JPH09293533A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09293533A
JPH09293533A JP8106926A JP10692696A JPH09293533A JP H09293533 A JPH09293533 A JP H09293533A JP 8106926 A JP8106926 A JP 8106926A JP 10692696 A JP10692696 A JP 10692696A JP H09293533 A JPH09293533 A JP H09293533A
Authority
JP
Japan
Prior art keywords
fluorine
battery
electrolyte
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8106926A
Other languages
Japanese (ja)
Inventor
Shinichi Kinoshita
信一 木下
Kenji Okahara
賢二 岡原
Yukichi Kobayashi
佑吉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP8106926A priority Critical patent/JPH09293533A/en
Publication of JPH09293533A publication Critical patent/JPH09293533A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the safety of a battery by containing the specified amount of specific compound in an electrolyte. SOLUTION: An electrolyte contains a lithium salt as an electrolyte, fluorine- containing alkane represented by the formula, and an organic solvent for dissolving the salt. In the formula, X and Y show a fluorine atom or a hydrogen atom, and (n) is an integer of 5-8. The fluorine-containing alkane which is actually electrochemically inactive is contained 0.5-30wt.% in the electrolyte. Firing of a battery is caused by ignition of the inflammable vapor of the organic electrolyte exploded out from a battery container in some cause. The vapor is diluted with the gas of the fluorine compound, and ignition is prevented, and the safety of a battery is ensured. The fluorine-containing alkane is preferable to be self-nonflammable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に関する。特に、電気自動車用、電力のロードレベリ
ング用など、大容量でエネルギー密度が高く、かつメン
テナンスフリーの要求が高い分野で利用される非水電解
液二次電池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery. In particular, the present invention relates to a non-aqueous electrolyte secondary battery used in a field having a large capacity, a high energy density, and a high demand for maintenance-free, such as an electric vehicle and a load leveling of electric power.

【0002】[0002]

【従来の技術】近年、電子機器の小型化、軽量化に対応
して、その電源として、エレクトロニクス用のリチウム
イオン二次電池が実用化され、ハンディビデオカメラや
携帯用パソコン等に使われている。さらには、環境問題
等から電気自動車が注目を集めており、エネルギー密度
が高く、かつ、密閉型でメンテナンスフリーのリチウム
イオン二次電池に注目が集まっている(特開昭59−8
1869号、特開平3−74061号、特開平7−21
1349号公報等)。
2. Description of the Related Art In recent years, in response to downsizing and weight saving of electronic devices, lithium-ion secondary batteries for electronics have been put into practical use as power sources thereof and are used in handy video cameras, portable personal computers and the like. . Furthermore, electric vehicles have been attracting attention due to environmental issues and the like, and attention has been paid to sealed, maintenance-free lithium ion secondary batteries with high energy density (Japanese Patent Laid-Open No. 59-8).
1869, JP-A-3-74061, JP-A-7-21
1349 publication).

【0003】[0003]

【発明が解決しようとする課題】非水電解液二次電池
は、一般に電解液に可燃性の非水系有機化合物を用いて
おり、発火の問題を生じる可能性があることが知られて
いる。負極活物質としてリチウムまたはリチウム合金等
を用いる場合、これらが着火源となって発火を引き起こ
す。負極活物質としてリチウムを吸蔵、放出できる化合
物を用いるリチウムイオン二次電池でも、正しく使用し
ない場合には不具合を生じる。特にリチウムイオン二次
電池では、推奨される充電電圧をはるかに越える程度ま
で過充電された場合にその発火の問題を生じる可能性が
ある。
Non-aqueous electrolyte secondary batteries generally use a flammable non-aqueous organic compound as an electrolyte, and it is known that ignition problems may occur. When lithium, a lithium alloy, or the like is used as the negative electrode active material, these serve as ignition sources and cause ignition. Even a lithium-ion secondary battery using a compound capable of inserting and extracting lithium as a negative electrode active material causes a problem when it is not used correctly. In particular, a lithium ion secondary battery may cause a problem of ignition when overcharged to a level far exceeding a recommended charging voltage.

【0004】上述した電池の安全性の点から固体電解質
を用いるリチウムイオン二次電池が種々提案されている
(Solid State Ionics,895頁
(1988年)およびElectrochim.Act
a,Vol.11,1669頁(1988年))が、未
だ充分な性能が得られていない。
Various lithium ion secondary batteries using a solid electrolyte have been proposed (Solid State Ionics, p. 895 (1988)) and Electrochim. Act from the viewpoint of the above-mentioned battery safety.
a, Vol. 11, pp. 1669 (1988)), but sufficient performance has not been obtained yet.

【0005】[0005]

【課題を解決するための手段】上記問題点に鑑み、鋭意
検討した結果、非水電解液中に不燃性の化合物を存在さ
せることにより、従来の非水電解液二次電池の性能を低
下させる事なく、電池の安全性を高めることが可能であ
ることを見いだし、本発明に至った。すなわち、本発明
は、少なくとも正極活物質、負極活物質、セパレータ、
非水電解液からなる非水電解液二次電池であって、該非
水電解液中に次式(I)で示される含フッ素アルカンを
0.5〜30重量%含有する事を特徴とする非水電解液
二次電池を提供するものである。
[Means for Solving the Problems] As a result of intensive studies in view of the above problems, the presence of a nonflammable compound in a nonaqueous electrolyte solution reduces the performance of a conventional nonaqueous electrolyte secondary battery. It was found that it is possible to improve the safety of the battery without any problems, and the present invention has been completed. That is, the present invention is at least a positive electrode active material, a negative electrode active material, a separator,
A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte, characterized in that the non-aqueous electrolyte contains 0.5 to 30% by weight of a fluorine-containing alkane represented by the following formula (I). An aqueous electrolyte secondary battery is provided.

【0006】[0006]

【化2】 Embedded image

【0007】(式中、XとYは、それぞれ独立してフッ
素原子または水素原子を示し、nは5〜8の数であ
る。)
(In the formula, X and Y each independently represent a fluorine atom or a hydrogen atom, and n is a number of 5 to 8.)

【0008】[0008]

【発明の実施の形態】本発明の非水電解液二次電池は、
少なくとも負極、正極、セパレータ、非水電解液からな
る。図1にその一例として非水電解液二次電池を示す。
図中、1は負極集電板、2は正極集電板、3は負極、4
は正極、5は電解液が含浸されたセパレータ、6は接続
板、7はポリプロピレン製容器、8はゴム栓である。
BEST MODE FOR CARRYING OUT THE INVENTION The non-aqueous electrolyte secondary battery of the present invention
At least a negative electrode, a positive electrode, a separator, and a nonaqueous electrolytic solution. FIG. 1 shows a non-aqueous electrolyte secondary battery as an example thereof.
In the figure, 1 is a negative electrode current collector plate, 2 is a positive electrode current collector plate, 3 is a negative electrode, 4
Is a positive electrode, 5 is a separator impregnated with an electrolytic solution, 6 is a connecting plate, 7 is a polypropylene container, and 8 is a rubber stopper.

【0009】負極:負極活物質としては、リチウム及び
リチウム合金であってもよいが、より安全性の高いリチ
ウムを吸蔵、放出できる炭素材料が好ましい。この炭素
材料は特に限定されないが、黒鉛及び、石炭系コーク
ス、石油系コークス、石油系ピッチの炭化物、石油系ピ
ッチの炭化物、ニードルコークス、ピッチコークス、フ
ェノール樹脂・結晶セルロース等の炭化物等及びこれら
を一部黒鉛化した炭素材、ファーネスブラック、アセチ
レンブラック、ピッチ系炭素繊維等が挙げられる。
Negative electrode: The negative electrode active material may be lithium and a lithium alloy, but a carbon material having a higher safety and capable of inserting and extracting lithium is preferable. This carbon material is not particularly limited, but is not limited to graphite, coal-based coke, petroleum-based coke, petroleum-based pitch carbide, petroleum-based pitch carbide, needle coke, pitch coke, phenolic resin, crystalline cellulose, etc. Partially graphitized carbon materials, furnace black, acetylene black, pitch-based carbon fibers and the like can be mentioned.

【0010】負極は、負極活物質と結着剤(バインダ
ー)とを溶媒でスラリー化したものを塗布し、乾燥して
シート状とした物を用いることができる。結着剤(バイ
ンダー)としては、例えば、ポリフッ化ビニリデン、ポ
リテトラフルオロエチレン、EPDM(エチレン−プロ
ピレン−ジエン三元共重合体)、SBR(スチレン−ブ
タジエンゴム)、NBR(アクリロニトリル−ブタジエ
ンゴム)、フッ素ゴム等が掲げられるが、これらに限定
されない。
As the negative electrode, it is possible to use a negative electrode active material and a binder (binder) which are slurried with a solvent and applied to form a sheet, which is then dried. Examples of the binder (binder) include polyvinylidene fluoride, polytetrafluoroethylene, EPDM (ethylene-propylene-diene terpolymer), SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), Examples include, but are not limited to, fluororubber.

【0011】スラリー化する溶媒としては、通常は結着
剤を溶解する有機溶剤が使用される。例えば、N−メチ
ルピロリドン、ジメチルホルムアミド、ジメチルアセト
アミド、メチルエチルケトン、シクロヘキサノン、酢酸
メチル、アクリル酸メチル、ジエチルトリアミン、N−
N−ジメチルアミノプロピルアミン、エチレンオキシ
ド、テトラヒドロフラン等を掲げる事ができるがこれら
に限定されない。また、水に分散剤、増粘剤等を加えて
SBR等のラテックスで活物質をスラリー化する場合も
ある。負極に集電体を用いる場合には、銅、ニッケル、
ステンレス鋼、ニッケルメッキ鋼等が使用される。
As the solvent for forming a slurry, an organic solvent that dissolves the binder is usually used. For example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N-
N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. may be mentioned, but not limited thereto. In some cases, the active material is slurried with latex such as SBR by adding a dispersant and a thickener to water. When using a current collector for the negative electrode, copper, nickel,
Stainless steel, nickel plated steel, etc. are used.

【0012】正極:正極活物質としては、リチウムを吸
蔵またはインターカレーションできる金属酸化物系化合
物、カルコゲナイト系化合物等が好ましく、LixCo
2 、LixMnO2 、LixMn2 4 、LixV2
5 、LixTiS2 等が挙げられる。正極は、正極活
物質と結着剤(バインダー)と導電剤とを溶媒でスラリ
ー化したものを塗布し、乾燥してシート状とした物を用
いることができる。
Positive electrode: The positive electrode active material is preferably a metal oxide compound, a chalcogenite compound or the like which can occlude or intercalate lithium, and LixCo
O 2 , LixMnO 2 , LixMn 2 O 4 , LixV 2
O 5 , LixTiS 2 and the like can be mentioned. As the positive electrode, a sheet-like product can be used in which a positive electrode active material, a binder (binder), and a conductive agent are slurried with a solvent and applied, and dried.

【0013】バインダー、スラリー化に用いる溶媒とし
ては、負極を製造する際に例示したものが使用できる。
正極の導電剤としては、黒鉛の微粒子、アセチレンブラ
ック等のカーボンブラック、ニードルコークス等の無定
形炭素の微粒子等が使用される。正極に集電体を用いる
場合には、アルミニウム、ステンレス鋼、ニッケルメッ
キ鋼等が使用される。
As the binder and the solvent used for forming the slurry, those exemplified in the production of the negative electrode can be used.
As the conductive agent of the positive electrode, fine particles of graphite, carbon black such as acetylene black, and fine particles of amorphous carbon such as needle coke are used. When a current collector is used for the positive electrode, aluminum, stainless steel, nickel-plated steel or the like is used.

【0014】セパレータ:セパレータとしては、微多孔
性の高分子フィルムが用いられ、ナイロン、セルロース
アセテート、ニトロセルロース、ポリスルホン、ポリア
クリロニトリル、ポリフッ化ビニリデンや、ポリプロピ
レン、ポリエチレン、ポリブテン等のポリオレフィン系
高分子よりなる物が用いられる。セパレータの化学的及
び電気化学安定性は重要な因子である。この点からポリ
オレフィン系高分子が好ましく、電池セパレータの目的
の一つである自己閉塞温度の点からポリエチレン製であ
ることが好ましい。
Separator: As the separator, a microporous polymer film is used. It is made of nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, or a polyolefin-based polymer such as polypropylene, polyethylene or polybutene. Is used. The chemical and electrochemical stability of the separator is an important factor. From this point of view, a polyolefin-based polymer is preferable, and from the viewpoint of self-closing temperature which is one of the purposes of the battery separator, polyethylene is preferable.

【0015】ポリエチレン製セパレータの場合、高温形
状維持性の点から超高分子量ポリエチレンであることが
好ましく、その粘度平均分子量の下限は好ましくは50
万、更に好ましくは100万、最も好ましくは150万
である。他方分子量の上限は、好ましくは500万、更
に好ましくは400万、最も好ましくは300万であ
る。分子量が大きすぎると、流動性が低すぎて加熱され
たときセパレータの孔が閉塞しない場合があるからであ
る。
In the case of a polyethylene separator, ultrahigh molecular weight polyethylene is preferable from the viewpoint of shape retention at high temperature, and the lower limit of its viscosity average molecular weight is preferably 50.
Million, more preferably 1 million, most preferably 1.5 million. On the other hand, the upper limit of the molecular weight is preferably 5,000,000, more preferably 4,000,000, and most preferably 3,000,000. This is because if the molecular weight is too large, the fluidity is so low that the pores of the separator may not close when heated.

【0016】電解液:本発明において、電解液は、電解
質としてリチウム塩を、有機溶媒として前式(I)で示
される含フッ素アルカンおよびリチウム塩を溶解する有
機溶媒を含有している。実質的に電気化学的不活性な含
フッ素アルカンは電解液中に0.5〜30重量%含有さ
れる。電池の発火は電池容器から何らかの要因で噴出し
た可燃性気体への引火により引き起こされる。有機電解
液の蒸気が可燃性気体の発生源である。噴出する蒸気を
本願発明の含フッ素有機化合物気体により希釈すること
で実質的に引火しなくなり、電池の安全性を確保でき
る。したがって、含フッ素アルカンは自己不燃性である
ことが好ましい。
Electrolytic solution: In the present invention, the electrolytic solution contains a lithium salt as an electrolyte and an organic solvent which dissolves the fluorine-containing alkane represented by the above formula (I) and the lithium salt as an organic solvent. The substantially electrochemically inactive fluorine-containing alkane is contained in the electrolytic solution in an amount of 0.5 to 30% by weight. The ignition of the battery is caused by the ignition of the flammable gas which is ejected from the battery container for some reason. The vapor of the organic electrolyte is a source of combustible gas. By diluting the ejected vapor with the fluorine-containing organic compound gas of the present invention, it is possible to substantially prevent ignition and ensure the safety of the battery. Therefore, the fluorinated alkane is preferably self-inflammable.

【0017】含フッ素アルカンの25℃における蒸気圧
の下限は好ましくは25mmHgであり、更に好ましく
は50mmHgであり、最も好ましくは70mmHgで
ある。含フッ素アルカンの蒸気圧が低いと電解液の不燃
化の効果が劣るからである。また、含フッ素アルカンの
25℃における蒸気圧の上限は好ましくは760mmH
gであり、更に好ましくは600mmHgであり、最も
好ましくは500mmHgである。含フッ素アルカンは
常温で液体である。更には、蒸気圧が高すぎると電池の
内圧が上昇し、破裂する恐れがあるので、好ましくな
い。以上の理由で含フッ素アルカンの炭素数は5〜8の
範囲である。これら常温で液状の代表的な含フッ素アル
カンの物性を表1に示す。
The lower limit of the vapor pressure of the fluorinated alkane at 25 ° C. is preferably 25 mmHg, more preferably 50 mmHg, and most preferably 70 mmHg. This is because if the vapor pressure of the fluorinated alkane is low, the effect of making the electrolyte nonflammable is poor. Also, the upper limit of the vapor pressure of the fluorine-containing alkane at 25 ° C. is preferably 760 mmH.
g, more preferably 600 mmHg, most preferably 500 mmHg. Fluorine-containing alkanes are liquid at room temperature. Furthermore, if the vapor pressure is too high, the internal pressure of the battery rises and there is a risk of explosion, which is not preferable. For the above reasons, the carbon number of the fluorine-containing alkane is in the range of 5-8. Table 1 shows the physical properties of typical fluorinated alkanes that are liquid at room temperature.

【0018】[0018]

【表1】 [Table 1]

【0019】フッ素原子の量が多いほど不燃化の効果が
増大し、また、分子間相互作用を低減させるので揮発性
が高くなる。以上の理由で、含フッ素アルカンは、フッ
素原子量が多い化合物であることが好ましい。含フッ素
アルカンのF原子が一部Hに置き代った含フッ素アルカ
ンでもよい。その含フッ素アルカンのH/F(H及びF
は含フッ素アルカン分子中のそれぞれ水素原子、フッ素
原子の数を表す)は、好ましくは0.2以下、更に好ま
しくは0.1以下、最も好ましくは0である。
The larger the amount of fluorine atoms is, the more the effect of incombustibility is increased, and the intermolecular interaction is reduced, so that the volatility becomes high. For the above reasons, the fluorine-containing alkane is preferably a compound having a large amount of fluorine atoms. A fluorine-containing alkane in which some of the F atoms of the fluorine-containing alkane are replaced with H may be used. H / F of the fluorine-containing alkane (H and F
Represents the number of hydrogen atoms and fluorine atoms respectively in the fluorine-containing alkane molecule), preferably 0.2 or less, more preferably 0.1 or less, and most preferably 0.

【0020】電解液中に占める含フッ素アルカンの割合
は0.5〜30重量%の範囲である。含フッ素アルカン
の割合が少ないと不燃化効果が劣るからであり、また、
含フッ素アルカンの割合が多すぎると、例えば溶液抵抗
が増大し(リチウムイオン導電性が低下し)、所望の電
池特性が発現せず好ましくない。
The proportion of the fluorinated alkane in the electrolytic solution is in the range of 0.5 to 30% by weight. This is because if the proportion of the fluorine-containing alkane is low, the incombustibility effect will be poor.
If the proportion of the fluorine-containing alkane is too large, for example, solution resistance increases (lithium ion conductivity decreases), and desired battery characteristics are not expressed, which is not preferable.

【0021】含フッ素アルカン以外の主たる有機溶媒と
しては、例えばカーボネート類、エーテル類、ケトン
類、スルホラン系化合物、ラクトン類、ニトリル類、塩
素化炭化水素類、アミン類、エステル類、アミド類、燐
酸エステル化合物等を使用する事ができる。これらの代
表的なものを列挙すると、プロピレンカーボネート、エ
チレンカーボネート、ビニレンカーボネート、テトラヒ
ドロフラン、2−メチルテトラヒドロフラン、1,4−
ジオキサン、4−メチル−2−ペンタノン、1,2−ジ
メトキシエタン、1,2−ジエトキシエタン、γ−ブチ
ロラクトン、1,3−ジオキソラン、4−メチル−1,
3−ジオキソラン、ジエチルエーテル、スルホラン、メ
チルスルホラン、アセトニトリル、プロピオニトリル、
ベンゾニトリル、ブチロニトリル、バレロニトニル、
1,2−ジクロロエタン、ジメチルホルムアミド、ジメ
チルスルホキシド、燐酸トリメチル、燐酸トリエチル等
の単独もしくは二種類以上の混合溶媒が使用できる。
As the main organic solvent other than the fluorine-containing alkane, for example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, amines, esters, amides, phosphoric acid Ester compounds and the like can be used. When these representative ones are listed, propylene carbonate, ethylene carbonate, vinylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-
Dioxane, 4-methyl-2-pentanone, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,
3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile,
Benzonitrile, butyronitrile, valeronitonil,
1,2-dichloroethane, dimethylformamide, dimethylsulfoxide, trimethyl phosphate, triethyl phosphate and the like may be used alone or in combination of two or more kinds.

【0022】上述の有機溶媒には、電解質を解離させる
ために高誘電率溶媒を用いることが好ましい。高誘電率
溶媒とは、25℃における比誘電率が20以上の化合物
を意味する。特に、高誘電率溶媒として、エチレンカー
ボネート、プロピレンカーボネート及びそれらの水素原
子をハロゲン等の他の元素またはアルキル基等で置換し
た化合物が電解液中に含まれることが好ましい。
As the above-mentioned organic solvent, it is preferable to use a high dielectric constant solvent in order to dissociate the electrolyte. The high dielectric constant solvent means a compound having a relative dielectric constant of 20 or more at 25 ° C. In particular, as the high dielectric constant solvent, it is preferable that the electrolytic solution contains ethylene carbonate, propylene carbonate, and a compound in which hydrogen atoms thereof are replaced with another element such as halogen or an alkyl group.

【0023】高誘電率化合物の電解液に占める割合は、
好ましくは20〜95重量%、より好ましくは、30重
量%以上、更に好ましくは40重量%以上である。該化
合物の含有量が少ないと、所望の電池特性が得られない
場合があるからである。電解質としては、従来公知のい
ずれもが使用でき、LiClO4 、LiAsF 6 、Li
PF6 、LiBF4 、LiB(C6 6 4 、LiC
l、LiBr、CH3 SO3 Li、(C−F3 SO2
NLi等が用いられる。電解液中の電解質の濃度は、通
常、0.5〜1.5モル/リットルで、電解液中の3〜
20重量%の量である。
The proportion of the high dielectric constant compound in the electrolytic solution is
Preferably 20 to 95% by weight, more preferably 30 weight
The amount is at least%, more preferably at least 40% by weight. Conversion
If the compound content is low, the desired battery characteristics cannot be obtained.
This is because there are cases. Conventionally known electrolytes
Can be used with a gap, LiClOFour, LiAsF 6, Li
PF6, LiBFFour, LiB (C6H6)Four, LiC
l, LiBr, CHThreeSOThreeLi, (C-FThreeSOTwo)
NLi or the like is used. The electrolyte concentration in the electrolyte is
Usually, it is 0.5 to 1.5 mol / liter and 3 to 3 in the electrolytic solution.
An amount of 20% by weight.

【0024】[0024]

【実施例】以下、本発明を実施例を挙げてさらに詳細に
説明するが、本発明は、その要旨を越えない限り以下の
実施例によって限定されるものではない。尚、実施例中
の評価方法は下記のとおりである。実施例および比較例
中、「部」とあるのは「重量部」を示す。 (実施例1)
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples without departing from the gist thereof. The evaluation methods used in the examples are as follows. In Examples and Comparative Examples, “parts” means “parts by weight”. (Example 1)

【0025】(負極)平均粒径10μmの石炭系ニード
ルコークス90部(重量割合;特に記述のない場合は以
下同様)を、ポリフッ化ビニリデン10部のN−メチル
ピロリドン溶液(2重量%)と混合し、負極合剤スラリ
ーとした。20μm厚さの銅箔の両面に塗布し、乾燥し
て溶媒を蒸発させ、ロール処理をして負極シートを作製
した。負極合剤の塗布部の大きさは12cm×15c
m、厚さは片面250μmとした。銅箔の左右には、左
に25mm、右に15mmの耳を残して負極合剤を塗布
するように設計した。尚、単電池の端を構成する電極は
負極合剤を片面のみに塗布したものである。
(Negative electrode) 90 parts of coal-based needle coke having an average particle size of 10 μm (weight ratio; the same applies hereinafter unless otherwise specified) was mixed with a solution of 10 parts of polyvinylidene fluoride in N-methylpyrrolidone (2% by weight). Then, a negative electrode mixture slurry was prepared. It was applied on both sides of a copper foil having a thickness of 20 μm, dried to evaporate the solvent, and roll-treated to prepare a negative electrode sheet. The size of the negative electrode mixture application part is 12 cm x 15 c
m and the thickness was 250 μm on each side. The left and right sides of the copper foil were designed to be coated with the negative electrode mixture leaving ears of 25 mm on the left and 15 mm on the right. In addition, the electrodes forming the ends of the unit cells are prepared by applying the negative electrode mixture only on one surface.

【0026】(正極)炭酸リチウム1モルと炭酸コバル
ト2モルとをボールミルで混合粉砕し、850℃で5時
間空気中で加熱処理した後、再度ボールミルで混合粉砕
し、更に850℃で5時間空気中で加熱処理したもの9
0部に、導電剤としてアセチレンブラックを5部加えて
混合したものをポリフッ化ビニリデン5部のN−メチル
ピロリドン溶液(2重量%)と混合し、正極合剤スラリ
ーとした。25μm厚さのアルミニウム箔の両面に塗布
し、乾燥して溶媒を蒸発させ、ロール処理をして正極を
作製した。正極合剤の塗布部の大きさは12cm×15
cm、厚さは片面250μmとした。アルミニウム箔の
左右には、右に25mm、左に15mmの耳を残して正
極合剤を塗布するように設計した。尚、単電池の端を構
成する電極は正極合剤を片面のみに塗布したものであ
る。
(Positive electrode) 1 mol of lithium carbonate and 2 mol of cobalt carbonate were mixed and pulverized in a ball mill and heat-treated in air at 850 ° C. for 5 hours, and then pulverized and mixed again in a ball mill, and further 850 ° C. for 5 hours. Heat-treated in 9
To 0 part, 5 parts of acetylene black as a conductive agent was added and mixed, and mixed with 5 parts of polyvinylidene fluoride N-methylpyrrolidone solution (2% by weight) to prepare a positive electrode mixture slurry. It was applied on both sides of an aluminum foil having a thickness of 25 μm, dried to evaporate the solvent, and roll-treated to produce a positive electrode. The size of the part where the positive electrode mixture is applied is 12 cm x 15
cm, and the thickness was 250 μm on each side. The left and right sides of the aluminum foil were designed to be coated with the positive electrode mixture leaving ears of 25 mm on the right and 15 mm on the left. The electrodes forming the ends of the unit cells were prepared by applying the positive electrode mixture only on one surface.

【0027】(セパレータ)融点135℃で、分子量
(粘度平均)2×106 の超高分子量ポリエチレン粉末
20部とセリルアルコール80部とを押出機に供給して
230℃で混練しながら連続的にTダイよりフィルム状
に押し出した後、縦(MD)方向に溶融変形を加え、膜
厚50μmのフィルムを得た。得られたフィルムを80
℃のイソプロピルアルコール中に浸漬し、セリルアルコ
ールをフィルム中から抽出除去し、次いで、表面温度1
25℃の加熱ピンチロールにて30秒間熱処理して25
μmの膜厚の多孔性フィルムを得た。
(Separator) 20 parts of ultrahigh molecular weight polyethylene powder having a melting point of 135 ° C. and a molecular weight (viscosity average) of 2 × 10 6 and 80 parts of ceryl alcohol are fed to an extruder and continuously kneaded at 230 ° C. After extruding into a film form from a T-die, melt deformation was applied in the machine (MD) direction to obtain a film having a film thickness of 50 μm. The obtained film is 80
Dip in isopropyl alcohol at ℃, extract and remove the ceryl alcohol from the film, then the surface temperature 1
Heat with pinch rolls heated at 25 ° C for 30 seconds to 25
A porous film having a thickness of μm was obtained.

【0028】(単電池の組立)上記、負極と正極とを交
互にセパレータを介して積層し単電池を組み立てた。そ
の際、両端の電極は電極合剤を片面のみ塗布したものを
使用した。負極及び正極をそれぞれ別々に金属棒を溶接
し、負極と正極とがそれぞれ別々に電気的に接続された
集電体を形成した。尚、単電池は積層する方向に非導電
体の枠を以て締め付ける。上記の大きさの電極を26組
と半分(両端の電極は片面のみ電極合剤が塗布されてい
るので半分となる)を積層すると、約350Whの充放
電容量を有する単電池を作製した。
(Assembly of Unit Cell) The unit cell was assembled by alternately laminating the negative electrode and the positive electrode with a separator interposed therebetween. At this time, the electrodes at both ends used an electrode mixture coated on one side only. A metal rod was separately welded to the negative electrode and the positive electrode to form a current collector in which the negative electrode and the positive electrode were electrically connected separately. The cells are fastened with a non-conductive frame in the stacking direction. By stacking 26 sets and half of the electrodes of the above size (the electrodes at both ends are half because the electrode mixture is applied only on one surface), a single cell having a charge / discharge capacity of about 350 Wh was produced.

【0029】(組電池の組立)電解液として、エチレン
カーボネート49.5部、1,2−ジメトキシエタン3
2.4部および直鎖パーフルオロアルカン(C6 14
10部よりなる有機溶媒に、電解質としてヘキサフルオ
ロリン酸リチウム塩(LiPF6 )9.1部を溶解した
ものを用いた。
(Assembly of assembled battery) As an electrolytic solution, 49.5 parts of ethylene carbonate and 3,2-dimethoxyethane 3 were used.
2.4 parts and linear perfluoroalkane (C 6 F 14 ).
A solution prepared by dissolving 9.1 parts of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in an organic solvent consisting of 10 parts was used.

【0030】上記単電池を1×10-2Torr以下で真
空脱気した後、Arガスで置換しておいたドライボック
ス中に投入した。上記単電池10個を隔壁を備えたポリ
プロピレン製の容器に収納し、上記電解液を注入して、
上蓋を閉めた。この時、上蓋を貫通して、各単電池の負
極端子、正極の端子が容器の上部に突きだした形とし
た。この端子を上蓋の貫通部分で、適当な封止剤で封止
した。この時、ポリプロピレン製の容器上部に直径10
mmの穴をあけておいた。25℃雰囲気下、1mA/c
2 の定電流密度で電池電圧が4.0Vに達するまで充
電した後、接着剤を塗布したゴム栓で容器上部の穴に蓋
をしておいた。
The above unit cell was vacuum degassed at 1 × 10 -2 Torr or less and then placed in a dry box which had been replaced with Ar gas. The above-mentioned 10 cells were stored in a polypropylene container equipped with a partition wall, the above-mentioned electrolytic solution was injected,
I closed the top lid. At this time, the negative electrode terminal and the positive electrode terminal of each cell protruded to the upper part of the container through the upper lid. This terminal was sealed with a suitable sealant at the penetrating portion of the upper lid. At this time, the diameter of 10
mm holes were made. 1 mA / c at 25 ° C
After charging the battery at a constant current density of m 2 until the battery voltage reached 4.0 V, the hole at the top of the container was covered with a rubber stopper coated with an adhesive.

【0031】(電池の引火性評価)上記の組電池を25
℃雰囲気下、更に1mA/cm2 の定電流密度で電池電
圧が4.3Vに達するまで充電した後、容器上部のゴム
栓をはずし、JIS K2810に準拠して試験炎を近
づけたところ、引火はなかった。以下、同様にして組電
池の置かれる温度を変えて評価した結果をまとめて表2
に示す。
(Evaluation of flammability of battery)
After charging in an atmosphere of ℃ at a constant current density of 1 mA / cm 2 until the battery voltage reached 4.3 V, the rubber stopper on the upper part of the container was removed, and the test flame was brought closer according to JIS K2810. There wasn't. In the following, the results of evaluation in the same manner while changing the temperature at which the battery pack is placed are summarized in Table 2
Shown in

【0032】(実施例2〜3)電解質の直鎖パーフルオ
ロアルカンの種類を表2に示すものとした他は同様にし
てリチウム二次電池を得、評価した。 (実施例4〜6、比較例1)実施例1において、電解液
中の組成を表2に示すように変更する他は、同様にして
リチウム二次電池を得、評価した。比較例1の電池の
み、引火した。
(Examples 2 to 3) Lithium secondary batteries were obtained and evaluated in the same manner except that the type of the linear perfluoroalkane of the electrolyte was as shown in Table 2. (Examples 4 to 6 and Comparative Example 1) A lithium secondary battery was obtained and evaluated in the same manner as in Example 1 except that the composition in the electrolytic solution was changed as shown in Table 2. Only the battery of Comparative Example 1 ignited.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】本発明の非水電解液中に含フッ素アルカ
ンを0.5〜30重量%含有する非水電解液二次電池
は、電池特性を損なうことなくその安全性を著しく向上
できた。この非水電解液二次電池は、有機電解液の多量
に存在する大型電池、特に自動車用に代表される大型電
池に適している。
INDUSTRIAL APPLICABILITY The non-aqueous electrolyte secondary battery containing the fluorine-containing alkane in an amount of 0.5 to 30% by weight in the non-aqueous electrolyte of the present invention can remarkably improve its safety without impairing the battery characteristics. . This non-aqueous electrolyte secondary battery is suitable for a large battery in which a large amount of organic electrolyte exists, especially a large battery represented by an automobile.

【図面の簡単な説明】[Brief description of drawings]

【図1】非水電解液二次電池の断面図である。FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも正極活物質、負極活物質、セ
パレータ、非水電解液からなる非水電解液二次電池であ
って、該非水電解液中に次式(I)で示される含フッ素
アルカンを0.5〜30重量%含有することを特徴とす
る非水電解液二次電池。 【化1】 (式中、XとYはそれぞれ独立してフッ素原子または水
素原子を示し、nは5〜8の数である。)
1. A non-aqueous electrolyte secondary battery comprising at least a positive electrode active material, a negative electrode active material, a separator, and a non-aqueous electrolytic solution, wherein the non-aqueous electrolytic solution contains a fluorine-containing alkane represented by the following formula (I): 0.5 to 30% by weight of a non-aqueous electrolyte secondary battery. Embedded image (In the formula, X and Y each independently represent a fluorine atom or a hydrogen atom, and n is a number of 5 to 8.)
【請求項2】 電解液が、電解質としてリチウム塩を3
〜20重量%、溶媒として上記式(I)で示される含フ
ッ素アルカンを0.5〜30重量%、エチレンカーボネ
ートおよびプロピレンカーボネートより選ばれた高誘電
率溶媒が20重量%以上含有するものである、請求項1
に記載の非水電解液二次電池。
2. The electrolytic solution contains lithium salt as an electrolyte.
˜20 wt%, 0.5 to 30 wt% of the fluorine-containing alkane represented by the above formula (I) as a solvent, and 20 wt% or more of a high dielectric constant solvent selected from ethylene carbonate and propylene carbonate. , Claim 1
3. The non-aqueous electrolyte secondary battery according to 1.
JP8106926A 1996-04-26 1996-04-26 Nonaqueous electrolyte secondary battery Pending JPH09293533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8106926A JPH09293533A (en) 1996-04-26 1996-04-26 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8106926A JPH09293533A (en) 1996-04-26 1996-04-26 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09293533A true JPH09293533A (en) 1997-11-11

Family

ID=14446026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8106926A Pending JPH09293533A (en) 1996-04-26 1996-04-26 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09293533A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0938151A2 (en) * 1998-02-20 1999-08-25 Hitachi, Ltd. Lithium secondary battery and liquid electrolyte for the battery
JP2003338317A (en) * 2002-05-17 2003-11-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2007157735A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2007157734A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
US7402260B2 (en) 2004-03-23 2008-07-22 3M Innovative Properties Company Non-aqueous solvent mixture and non-aqueous electrolytic solution containing such mixture
EP2068388A1 (en) 2004-08-03 2009-06-10 3M Innovative Properties Company Non-Aqueous Electrolytic Solution For Electrochemical Energy Devices
CN102082296A (en) * 2010-12-30 2011-06-01 东莞市杉杉电池材料有限公司 Electrolyte of flame-retarded lithium ion battery
US20210024361A1 (en) * 2018-03-29 2021-01-28 The South African Nuclear Energy Corporation Soc Limited Production of lithium hexafluorophosphate
CN114256508A (en) * 2022-01-14 2022-03-29 南方科技大学 Non-aqueous electrolyte and secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210835B1 (en) 1998-02-20 2001-04-03 Hitachi, Ltd. Lithium secondary battery and liquid electrolyte for the battery
EP0938151A3 (en) * 1998-02-20 2003-08-20 Hitachi, Ltd. Lithium secondary battery and liquid electrolyte for the battery
US6696202B2 (en) 1998-02-20 2004-02-24 Hitachi, Ltd. Electrical appliance using lithium secondary batteries
EP0938151A2 (en) * 1998-02-20 1999-08-25 Hitachi, Ltd. Lithium secondary battery and liquid electrolyte for the battery
JP2003338317A (en) * 2002-05-17 2003-11-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP4492023B2 (en) * 2002-05-17 2010-06-30 三菱化学株式会社 Non-aqueous electrolyte secondary battery
US7402260B2 (en) 2004-03-23 2008-07-22 3M Innovative Properties Company Non-aqueous solvent mixture and non-aqueous electrolytic solution containing such mixture
EP2068388A1 (en) 2004-08-03 2009-06-10 3M Innovative Properties Company Non-Aqueous Electrolytic Solution For Electrochemical Energy Devices
EP2068387A1 (en) 2004-08-03 2009-06-10 3M Innovative Properties Company Non-Aqueous Electrolytic Solution For Electrochemical Energy Devices
JP2007157734A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2007157735A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
CN102082296A (en) * 2010-12-30 2011-06-01 东莞市杉杉电池材料有限公司 Electrolyte of flame-retarded lithium ion battery
US20210024361A1 (en) * 2018-03-29 2021-01-28 The South African Nuclear Energy Corporation Soc Limited Production of lithium hexafluorophosphate
CN114256508A (en) * 2022-01-14 2022-03-29 南方科技大学 Non-aqueous electrolyte and secondary battery
WO2023134262A1 (en) * 2022-01-14 2023-07-20 南方科技大学 Non-aqueous electrolyte and secondary battery
CN114256508B (en) * 2022-01-14 2024-08-02 南方科技大学 Nonaqueous electrolyte and secondary battery

Similar Documents

Publication Publication Date Title
JP5329310B2 (en) Lithium secondary battery using ionic liquid
JP4521525B2 (en) Non-flammable non-aqueous electrolyte and lithium ion battery using the same
JP5228531B2 (en) Electricity storage device
US9225037B2 (en) Lithium secondary battery using ionic liquid
KR20060051575A (en) Non-aqueous electrolyte battery
JP2008097879A (en) Lithium ion secondary battery
CN110036521B (en) Lithium ion secondary battery
JP5160159B2 (en) Lithium secondary battery
JP2016048624A (en) Lithium secondary battery
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
JPH09293533A (en) Nonaqueous electrolyte secondary battery
US20210407742A1 (en) Electrolyte formulations for energy storage devices
JPH1012272A (en) Nonaqueous electrolyte secondary battery
JP2013062164A (en) Nonaqueous electrolyte for electrochemical element, and electrochemical element
US20230253620A1 (en) Improved electrolyte for electrochemical cell
JP2010027549A (en) Separator for electrochemical element and lithium-ion battery using the same
JP2010027547A (en) Separator for electrochemical element and lithium-ion battery using the same
JP2003007303A (en) Nonaqueous electrolyte secondary battery
JP2002100403A (en) Nonaqueous electrolyte and nonaqueous electrochemical device containing the same
JP2018156724A (en) Lithium ion secondary battery
JP4035854B2 (en) Non-aqueous electrolyte secondary battery
JP5487442B2 (en) Lithium ion secondary battery
JP2007294654A (en) Electrochemical capacitor
WO2018173452A1 (en) Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery
JP2016162626A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322