JPH09288052A - Fractionating apparatus - Google Patents

Fractionating apparatus

Info

Publication number
JPH09288052A
JPH09288052A JP8102561A JP10256196A JPH09288052A JP H09288052 A JPH09288052 A JP H09288052A JP 8102561 A JP8102561 A JP 8102561A JP 10256196 A JP10256196 A JP 10256196A JP H09288052 A JPH09288052 A JP H09288052A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
potential
ultrasonic wave
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8102561A
Other languages
Japanese (ja)
Inventor
Kenji Yasuda
賢二 安田
Yuji Sasaki
裕次 佐々木
Kazuo Takeda
一男 武田
Shinichiro Umemura
晋一郎 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8102561A priority Critical patent/JPH09288052A/en
Publication of JPH09288052A publication Critical patent/JPH09288052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fine particle fractionating apparatus in combination with an ultrasonic wave radiating pressure and electrostatic field having function for suppressing bubbles generated from an electrode. SOLUTION: The fractionating apparatus comprises a tube walls 31, 32 for feeding fluid containing fine particles, ultrasonic vibrators 41, 42 for generating standing waves in the tubes, and two electrode plates 51, 52 of operating electrode and paired electrodes. The solute such as fine particles 15 in liquid is fractionated by the contention of ultrasonic wave radiating pressure and electromagnetic force. The voltage applied to the two plates 51, 52 are controlled by using a potential controller 14 with a reference electrode 7 introduced into the walls 31, 32 as a reference potential, and the potentials of the electrodes 51, 52 are held constant at the highest potential for eliminating the bubbles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流体中における微
粒子の分画装置に関する。
TECHNICAL FIELD The present invention relates to a device for fractionating fine particles in a fluid.

【0002】[0002]

【従来の技術】超音波の輻射圧を微粒子に作用させたと
き、微粒子が受ける輻射圧については例えば、ジョンル
ブが、ジャーナル オブ アクースティカル ソサエ
ティーオブ アメリカ 第89巻2140頁から214
3頁(1991年)に、集束超音波の集束点に直径27
0μmのポリスチレン球を捕獲することに成功したこと
を報告している。また、この超音波の輻射圧によって微
粒子が捕獲される原理に関しては、吉岡らがアコーステ
ィカ 第5巻167頁から178頁に、定在波、進行波
中で微粒子が受ける超音波輻射圧の完全流体中での大き
さを計算している。また、この超音波の輻射圧と他の外
力とを拮抗させることで微粒子を分画する手法に関して
も、たとえばアプフェル(R.E.Apfel)らが超
音波輻射圧と重力との拮抗を用いて分画する手法に関し
てジャーナル・オブ・ザ・アコースティカル・ソサエテ
ィー・オブ・アメリカ第71巻(1982年)1261
頁から1268頁に報告している。
2. Description of the Related Art Regarding the radiation pressure applied to fine particles when the radiation pressure of ultrasonic waves is applied to the fine particles, see, for example, John Lube, Journal of Acoustic Society of America, Vol. 89, pages 2140-214.
On page 3 (1991), a diameter of 27
We report successful capture of 0 μm polystyrene spheres. Regarding the principle that fine particles are captured by the radiation pressure of this ultrasonic wave, Yoshioka et al., In Acoustica Vol. 5, pp. 167 to 178, show that the ultrasonic radiation pressure of fine particles in standing waves and traveling waves The size in the fluid is calculated. In addition, regarding a method of fractionating fine particles by antagonizing the radiation pressure of this ultrasonic wave with other external force, for example, RE Upel et al. Journal of the Acoustical Society of America, Volume 71 (1982) 1261
Pp. 1268.

【0003】溶液中に導入した2本の電極(作用電極と
対極)に電位差を与えると、ある電位差を超えたところ
で電極表面での溶液中イオンの酸化あるいは還元反応が
起こり、この結果、溶液中に気泡が発生する。電極表面
で起こる電極反応の種類は電極の電位によって定まるこ
とから、参照電極と呼ばれる第3の電極を溶液中に導入
し、その電位を基準に作用電極あるいは対極の電位を適
当に調節して一定にすることで、電極反応の種類を特定
することができることが知られており、これらの原理に
関しては、たとえば藤島昭らによる「電気化学測定法
(上)、(技報堂出版株式会社、1984年)」に詳し
く述べられている。また、参照電極の電位をもとに作用
電極、対極の電極電位を一定に保つ装置としてポテンシ
オスタットが一般に利用されている。
When a potential difference is applied to two electrodes (a working electrode and a counter electrode) introduced into a solution, an oxidation or reduction reaction of ions in the solution occurs on the electrode surface when a certain potential difference is exceeded, and as a result, in the solution. Bubbles are generated in. Since the type of electrode reaction that occurs on the electrode surface is determined by the potential of the electrode, a third electrode called the reference electrode is introduced into the solution, and the potential of the working electrode or the counter electrode is adjusted appropriately based on that potential and kept constant. It is known that it is possible to specify the type of electrode reaction by using, for example, the principle of these is described in Aki Fujishima et al., “Electrochemical measurement method (1)” (Gihodo Publishing Co., Ltd., 1984). Are described in detail. Further, a potentiostat is generally used as a device for keeping the electrode potentials of the working electrode and the counter electrode constant based on the potential of the reference electrode.

【0004】また、電極上での水素生成反応は、一般に
吸着水素原子の生成過程(ボルマー(Volmer)反
応)を律速にしている反応電極のほうが水素過電圧が高
くなり、水の電気分解が起こる電位が高くなることが知
られている。
In addition, in the hydrogen production reaction on the electrode, the hydrogen overvoltage becomes higher and the electrolysis of water occurs at the reaction electrode where the production process of adsorbed hydrogen atoms (Volmer reaction) is generally controlled. Is known to increase.

【0005】[0005]

【発明が解決しようとする課題】発明者らは特開平6−
241977に述べているように超音波の輻射圧と静電
場を組み合わせることで粒径の異なる微粒子や材質の異
なる微粒子を分画回収する微粒子分画装置を発明してい
るが、電場を発生させるために導入した電極から電気分
解によって発生する気泡の生成を抑制する配慮がなされ
ていなかった。超音波を照射した場合、たとえ最初に生
じた気泡が小さかったとしても、これを核としてキャビ
テーションが発生し、大きな気泡に成長してしまう可能
性が大きい。電解質溶液中の微粒子の分画を行う場合に
は、その気泡のために溶液中の音場と電場が乱れてしま
い微粒子を効果的に分画することができなかった。
SUMMARY OF THE INVENTION
As described in No. 241977, the inventors have invented a fine particle fractionation device that fractionally collects fine particles having different particle diameters or fine particles having different materials by combining the radiation pressure of ultrasonic waves and an electrostatic field. No consideration was given to suppressing the generation of bubbles generated by electrolysis from the electrode introduced in. When ultrasonic waves are radiated, even if the initially generated bubbles are small, there is a high possibility that cavitation will occur around the bubbles and grow into large bubbles. When fractionating fine particles in the electrolyte solution, the sound field and the electric field in the solution are disturbed by the bubbles, so that the fine particles cannot be fractionated effectively.

【0006】本発明は、上記電極から発生する気泡を抑
制する機能を有する超音波輻射圧と静電場とを組み合わ
せた微粒子分画装置を提供することを目的とする。
An object of the present invention is to provide a fine particle fractionation device which combines an ultrasonic radiation pressure and an electrostatic field having a function of suppressing bubbles generated from the above electrodes.

【0007】[0007]

【課題を解決するための手段】電極から発生する気泡を
抑制する機能を有する超音波輻射圧と静電場とを組み合
わせた微粒子分画装置を提供するために、本発明の分画
装置は、対となる2つの電極(作用電極、対極)に加
え、第3の電極(参照電極)が導入されており、これら
3本の電極の電位差を調節する手段を有し、対となる電
極の間を流れる電流の大きさを測定する手段を有し、ま
た、溶液中で気泡を発生しないような電位に作用電極と
対極の電位を保つ手段を有する。また、陰極の電極材料
としては、水銀、亜鉛、鉛、マグネシウム、スズなどの
吸着水素原子の生成を律速としている材料を用いればよ
い。陽極の電極材料としては金、白金、カドミウム、銀
などの酸素過電圧の大きな材料を用いればよい。
In order to provide a fine particle fractionation device which combines an ultrasonic radiation pressure having a function of suppressing bubbles generated from electrodes and an electrostatic field, the fractionation device of the present invention is In addition to the two electrodes (working electrode and counter electrode) to be used, a third electrode (reference electrode) is introduced, and a means for adjusting the potential difference between these three electrodes is provided, and a space between the pair of electrodes is provided. It has a means for measuring the magnitude of the flowing current and a means for keeping the potentials of the working electrode and the counter electrode at a potential that does not generate bubbles in the solution. Further, as the electrode material of the cathode, a material such as mercury, zinc, lead, magnesium, tin, etc., whose rate is the generation of adsorbed hydrogen atoms may be used. As the electrode material of the anode, a material having a large oxygen overvoltage such as gold, platinum, cadmium, or silver may be used.

【0008】[0008]

【発明の実施の形態】吉岡らがアコースティカ 第5巻
167頁から178頁に述べている音波の与える輻射圧
に関する理論解析によると、たとえば波数kの平面定在
BEST MODE FOR CARRYING OUT THE INVENTION According to the theoretical analysis on the radiation pressure given by a sound wave described by Yoshioka et al. In Acoustica Vol. 5, pp. 167 to 178, for example, a plane standing wave with a wave number k is used.

【0009】[0009]

【数1】 [Equation 1]

【0010】において節の位置からの距離xの位置に微
粒子があるとき、この微粒子の受ける輻射圧は、
When there is a fine particle at a position at a distance x from the position of the node, the radiation pressure received by this fine particle is

【0011】[0011]

【数2】 [Equation 2]

【0012】[0012]

【数3】 (Equation 3)

【0013】と置くことができる。ただし、ここでFは
超音波が微粒子に与える輻射圧、Rは微粒子の半径、k
は超音波の波数、Eacは超音波の平均エネルギー密度、
ρは微粒子の密度、ρ’は分散媒の密度、γは微粒子の
圧縮率、γ’は分散媒の圧縮率である。そして、微粒子
と溶媒との関係においてAが正のとき微粒子は定在波の
節へ、負のとき腹へ集まろうとする。
Can be set. Here, F is the radiation pressure applied to the particles by the ultrasonic waves, R is the radius of the particles, k
Is the wave number of ultrasonic waves, Eac is the average energy density of ultrasonic waves,
ρ is the density of the fine particles, ρ ′ is the density of the dispersion medium, γ is the compression rate of the fine particles, and γ ′ is the compression rate of the dispersion medium. Then, in the relationship between the fine particles and the solvent, when A is positive, the fine particles try to collect in the node of the standing wave, and when negative, try to collect in the antinode.

【0014】ここで、外電場を作用させると、先の出願
でも説明しているように、
Here, when an external electric field is applied, as explained in the previous application,

【0015】[0015]

【数4】 (Equation 4)

【0016】のような釣り合いの式が成り立ち、A balance equation such as

【0017】[0017]

【数5】 (Equation 5)

【0018】の位置に移動する。ただしεは溶液の誘電
率、1/κは微粒子表面の電気二重層の厚さ、Φ0は微
粒子の溶液中でのζ電位、Eeは電界強度である。
Move to the position of. Here, ε is the dielectric constant of the solution, 1 / κ is the thickness of the electric double layer on the surface of the fine particles, Φ 0 is the ζ potential in the solution of the fine particles, and Ee is the electric field strength.

【0019】ここで、電界を作り出すために溶液中に導
入した2本の電極(作用電極と対極)に電位差を与える
と、従来の技術でも述べたように、電極表面がある電位
を超えたところで電極表面での溶液中イオンの酸化ある
いは還元が起こり、この結果、溶液中に気泡が発生す
る。電極表面で起こる電極反応の種類は電極の電位によ
って定まることから、参照電極と呼ばれる第3の電極を
溶液中に導入し、その電位を基準に作用電極あるいは対
極の電位を適当に調節して一定にすることで、電極反応
の種類を特定することができる。そこで、参照電極の電
位に対する作用電極と対極との間を流れる電流の大きさ
を計測し、電気分解で気泡が発生しないような電位に作
用電極と対極の電位を操作することで溶液中での気泡発
生を抑えることができる。
Here, when a potential difference is applied to the two electrodes (working electrode and counter electrode) introduced into the solution in order to create an electric field, as described in the prior art, when the electrode surface exceeds a certain potential. Ions in the solution are oxidized or reduced on the surface of the electrode, and as a result, bubbles are generated in the solution. Since the type of electrode reaction that occurs on the electrode surface is determined by the potential of the electrode, a third electrode called the reference electrode is introduced into the solution, and the potential of the working electrode or the counter electrode is adjusted appropriately based on that potential and kept constant. It is possible to specify the type of electrode reaction. Therefore, the magnitude of the current flowing between the working electrode and the counter electrode with respect to the potential of the reference electrode is measured, and the potential of the working electrode and the counter electrode is adjusted by controlling the potentials of the working electrode and the counter electrode so that bubbles are not generated by electrolysis. Generation of bubbles can be suppressed.

【0020】このとき、参照電極を用いないで作用電
極、対極の二電極のみを用いた場合には両電極間の電位
差を測定することはできるが、それら二電極の電位を測
定することができないため、2つの電極上でどのような
反応が起こっているのかを知ることはできず、電気分解
が発生しない適切な電位に制御することが難しい。
At this time, when only the working electrode and the counter electrode are used without using the reference electrode, the potential difference between the two electrodes can be measured, but the potential of the two electrodes cannot be measured. Therefore, it is not possible to know what kind of reaction is occurring on the two electrodes, and it is difficult to control it to an appropriate potential that does not cause electrolysis.

【0021】ところで、電極上での水素生成反応は、以
下に示すような反応機構で進行すると考えられている。
By the way, it is considered that the hydrogen production reaction on the electrode proceeds by the following reaction mechanism.

【0022】(1)吸着水素原子の生成(Volmer
反応)
(1) Generation of adsorbed hydrogen atoms (Volmer
reaction)

【0023】[0023]

【数6】 (Equation 6)

【0024】(2)吸着水素原子上での2番目のプロト
ンの放電反応(Heyrovsky反応)
(2) Discharge reaction of second proton on adsorbed hydrogen atom (Heyrovsky reaction)

【0025】[0025]

【数7】 (Equation 7)

【0026】(3)2つの吸着水素原子の結合による水
素生成反応(Tafel反応)
(3) Hydrogen generation reaction by binding of two adsorbed hydrogen atoms (Tafel reaction)

【0027】[0027]

【数8】 (Equation 8)

【0028】まず、(1)の反応が陰極の電極表面で起
こり、次に(2)あるいは(3)の反応が進行して水素
が発生する。このとき(1)が律速の電極としては水
銀、亜鉛、鉛などが、(2)が律速の電極としては銀、
ニッケルなどが、(3)が律速の電極としては白金、パ
ラジウムなどが知られている。(1)が律速となる電極
反応では、水素過電圧が大きくなるために、電極上に初
めて水素の気泡が発生する電位は他の反応が律速となる
反応に比べて高くなる。また、陽極に金、白金、カドミ
ウム、銀などの酸素過電圧の大きな材料を用いた場合に
は陽極の電極表面での酸素の気泡が発生する電位は高く
なる。
First, the reaction (1) occurs on the surface of the cathode electrode, and then the reaction (2) or (3) proceeds to generate hydrogen. At this time, (1) is the rate-determining electrode of mercury, zinc, lead, etc., and (2) is the rate-limiting electrode of silver,
It is known that nickel or the like and platinum (3), palladium, or the like are the rate-determining electrodes. In the electrode reaction in which (1) is rate-determining, the hydrogen overvoltage becomes large, so that the potential at which hydrogen bubbles are first generated on the electrode becomes higher than reactions in which other reactions are rate-limiting. Further, when a material having a large oxygen overvoltage such as gold, platinum, cadmium, or silver is used for the anode, the potential at which oxygen bubbles are generated on the electrode surface of the anode becomes high.

【0029】実施例 図1に、本発明を用いた実施例として微粒子連続分画装
置の横からの断面図の形式での模式図を示す。この装置
は、まず、微粒子を含む流体を流す管壁31、32より
なる管26(本実施例では断面が長方形のものとする)
と、この管26の管壁31、32の外壁に、管26の中
に定在波6を発生させる超音波振動子41、42を張り
付け、26の管壁31、32の内壁に作用電極と対極と
しての二つの電極板51、52を設ける。液体中の微粒
子15等の溶質は超音波振動子41、42による輻射圧
と電極板51、52による電磁力との拮抗によって(数
5)のように分画させることができる。ただし、ここで
流体が水である場合、超音波制御装置部13によって駆
動した超音波振動子41、42から発生する超音波の振
動数が1MHzの時、水中での波長λは1.5mmとな
り管壁31、32の幅2がλ/2あるいは(λ/2+n
λ)であれば、(数1)で示されたような定在波6が管
壁31、32中に発生する。ただし、ここでnは整数で
ある。また、本実施例の濃縮装置は、管26中の微粒子
を濃縮する時、管26中の流体は静止していても、流れ
ていてもよい。二つの電極板51、52に加える電圧
は、管壁31、32中に導入した参照電極7を用いて、
これを基準電位として電位制御装置部14を用いて制御
し、これら二つの電極51、52の電位を気泡が発生し
ない最大電位に一定に保つ。
Example FIG. 1 shows a schematic view in the form of a sectional view from the side of a fine particle continuous fractionation apparatus as an example using the present invention. In this device, first, a tube 26 having tube walls 31 and 32 through which a fluid containing fine particles flows (in this embodiment, a section has a rectangular shape).
And ultrasonic transducers 41, 42 for generating standing waves 6 in the tube 26 are attached to the outer walls of the tube walls 31, 32 of the tube 26, and working electrodes are provided on the inner walls of the tube walls 31, 32 of 26. Two electrode plates 51 and 52 are provided as counter electrodes. The solute such as the fine particles 15 in the liquid can be fractionated as shown in (Equation 5) by antagonizing the radiation pressure by the ultrasonic transducers 41, 42 and the electromagnetic force by the electrode plates 51, 52. However, when the fluid is water, the wavelength λ in water is 1.5 mm when the frequency of the ultrasonic waves generated from the ultrasonic transducers 41 and 42 driven by the ultrasonic controller 13 is 1 MHz. The width 2 of the tube walls 31, 32 is λ / 2 or (λ / 2 + n
λ), the standing wave 6 as shown in (Equation 1) is generated in the tube walls 31 and 32. Here, n is an integer. Further, in the concentrating device of this embodiment, when concentrating the fine particles in the tube 26, the fluid in the tube 26 may be stationary or flowing. The voltage applied to the two electrode plates 51 and 52 uses the reference electrode 7 introduced into the tube walls 31 and 32,
This is used as a reference potential and is controlled using the potential control device section 14 to keep the potentials of these two electrodes 51 and 52 constant at the maximum potential at which bubbles are not generated.

【0030】図2に示したように、横軸に電圧、縦軸に
電流をとって、電極間に加える電位差を増加させたとき
の電流変化を見た場合、最初、電流はほとんど流れな
い。しかし、さらに電位差を上げて行くと電極表面で電
気分解が発生し、電流が急激に流れ始める。したがっ
て、気泡が発生しない最大電位を保つためには、つねに
電極間を流れる電流が一定値以下になるように調整すれ
ばよい。すなわち、電流が増加した場合には、電極間の
電位差を電流が一定値以下になるまで減少させ、電流値
が減少した場合には電流が一定値以下になる最大電圧に
すればよい。
As shown in FIG. 2, when the horizontal axis represents voltage and the vertical axis represents current, and changes in current when the potential difference applied between the electrodes is increased, almost no current flows at first. However, when the potential difference is further increased, electrolysis occurs on the electrode surface, and the current suddenly starts to flow. Therefore, in order to maintain the maximum potential at which no bubbles are generated, it is always necessary to adjust the current flowing between the electrodes to be a fixed value or less. That is, when the current increases, the potential difference between the electrodes may be decreased until the current becomes a certain value or less, and when the current value decreases, the maximum voltage may be set at which the current becomes a certain value or less.

【0031】図2の例で見ると、電流が急激に立ち上が
ったところから破線で示したように、漸近線を引いてこ
れが電圧の線と交わるところを電気分解の開始される電
圧と見て、この電圧に達しない電圧でできるだけ大きい
電圧となるような電流に制御するのがよいことになる。
In the example of FIG. 2, as shown by the broken line from the point where the current suddenly rises, an asymptotic line is drawn, and the point where it crosses the voltage line is regarded as the voltage at which electrolysis is started. It is preferable to control the current so that the voltage that does not reach this voltage is as large as possible.

【0032】また、電位変化に対する電流変化の傾きを
求めて、これをもとに電気分解が発生する分解電圧を見
積もってもよい。すなわち、二つの電極の電位を微小に
振動させて、このときに二つの電極間を流れる電流の変
化を電位制御装置部14で測定し、電流変化の傾きを求
め、この傾きが一定の値以下になる最大の電位を保つよ
うに電位制御装置部14で制御してもよい。
It is also possible to obtain the gradient of current change with respect to potential change and estimate the decomposition voltage at which electrolysis occurs based on this. That is, the potentials of the two electrodes are slightly oscillated, the change in the current flowing between the two electrodes at this time is measured by the potential control device unit 14, the slope of the current change is determined, and this slope is below a certain value. The potential control device section 14 may control so as to maintain the maximum potential.

【0033】この一定値は溶液条件によって異なるが、
たとえば0.5モル硫酸溶液の場合、銅電極表面で1μ
A/平方cmであった。
Although this constant value varies depending on the solution conditions,
For example, in the case of 0.5 mol sulfuric acid solution, 1μ on the copper electrode surface
It was A / square cm.

【0034】ところで、(数5)からもわかるように、
電極の電位を変えたときは、電位差Eeの変化によって
物性の同じ微粒子の釣合の位置が変わらないように電位
差Eeの変化に応じて超音波エネルギー密度Eacを変
化させることで、EeとEacの比を一定に保てばよ
い。
By the way, as can be seen from (Equation 5),
When the potential of the electrode is changed, the ultrasonic energy density Eac is changed according to the change of the potential difference Ee so that the position of balance of fine particles having the same physical properties does not change due to the change of the potential difference Ee. Keep the ratio constant.

【0035】なお、本実施例では電極51、52の下流
側に比較電極7を置いたが、電極の上流に配置してもよ
い。
Although the reference electrode 7 is placed downstream of the electrodes 51 and 52 in this embodiment, it may be placed upstream of the electrodes.

【0036】つぎに、分画した微粒子の回収について記
す。流体中で微粒子を分画した後、可動式の支持棒8
1、82、83、84で管壁31、32内に保持された
細管10を、管26内での移動量をモニターする機能を
持った細管駆動部32によって矢印91、92の方向に
動かすことで管壁31、32内の適当な位置に移動さ
せ、矢印1で示すように管26に流入した流体を、細管
10の周囲の矢印111および112で示す流れから分
離された矢印12に示す流れのように吸引させること
で、それぞれの特性に応じて分離したした微粒子15を
選択的に吸引させることができる。また、図示しない光
源より管壁31、32に照射された光の、微粒子15に
よる散乱光あるいは微粒子15の蛍光を観測することで
管壁31、32中で分離された微粒子15の数を計測す
ることもできる。
Next, the recovery of the fractionated fine particles will be described. After fractionating fine particles in a fluid, a movable support rod 8
Moving the thin tube 10 held in the tube walls 31, 32 by 1, 82, 83, 84 in the directions of arrows 91, 92 by the thin tube driving section 32 having a function of monitoring the amount of movement in the tube 26. To move it to an appropriate position in the tube walls 31 and 32, and the fluid flowing into the pipe 26 as shown by the arrow 1 is separated from the flow around the thin tube 10 as shown by the arrows 111 and 112 and separated by the flow shown by the arrow 12. By sucking as described above, it is possible to selectively suck the fine particles 15 separated according to their respective characteristics. Further, the number of the fine particles 15 separated in the tube walls 31, 32 is measured by observing the scattered light by the fine particles 15 or the fluorescence of the fine particles 15 of the light irradiated on the tube walls 31, 32 from a light source (not shown). You can also

【0037】また、電極51、52の陰極側の電極材料
として、水銀、亜鉛、鉛、マグネシウム、スズなどの吸
着水素原子の生成を律速としている材料を用いること
で、陰極での電気分解による水素の気泡の発生を抑制す
ることもできる。さらに、陽極側の電極材料として、
金、白金、カドミウム、銀などの酸素過電圧の大きな材
料を用いることで、陽極での電気分解による酸素の気泡
の発生を抑制することもできる。
Further, as the electrode material on the cathode side of the electrodes 51, 52, by using a material such as mercury, zinc, lead, magnesium, or tin, which rate-controls the production of adsorbed hydrogen atoms, hydrogen by electrolysis at the cathode is used. It is also possible to suppress the generation of bubbles. Furthermore, as the electrode material on the anode side,
By using a material having a large oxygen overvoltage such as gold, platinum, cadmium, or silver, generation of oxygen bubbles due to electrolysis at the anode can be suppressed.

【0038】[0038]

【発明の効果】本発明を用いることによって、気泡の発
生を伴うことなく流体中の微粒子を効果的に分画するこ
とができるという効果を奏する。
By using the present invention, it is possible to effectively fractionate fine particles in a fluid without generating bubbles.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかわる微粒子連続分画装置
を側面からの断面図の形で示す模式図。
FIG. 1 is a schematic view showing a fine particle continuous fractionation device according to an embodiment of the present invention in the form of a cross-sectional view from the side.

【図2】電極に加えた電圧と電流の関係を示すグラフ。FIG. 2 is a graph showing the relationship between voltage and current applied to electrodes.

【符号の説明】[Explanation of symbols]

1…溶液の流れ、2…流路の幅、31、32…管壁、4
1、42…超音波振動子、51、52…電極(作用電極
と対極)、6…定在波、7…参照電極、81、82、8
3、84…細管支持棒、91、92…支持棒の動き、1
0…細管、111、112…溶液の流れ、12…分画試
料の流れ、13…超音波制御装置部、14…電位制御装
置部、15…微粒子。
1 ... Solution flow, 2 ... Flow path width, 31, 32 ... Pipe wall, 4
1, 42 ... Ultrasonic transducer, 51, 52 ... Electrode (working electrode and counter electrode), 6 ... Standing wave, 7 ... Reference electrode, 81, 82, 8
3, 84 ... Capillary support rods, 91, 92 ... Movement of support rods, 1
0 ... Capillary tube, 111, 112 ... Flow of solution, 12 ... Flow of fractionated sample, 13 ... Ultrasonic wave controller, 14 ... Potential controller, 15 ... Fine particle.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅村 晋一郎 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichiro Umemura 2520 Akanuma, Hatoyama-cho, Hiki-gun, Saitama Prefectural Institute for Basic Research, Hitachi Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】分画させたい微粒子を含む流体をおさめる
容器と、前記容器に沿って配置された一つあるいは複数
の超音波発生源と、前記超音波発生源の超音波振動子各
々から特定の周波数、特定の強度、特定の位相差の超音
波、あるいはこれらを重ね合せたものを発生させるため
の超音波発生制御部と、前記容器中に配置された容器中
に電場を発生させるための対となる2つの電極および前
記2つの電極の容器流体中での電位を測定するための第
3の電極と、これら3本の電極の電位差を測定し調節す
る手段と、前記対となる2つの電極の間を流れる電流の
大きさを測定する手段とよりなり、前記3本の電極の電
位差を測定し調節する手段は前記対となる2つの電極の
電位を溶液中で気泡が発生しにくい電位に保つととも
に、前記超音波発生制御部は前記対となる2つの電極の
電位差の変化に応じて超音波エネルギー密度を変化させ
両者の比を一定に保つように制御することを特徴とする
分画装置。
1. A container for containing a fluid containing fine particles to be fractionated, one or a plurality of ultrasonic wave generators arranged along the container, and an ultrasonic transducer of the ultrasonic wave generator. Frequency, a specific intensity, an ultrasonic wave of a specific phase difference, or an ultrasonic wave generation control unit for generating a superposition of these, for generating an electric field in the container arranged in the container A pair of two electrodes, a third electrode for measuring the potential of the two electrodes in the container fluid, a means for measuring and adjusting the potential difference between these three electrodes, and a pair of the two electrodes. The means for measuring the magnitude of the electric current flowing between the electrodes, and the means for measuring and adjusting the potential difference between the three electrodes is a potential at which bubbles are unlikely to be generated in the solution. Keep the above and generate the ultrasonic wave Control unit Fractionation apparatus and controls to maintain the ratio of the two constant by changing the ultrasonic energy density in accordance with a change in potential difference between two electrodes forming the pair.
【請求項2】前記対となる2つの電極の陰極側の電極材
料として、水銀、亜鉛、鉛、マグネシウム、スズなどの
溶液の電気分解反応において吸着水素原子の生成反応が
電気分解の律速過程となる電極材料を用いる請求項1記
載の分画装置。
2. An electrode material on the cathode side of the two electrodes forming a pair, wherein the reaction of forming adsorbed hydrogen atoms in the electrolysis reaction of a solution of mercury, zinc, lead, magnesium, tin, etc. is the rate-determining process of electrolysis. The fractionation device according to claim 1, wherein the electrode material is
【請求項3】前記対となる2つの電極の陽極側の電極材
料として、金、白金、カドミウム、銀などの溶液の電気
分解反応における酸素過電圧の大きな材料を用いる請求
項1記載の分画装置。
3. The fractionation device according to claim 1, wherein a material having a large oxygen overvoltage in an electrolysis reaction of a solution of gold, platinum, cadmium, silver or the like is used as an electrode material on the anode side of the pair of two electrodes. .
JP8102561A 1996-04-24 1996-04-24 Fractionating apparatus Pending JPH09288052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8102561A JPH09288052A (en) 1996-04-24 1996-04-24 Fractionating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8102561A JPH09288052A (en) 1996-04-24 1996-04-24 Fractionating apparatus

Publications (1)

Publication Number Publication Date
JPH09288052A true JPH09288052A (en) 1997-11-04

Family

ID=14330651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8102561A Pending JPH09288052A (en) 1996-04-24 1996-04-24 Fractionating apparatus

Country Status (1)

Country Link
JP (1) JPH09288052A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538830A (en) * 2002-09-16 2005-12-22 イギリス国 Device for inducing particles in a fluid
JP2006297333A (en) * 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd Component separation device and component separation method using it
JP2009222660A (en) * 2008-03-18 2009-10-01 Central Res Inst Of Electric Power Ind Nanoparticle component measuring device
JP2013101153A (en) * 2007-12-19 2013-05-23 Los Alamos National Security Llc Particle analysis in acoustic cytometer
CN108195726A (en) * 2017-12-21 2018-06-22 爱德森(厦门)电子有限公司 A kind of online fluid metal worn particle electromagnetic monitoring test tube
US10537831B2 (en) 2004-07-29 2020-01-21 Triad National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
KR20200072960A (en) * 2018-12-13 2020-06-23 한국전자통신연구원 Fluorescence sensor for measuring microalgea and method of operation the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538830A (en) * 2002-09-16 2005-12-22 イギリス国 Device for inducing particles in a fluid
US10537831B2 (en) 2004-07-29 2020-01-21 Triad National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
JP2006297333A (en) * 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd Component separation device and component separation method using it
JP2013101153A (en) * 2007-12-19 2013-05-23 Los Alamos National Security Llc Particle analysis in acoustic cytometer
US9038467B2 (en) 2007-12-19 2015-05-26 Los Alamos National Security, Llc Particle analysis in an acoustic cytometer
JP2015172602A (en) * 2007-12-19 2015-10-01 ロス アラモス ナショナル セキュリティー,エルエルシーLos Alamos National Security,Llc Particle analysis in acoustic cytometer
US9488621B2 (en) 2007-12-19 2016-11-08 Los Alamos National Security, Llc Particle analysis in an acoustic cytometer
US11287362B2 (en) 2007-12-19 2022-03-29 Triad National Security, Llc Particle analysis in an acoustic cytometer
US11287363B2 (en) 2007-12-19 2022-03-29 Triad National Security, Llc Particle analysis in an acoustic cytometer
JP2009222660A (en) * 2008-03-18 2009-10-01 Central Res Inst Of Electric Power Ind Nanoparticle component measuring device
CN108195726A (en) * 2017-12-21 2018-06-22 爱德森(厦门)电子有限公司 A kind of online fluid metal worn particle electromagnetic monitoring test tube
KR20200072960A (en) * 2018-12-13 2020-06-23 한국전자통신연구원 Fluorescence sensor for measuring microalgea and method of operation the same

Similar Documents

Publication Publication Date Title
Hawkes et al. Force field particle filter, combining ultrasound standing waves and laminar flow
Pollet Power ultrasound in electrochemistry: from versatile laboratory tool to engineering solution
Tolt et al. Separation of dispersed phases from liquids in acoustically driven chambers
Doche et al. Influence of ultrasound power and frequency upon corrosion kinetics of zinc in saline media
Birkin et al. Multiple observations of cavitation cluster dynamics close to an ultrasonic horn tip
Klima et al. Sonoelectrochemistry: transient cavitation in acetonitrile in the neighbourhood of a polarized electrode
Birkin et al. Cavitation, shock waves and the invasive nature of sonoelectrochemistry
Sato et al. Surface tension reduction of liquid by applied electric field using vibrating jet method
Birkin et al. Investigation of noninertial cavitation produced by an ultrasonic horn
JPH09288052A (en) Fractionating apparatus
JP2005334865A (en) Solid particle classifier and solid particle classification method utilizing the same
Maisonhaute et al. Microelectrode study of single cavitational bubbles induced by 500 kHz ultrasound
Volanschi et al. Gas bubbles electrolytically generated at microcavity electrodes used for the measurement of the dynamic surface tension in liquids
JPS6314884A (en) Electrolytic method
JPH0618683A (en) Cylinder plating type vibrating electrode apparatus for normal temperature nuclear fusion
Abdel-Aziz et al. Mass transfer at a rotating tubular packed bed of woven screens in relation to electrochemical and catalytic reactor design
Masudo et al. Elution control of microparticles with a coupled acoustic-gravity field and orthogonal laminar flow
Piwowar et al. High field asymmetric waveform for ultra-enhanced electroosmotic pumping of porous anodic alumina membranes
Iranzo et al. Synthesis of in situ purified iron nanoparticles in an electrochemical and vibrating microreactor: study of ramified branch fragmentation by oscillating bubbles
JP5390315B2 (en) Metal carrier manufacturing apparatus and metal carrier manufacturing method
Lee et al. Electrification of sonoluminescing single bubble
Kozuka et al. Non-contact micromanipulation using an ultrasonic standing wave field
Drake Electrodeposition in ultrasonic fields
EP1181543B1 (en) Method and means for performing electrochemical analysis
JP2017034978A (en) Polymer Actuator