
US20100182611A1 (en) | Displacement measuring apparatus and displacement measuring method | |
JP2008064498A (en) | Electromagnetic induction encoder | |
CN114166930A (en) | Steel cord fabric detection and calibration device and detection and calibration method | |
JP2007333442A (en) | Shape measurement method | |
JP3512440B2 (en) | Displacement sensor | |
JP2001337146A (en) | Sensitivity calibration device for magnetic sensor | |
JPH063115A (en) | Measuring equipment of height of sample | |
JP3265318B2 (en) | Contour shape measurement data correction method and contour shape measurement machine | |
JPH11218941A (en) | Stage device and exposure device using the same | |
EP2930463A1 (en) | System for measuring orthogonality of y-cross beam and x-guides of a stage and method for positioning stage home using same | |
JPH06109455A (en) | Measuring device for straightness of long material | |
JP3137796B2 (en) | Scanning probe microscope apparatus and measuring method using the same | |
JPH06273103A (en) | Method for measuring outside diameter of cylindrical object | |
JP3472553B2 (en) | Gap adjusting device and adjusting method | |
JPS63147207A (en) | Positioning device | |
JPH0727545A (en) | Long material straightness measuring device | |
JPH02253112A (en) | Form measuring instrument | |
JP2004144646A (en) | Straightness measuring system | |
JP2004012435A (en) | Film thickness measuring method and its device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030805 |