JPH0931588A - Production of invar (r) sintered compact - Google Patents
Production of invar (r) sintered compactInfo
- Publication number
- JPH0931588A JPH0931588A JP20857095A JP20857095A JPH0931588A JP H0931588 A JPH0931588 A JP H0931588A JP 20857095 A JP20857095 A JP 20857095A JP 20857095 A JP20857095 A JP 20857095A JP H0931588 A JPH0931588 A JP H0931588A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- powder
- sintered body
- oxygen
- amber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱膨脹係数が低
く、溶製材と同程度の機械的特性を有するアンバー焼結
体の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an amber sintered body having a low coefficient of thermal expansion and having mechanical properties comparable to those of an ingot.
【0002】[0002]
【従来の技術】Feに合金元素としてNiを添加してい
くと、Niが添加された合金の熱膨脹係数に異常性が現
われる。合金中のNi含有量が約36.5重量%で、熱
膨脹係数は最も低くなり、純鉄の約1/10である。こ
の程度の熱膨脹係数では、上記Fe−Ni合金は、実用
的に膨脹しないといえるので、「Invariabl
e」を略してアンバー、インバーあるいは不変鋼といわ
れ、この低熱膨脹の性質を利用し標準尺、バイメタル素
子、精密計測部品、光学系部品などに使用されている。
上記アンバー製品を製造するには、一般に溶製材を機械
加工する方法が行われている。しかし、複雑な形状のア
ンバー製品を製造する場合、上記溶製材を機械加工する
方法では高価になるため、粉末冶金法による方法が試み
られている(例えば、特開昭61−197476号公報
参照)。ところで、粉末冶金法による方法は、複雑な形
状の製品を製造する上で利点を有するものの、製品の高
密度化が難しく、強いて高密度化を計ろうとすると、高
価な微粉の使用、長時間の焼結、熱間静水圧処理(HI
P)などを行わなければならなかった。2. Description of the Related Art When Ni is added as an alloying element to Fe, an anomaly appears in the coefficient of thermal expansion of the alloy to which Ni is added. When the Ni content in the alloy is about 36.5% by weight, the coefficient of thermal expansion becomes the lowest, which is about 1/10 of that of pure iron. It can be said that the Fe-Ni alloy does not practically expand with such a coefficient of thermal expansion. Therefore, "Invariable
"e" is abbreviated as "amber", "invar" or "invariant steel", and it is used for standard scales, bimetal elements, precision measuring parts, optical parts, etc. by utilizing the property of low thermal expansion.
In order to manufacture the above-mentioned amber product, a method of machining an ingot is generally used. However, in the case of manufacturing an amber product having a complicated shape, the method of machining the ingot is expensive, so a method by the powder metallurgy method has been tried (for example, see JP-A-61-197476). . By the way, although the method by the powder metallurgy has an advantage in manufacturing a product having a complicated shape, it is difficult to densify the product, and if the densification is attempted to be strong, use of expensive fine powder and long time Sintering, hot isostatic pressing (HI
P) had to be done.
【0003】[0003]
【発明が解決しようとする課題】本発明の目的は、上記
の事情に鑑み、アンバー焼結体が実用的に膨脹しない程
度に熱膨脹係数が低く、溶製材と同程度の機械的特性を
有するアンバー焼結体を製造する方法を提供することに
ある。In view of the above circumstances, an object of the present invention is to provide an amber sintered body having a low coefficient of thermal expansion to the extent that it does not practically expand, and having mechanical properties similar to those of an ingot material. It is to provide a method for producing a sintered body.
【0004】[0004]
【課題を解決するための手段】本発明は、上記目的を達
成するものであり、Niを33〜40重量%含み、残部
が実質的にFeからなり、不可避不純物として酸素を
0.2重量%以上含む原料粉末にC粉末を添加し、得ら
れた混合粉末を成形した後、または該混合粉末にバイン
ダーを添加して混練物を得、さらに該混練物を射出成形
した後、非酸化性雰囲気で焼結し、Cを0.05重量%
以下、酸素を0.2重量%以下含み、かつ、相対密度が
94%以上の焼結体を得ることからなるアンバー焼結体
の製造方法である。上記非酸化性雰囲気は、真空雰囲
気、水素雰囲気が好ましい。Means for Solving the Problems The present invention achieves the above object, containing 33 to 40% by weight of Ni, the balance substantially consisting of Fe, and 0.2% by weight of oxygen as an unavoidable impurity. After adding C powder to the raw material powder containing the above and molding the obtained mixed powder, or adding a binder to the mixed powder to obtain a kneaded product, and further injection molding the kneaded product, a non-oxidizing atmosphere Sintered with 0.05 wt% C
The method for producing an amber sintered body comprises obtaining a sintered body containing oxygen in an amount of 0.2% by weight or less and having a relative density of 94% or more. The non-oxidizing atmosphere is preferably a vacuum atmosphere or a hydrogen atmosphere.
【0005】[0005]
【発明の実施の形態】本発明のアンバー焼結体の製造方
法において、Niを33〜40重量%含み、残部が実質
的にFeからなり、不可避不純物として酸素を0.2重
量%以上含む原料粉末にC粉末を添加することが重要で
ある。上記C粉末を添加することによって、後工程で非
酸化性雰囲気で焼結する際、被焼結体中のCと酸素が反
応してCOガスを生成、放出するので、製造される焼結
体中の酸素が除去されると共に、焼結が促進し、アンバ
ー焼結体の緻密化(相対密度94%以上)が達成され
る。C粉末を添加する原料粉末のNi含有量が33〜4
0重量%の範囲を外れると、製造されるアンバー焼結体
が実用的に膨脹しない程度に該アンバー焼結体の熱膨脹
係数が低くなり難くなる。また、C粉末を添加する上記
原料粉末中に不可避不純物として含まれる酸素の含有量
が0.2重量%未満では、該C粉末による上記アンバー
焼結体の緻密化作用が十分に発揮されない。C粉末を添
加する上記原料粉末中に不可避不純物として含まれる酸
素の含有量の上限は、通常0.5重量%程度であるが、
0.5重量%程度を若干超えてもよい。ただし、酸素含
有量が余りに多過ぎると、添加されるべきC粉末の量が
多くなり過ぎて、製造されるアンバー焼結体のC含有量
を制御し難く、該C含有量が0.05重量%を超え易く
なる。BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing an amber sintered body of the present invention, a raw material containing 33 to 40% by weight of Ni, the balance substantially consisting of Fe, and containing 0.2% by weight or more of oxygen as an unavoidable impurity. It is important to add C powder to the powder. By adding the C powder, when C is sintered in a non-oxidizing atmosphere in a subsequent step, C in the material to be sintered reacts with oxygen to generate and release CO gas, so that a sintered body to be manufactured. While oxygen in the inside is removed, sintering is promoted, and densification of the amber sintered body (relative density of 94% or more) is achieved. The Ni content of the raw material powder to which the C powder is added is 33 to 4
When the amount is out of the range of 0% by weight, it becomes difficult to lower the thermal expansion coefficient of the amber sintered body to the extent that it does not practically expand. Further, when the content of oxygen contained as an unavoidable impurity in the raw material powder to which the C powder is added is less than 0.2% by weight, the densifying action of the amber sintered body by the C powder is not sufficiently exhibited. The upper limit of the content of oxygen contained as an unavoidable impurity in the raw material powder to which the C powder is added is usually about 0.5% by weight.
It may be slightly over 0.5% by weight. However, if the oxygen content is too large, the amount of C powder to be added becomes too large, and it is difficult to control the C content of the manufactured amber sintered body, and the C content is 0.05 weight%. % Easily.
【0006】C粉末を添加する上記原料粉末の粒径は、
平均粒径で5〜50μmが好ましい。5μm未満では、
酸素含有量が0.5重量%程度以下のものが入手し難い
か、入手し得るにしても高価となり、一方、50μmを
超えると、C粉末を添加する上記原料粉末の焼結性が低
下する。本発明のアンバー焼結体の製造方法において、
原料粉末に添加するC粉末は、通常、該C粉末を添加し
て得られる混合粉末のC含有量が、0.05〜0.4重
量%になるように添加するが、後工程の焼結でCを0.
05重量%以下、酸素を0.2重量%以下含む焼結体が
得られるように該C含有量を適宜定めることができる。
上記C粉末を添加して得られる混合粉末は、圧縮成形な
どに供される。また、バインダーを添加する場合、混練
物を射出成形し、射出成形体を脱バインダーする。この
バインダーは、射出成形体を脱バインダーした後にC分
が残留し難い、例えばワックスを主成分としたバインダ
ーが好ましい。圧縮成形や射出成形などの後、成形体を
非酸化性雰囲気で焼結することにより、アンバー焼結体
を製造する。上記アンバー焼結体の製造方法において、
C粉末を添加して混合粉末を得た後は、公知の方法を行
うが、製造するアンバー焼結体は、C含有量が0.05
重量%以下、酸素含有量が0.2重量%以下であり、か
つ相対密度が94%以上である必要があるので、そのよ
うなアンバー焼結体を製造するのに適当な条件を採用す
ることができる。The particle size of the raw material powder to which C powder is added is
The average particle size is preferably 5 to 50 μm. Below 5 μm,
If the oxygen content is about 0.5% by weight or less, it is difficult to obtain it, or if it is available, it becomes expensive. On the other hand, if it exceeds 50 μm, the sinterability of the above raw material powder to which the C powder is added deteriorates. . In the method for producing an amber sintered body of the present invention,
The C powder to be added to the raw material powder is usually added so that the C content of the mixed powder obtained by adding the C powder is 0.05 to 0.4% by weight. C to 0.
The C content can be appropriately determined so that a sintered body containing not more than 05% by weight and not more than 0.2% by weight of oxygen can be obtained.
The mixed powder obtained by adding the above C powder is subjected to compression molding and the like. When a binder is added, the kneaded product is injection-molded and the injection-molded product is debindered. This binder is preferably a binder whose main component is wax, for example, in which C content hardly remains after debinding the injection-molded article. After compression molding, injection molding, etc., the amber sintered body is manufactured by sintering the molded body in a non-oxidizing atmosphere. In the method for manufacturing an amber sintered body,
After the C powder is added to obtain the mixed powder, a known method is carried out. However, the manufactured amber sintered body has a C content of 0.05.
Since it is necessary that the content is not more than wt%, the oxygen content is not more than 0.2 wt%, and the relative density is not less than 94%, it is necessary to adopt appropriate conditions for producing such an amber sintered body. You can
【0007】製造するアンバー焼結体のC含有量が0.
05重量%を超えると、該アンバー焼結体の溶接性や耐
食性が低下する。また、酸素含有量が0.2重量%を超
えると、相対密度が94%以上の焼結体となり難い。相
対密度が94%未満では、溶製材と同程度の機械的特性
を有する焼結体とはなり難い。The C content of the produced amber sintered body is 0.
If the amount exceeds 05% by weight, the weldability and corrosion resistance of the amber sintered body deteriorate. Further, if the oxygen content exceeds 0.2% by weight, it is difficult to obtain a sintered body having a relative density of 94% or more. If the relative density is less than 94%, it will be difficult to obtain a sintered body having the same mechanical properties as the ingot material.
【0008】[0008]
[実施例1]Fe粉(平均粒径8μm、酸素含有量0.
35重量%)とNi粉(平均粒径7μm、酸素含有量
0.25重量%)を用いて、Niを36重量%含み、残
部が実質的にFeからなり、不可避不純物として酸素を
0.31重量%含む原料粉末を調製した。次に、C粉末
(平均粒径30μm)をこの原料粉末への添加用として
用い混合して、Niを36重量%およびCを0.1重量
%含み、残部が実質的にFeからなり、不可避不純物と
して酸素を0.31重量%含む混合粉末を得た後、圧力
を2000kgf/cm2 としてこの混合粉末を圧縮成
形した。得られた圧縮成形体(直径20mm、厚さ10
mm)を真空中1350℃の温度で2時間焼結してアン
バー焼結体を製造した。そして、製造したアンバー焼結
体のC含有量、酸素含有量、相対密度、室温〜100℃
までの熱膨脹係数および溶接性を測定した。それらの結
果を表1に示す。なお、溶接性は良好であった。Example 1 Fe powder (average particle size 8 μm, oxygen content 0.
35% by weight) and Ni powder (average particle size: 7 μm, oxygen content: 0.25% by weight), containing 36% by weight of Ni, the balance consisting essentially of Fe, and 0.31 of oxygen as an unavoidable impurity. A raw material powder containing wt% was prepared. Next, C powder (average particle size: 30 μm) was used as an additive to this raw material powder and mixed to contain 36% by weight of Ni and 0.1% by weight of C, and the balance substantially consisted of Fe. After obtaining a mixed powder containing 0.31% by weight of oxygen as an impurity, the mixed powder was compression molded under a pressure of 2000 kgf / cm 2 . Obtained compression molded product (diameter 20 mm, thickness 10)
mm) was sintered in vacuum at a temperature of 1350 ° C. for 2 hours to produce an amber sintered body. Then, the C content, oxygen content, relative density, room temperature to 100 ° C. of the manufactured amber sintered body
The coefficient of thermal expansion and the weldability were measured. Table 1 shows the results. The weldability was good.
【0009】[実施例2]Niを34重量%およびCを
0.1重量%含み、残部が実質的にFeからなり、不可
避不純物として酸素を0.32重量%含む混合粉末を得
た以外は、実施例1と同様に試験した。それらの結果を
表1に示す。なお、溶接性は良好であった。Example 2 Except that a mixed powder containing 34% by weight of Ni and 0.1% by weight of C, the balance being substantially Fe and containing 0.32% by weight of oxygen as an unavoidable impurity was obtained. The same test as in Example 1 was performed. Table 1 shows the results. The weldability was good.
【0010】[実施例3]Niを39重量%およびCを
0.1重量%含み、残部が実質的にFeからなり、不可
避不純物として酸素を0.31重量%含む混合粉末を得
た以外は、実施例1と同様に試験した。それらの結果を
表1に示す。なお、溶接性は良好であった。[Example 3] A mixed powder containing 39% by weight of Ni and 0.1% by weight of C, the balance being substantially Fe, and containing 0.31% by weight of oxygen as an unavoidable impurity was obtained. The same test as in Example 1 was performed. Table 1 shows the results. The weldability was good.
【0011】[実施例4]Niを36重量%およびCを
0.25重量%含み、残部が実質的にFeからなり、不
可避不純物として酸素を0.31重量%含む混合粉末を
得た以外は、実施例1と同様に試験した。それらの結果
を表1に示す。なお、溶接性は良好であった。[Example 4] A mixed powder containing 36% by weight of Ni and 0.25% by weight of C, the balance substantially consisting of Fe, and 0.31% by weight of oxygen as an unavoidable impurity was obtained. The same test as in Example 1 was performed. Table 1 shows the results. The weldability was good.
【0012】[実施例5]実施例1と同様にして混合粉
末を得た後、この混合粉末とワックス系バインダーの容
量比が55:45になるようにワックス系バインダーを
この混合粉末に添加して150℃で混練し、次にこの混
練物をペレット状に造粒した。この後、上記ペレットを
射出成形機を用いて射出成形し、次にこの射出成形体を
300℃に保持してワックス系バインダーを除去した。
得られた射出成形体(直径20mm、厚さ10mm)を
真空中1350℃の温度で2時間焼結してアンバー焼結
体を製造した。そして、製造したアンバー焼結体のC含
有量、酸素含有量、相対密度、室温〜100℃までの熱
膨脹係数および溶接性を実施例1と同様に測定した。そ
れらの結果を表1に示す。なお、溶接性は良好であっ
た。Example 5 A mixed powder was obtained in the same manner as in Example 1, and then a wax binder was added to this mixed powder so that the volume ratio of the mixed powder and the wax binder was 55:45. And kneading at 150 ° C., and then the kneaded product was granulated into pellets. Then, the pellets were injection-molded using an injection molding machine, and then the injection-molded body was kept at 300 ° C. to remove the wax-based binder.
The obtained injection-molded body (diameter 20 mm, thickness 10 mm) was sintered in vacuum at a temperature of 1350 ° C. for 2 hours to produce an amber sintered body. Then, the C content, oxygen content, relative density, thermal expansion coefficient from room temperature to 100 ° C. and weldability of the produced amber sintered body were measured in the same manner as in Example 1. Table 1 shows the results. The weldability was good.
【0013】[比較例1]原料粉末への添加用としての
C粉末を用いなかった以外は、実施例1と同様に試験し
た。それらの結果を表1に示す。なお、溶接性は良好で
あった。[Comparative Example 1] A test was conducted in the same manner as in Example 1 except that C powder for addition to the raw material powder was not used. Table 1 shows the results. The weldability was good.
【0014】[比較例2]Niを32重量%およびCを
0.1重量%含み、残部が実質的にFeからなり、不可
避不純物として酸素を0.32重量%含む混合粉末を得
た以外は、実施例1と同様に試験した。それらの結果を
表1に示す。なお、溶接性は良好であった。[Comparative Example 2] A mixed powder containing 32% by weight of Ni and 0.1% by weight of C, the remainder substantially consisting of Fe, and containing 0.32% by weight of oxygen as an unavoidable impurity was obtained. The same test as in Example 1 was performed. Table 1 shows the results. The weldability was good.
【0015】[比較例3]Niを41重量%およびCを
0.1重量%含み、残部が実質的にFeからなり、不可
避不純物として酸素を0.31重量%含む混合粉末を得
た以外は、実施例1と同様に試験した。それらの結果を
表1に示す。なお、溶接性は良好であった。[Comparative Example 3] A mixed powder containing 41% by weight of Ni and 0.1% by weight of C, the balance being substantially Fe, and 0.31% by weight of oxygen as an unavoidable impurity was obtained. The same test as in Example 1 was performed. Table 1 shows the results. The weldability was good.
【0016】[比較例4]原料粉末への添加用としての
C粉末(平均粒径30μm)の配合量を多くし、C粉末
を添加した混合粉末のC含有量を0.65重量%とした
以外は、実施例1と同様に試験した。それらの結果を表
1に示す。なお、溶接性は不良であった。[Comparative Example 4] The amount of C powder (average particle size 30 μm) to be added to the raw material powder was increased, and the C content of the mixed powder to which C powder was added was 0.65% by weight. Other than that, it tested like Example 1. Table 1 shows the results. The weldability was poor.
【0017】[0017]
【表1】 混合粉末組成 成 焼 結 体 (重量%) 形 法 C 酸素 相対 熱膨脹係数 Ni C 酸素 (重量%) (重量%) 密度 (×10-6/℃ 実施例1 36 0.1 0.31 圧縮 0.003 0.008 96.0 0.98 実施例2 34 0.1 0.32 圧縮 0.004 0.007 95.9 2.2 実施例3 39 0.1 0.31 圧縮 0.003 0.007 95.8 2.5 実施例4 36 0.25 0.31 圧縮 0.008 0.005 96.7 0.93 実施例5 36 0.1 0.31 射出 0.005 0.007 95.8 1.01 比較例1 36 0.01 0.31 圧縮 0.004 0.24 85.2 1.31 比較例2 32 0.1 0.32 圧縮 0.004 0.009 95.9 4.32 比較例3 41 0.1 0.31 圧縮 0.005 0.009 95.8 4.76 比較例4 36 0.65 0.31 圧縮 0.15 0.003 97.8 1.67[Table 1] Mixed powder composition Sintered body (wt%) Form C Oxygen Relative coefficient of thermal expansion Ni C Oxygen (wt%) (wt%) Density (× 10 -6 / ℃ Example 1 36 0.1 0.31 Compressed 0.003 0.008 96.0 0.98 Example 2 34 0.1 0.32 Compressed 0.004 0.007 95.9 2.2 Example 3 39 0.1 0.31 Compressed 0.003 0.007 95.8 2.5 Example 4 36 0.25 0.31 Compressed 0.008 0.005 96.7 0.93 Example 5 36 0.1 0.31 Injection 0.005 0.007 95.8 1.01 Comparative Example 1 36 0.01 0.31 Compressed 0.004 0.24 85.2 1.31 Comparative Example 2 32 0.1 0.32 Compressed 0.004 0.009 95.9 4.32 Comparative Example 3 41 0.1 0.31 Compressed 0.005 0.009 95.8 4.76 Comparative Example 4 36 0.65 0.31 Compressed 0.15 0.003 97.8 1.67
【0018】以上から次のことが分かる。即ち、(1)
実施例1〜5のアンバー焼結体は、いずれも、C含有量
が0.05重量%以下、酸素含有量が0.2重量%以下
であり、相対密度が94%以上を有し、そして熱膨脹係
数が3×10-6/℃以下で、アンバー焼結体が実用的に
膨脹しない程度に十分低い、(2)比較例1のアンバー
焼結体は、酸素含有量が0.24重量%と多く、相対密
度が85.2%と低いため、機械的特性が溶製材より劣
る、(3)比較例2および比較例3のアンバー焼結体
は、Niの配合量が33〜40重量%の範囲から外れた
ため、熱膨脹係数が4×10-6/℃以上と高く、アンバ
ー焼結体が実用的に膨脹しない程度を超えている、
(4)比較例4のアンバー焼結体は、C粉末の配合量が
多過ぎてC含有量が0.15重量%と多過ぎたため、溶
接性が劣るものとなった。From the above, the following can be seen. That is, (1)
The amber sintered bodies of Examples 1 to 5 all have a C content of 0.05 wt% or less, an oxygen content of 0.2 wt% or less, and a relative density of 94% or more, and The coefficient of thermal expansion is 3 × 10 −6 / ° C. or less and is low enough that the amber sintered body does not expand practically. (2) The amber sintered body of Comparative Example 1 has an oxygen content of 0.24 wt%. Since the relative density is low and the relative density is as low as 85.2%, the mechanical properties are inferior to those of the ingot material. (3) In the amber sintered bodies of Comparative Example 2 and Comparative Example 3, the Ni content is 33 to 40% by weight. Since it is out of the range, the coefficient of thermal expansion is as high as 4 × 10 −6 / ° C. or more, which exceeds the extent that the amber sintered body does not expand practically.
(4) In the amber sintered body of Comparative Example 4, the weldability was poor because the C powder content was too high and the C content was too high at 0.15% by weight.
【0019】[0019]
【発明の効果】本発明によれば、アンバー焼結体が実用
的に膨脹しない程度に熱膨脹係数が低く、溶製材と同程
度の機械的特性を有するアンバー焼結体を製造すること
ができる。EFFECTS OF THE INVENTION According to the present invention, it is possible to manufacture an amber sintered body having a low coefficient of thermal expansion to the extent that the amber sintered body does not practically expand and having mechanical properties similar to those of the ingot material.
Claims (5)
質的にFeからなり、不可避不純物として酸素を0.2
重量%以上含む原料粉末にC粉末を添加し、得られた混
合粉末を成形した後、非酸化性雰囲気で焼結し、Cを
0.05重量%以下、酸素を0.2重量%以下含み、か
つ、相対密度が94%以上の焼結体を得ることからなる
アンバー焼結体の製造方法。1. Ni-containing 33 to 40% by weight, the balance consisting essentially of Fe, and 0.2 as oxygen inevitable impurities.
C powder is added to the raw material powder containing at least wt% and the obtained mixed powder is molded and then sintered in a non-oxidizing atmosphere to contain C at 0.05 wt% or less and oxygen at 0.2 wt% or less. And a method for producing an amber sintered body, which comprises obtaining a sintered body having a relative density of 94% or more.
質的にFeからなり、不可避不純物として酸素を0.2
重量%以上含む原料粉末にC粉末を添加し、得られた混
合粉末にバインダーを添加して混練物を得、さらに該混
練物を射出成形した後、非酸化性雰囲気で焼結し、Cを
0.05重量%以下、酸素を0.2重量%以下含み、か
つ、相対密度が94%以上の焼結体を得ることからなる
アンバー焼結体の製造方法。2. Ni to 33 to 40% by weight, the balance consisting essentially of Fe, and 0.2 oxygen as an unavoidable impurity.
C powder is added to the raw material powder containing at least wt%, a binder is added to the obtained mixed powder to obtain a kneaded product, and the kneaded product is injection-molded and then sintered in a non-oxidizing atmosphere to remove C A method for producing an amber sintered body, which comprises obtaining a sintered body containing 0.05% by weight or less, 0.2% by weight or less of oxygen, and a relative density of 94% or more.
素雰囲気である請求項1または2に記載のアンバー焼結
体の製造方法。3. The method for producing an amber sintered body according to claim 1, wherein the non-oxidizing atmosphere is a vacuum atmosphere or a hydrogen atmosphere.
む請求項1、2または3に記載のアンバー焼結体の製造
方法。4. The method for producing an amber sintered body according to claim 1, 2 or 3, wherein the raw material powder contains 0.5% by weight or less of oxygen.
0.05〜0.4重量%である請求項1〜4のいずれか
に記載のアンバー焼結体の製造方法。5. The method for producing an amber sintered body according to claim 1, wherein the amount of C powder added to the raw material powder is 0.05 to 0.4% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20857095A JPH0931588A (en) | 1995-07-25 | 1995-07-25 | Production of invar (r) sintered compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20857095A JPH0931588A (en) | 1995-07-25 | 1995-07-25 | Production of invar (r) sintered compact |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0931588A true JPH0931588A (en) | 1997-02-04 |
Family
ID=16558378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20857095A Pending JPH0931588A (en) | 1995-07-25 | 1995-07-25 | Production of invar (r) sintered compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0931588A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100348764C (en) * | 2003-01-08 | 2007-11-14 | 三菱综合材料Pmg株式会社 | Iron base sintered alloy, iron base sintered alloy member, method for production thereof, and oil pump rotor |
JP6754027B1 (en) * | 2019-03-26 | 2020-09-09 | 日本鋳造株式会社 | Low thermal expansion alloy with excellent low temperature stability and its manufacturing method |
WO2020195405A1 (en) * | 2019-03-26 | 2020-10-01 | 日本鋳造株式会社 | Low thermal expansion alloy having excellent low temperature stability and method for producing same |
-
1995
- 1995-07-25 JP JP20857095A patent/JPH0931588A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100348764C (en) * | 2003-01-08 | 2007-11-14 | 三菱综合材料Pmg株式会社 | Iron base sintered alloy, iron base sintered alloy member, method for production thereof, and oil pump rotor |
JP6754027B1 (en) * | 2019-03-26 | 2020-09-09 | 日本鋳造株式会社 | Low thermal expansion alloy with excellent low temperature stability and its manufacturing method |
WO2020195405A1 (en) * | 2019-03-26 | 2020-10-01 | 日本鋳造株式会社 | Low thermal expansion alloy having excellent low temperature stability and method for producing same |
CN113195763A (en) * | 2019-03-26 | 2021-07-30 | 日本铸造株式会社 | Low thermal expansion alloy having excellent low temperature stability and method for producing same |
CN113195763B (en) * | 2019-03-26 | 2022-02-18 | 日本铸造株式会社 | Low thermal expansion alloy having excellent low temperature stability and method for producing same |
US11840752B2 (en) | 2019-03-26 | 2023-12-12 | Nippon Chuzo K.K. | Low thermal expansion alloy having excellent low temperature stability and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900006613B1 (en) | Process for manufacturing copper base spinodal alloy articles | |
US4090875A (en) | Ductile tungsten-nickel-alloy and method for manufacturing same | |
JPH0931588A (en) | Production of invar (r) sintered compact | |
CN114260449B (en) | High-hardness stainless steel wire | |
EP0409646A2 (en) | Compound for an injection molding | |
US5008071A (en) | Method for producing improved tungsten nickel iron alloys | |
KR102012442B1 (en) | The noble process for preparation of sintered oxide having high toughness | |
JPH0931589A (en) | Production of kovar sintered compact | |
JPH10147832A (en) | Manufacture of 'permalloy(r)' sintered compact | |
JPH10147833A (en) | Manufacture of sintered compact | |
JPH0325499B2 (en) | ||
JPS5819738B2 (en) | Koumitsudoshiyouketsukouno Seizouhouhou | |
JP2745889B2 (en) | Method of manufacturing high-strength steel member by injection molding method | |
JPH03229832A (en) | Manufacture of nb-al intermetallic compound | |
JP2726140B2 (en) | High toughness tungsten sintered alloy | |
JPH06279124A (en) | Production of silicon nitride sintered compact | |
JPH0827536A (en) | Production of sintered compact of stainless steel | |
JP2716886B2 (en) | Method for producing Ti-Al intermetallic compound | |
JPH05156404A (en) | High-strength sintered hard alloy | |
JPS63183145A (en) | High hardness titanium-aluminum-vanadium alloy and its production | |
JP2760131B2 (en) | Method for producing Fe-Co-V soft magnetic sintered alloy | |
EP0326713A1 (en) | Improved tungsten nickel iron alloys | |
JP2758569B2 (en) | Method for producing iron-based sintered body by metal powder injection molding method | |
JPS5823450B2 (en) | Production method of C↓o-based sintered alloy for decorative parts with good machinability | |
JP3300420B2 (en) | Alloy for sintered sealing material |