JPH09268386A - Method for preventing corrosion of electronic computer and method for operating the same - Google Patents

Method for preventing corrosion of electronic computer and method for operating the same

Info

Publication number
JPH09268386A
JPH09268386A JP7980796A JP7980796A JPH09268386A JP H09268386 A JPH09268386 A JP H09268386A JP 7980796 A JP7980796 A JP 7980796A JP 7980796 A JP7980796 A JP 7980796A JP H09268386 A JPH09268386 A JP H09268386A
Authority
JP
Japan
Prior art keywords
cooling water
amount
corrosion inhibitor
corrosion
inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7980796A
Other languages
Japanese (ja)
Inventor
Kazutoshi Ito
和利 伊藤
Takeya Ohashi
健也 大橋
Taku Honda
卓 本田
Kenichi Kasai
憲一 笠井
Makoto Hiraga
平賀  良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7980796A priority Critical patent/JPH09268386A/en
Publication of JPH09268386A publication Critical patent/JPH09268386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preventing the corrosion of an electronic computer capable of reducing the number of frequency for maintenance and imparting high corrosion preventing effect and to provide a method for operating the computer. SOLUTION: In the method, the electronic computer is operated while a semiconductor module is cooled with cooling water by a sealed circulating system. The cooling water contains a corrosion inhibitor, and the corrosion inhibitor in this cooling water is contained by the quantity to be consumed by the formation of a corrosion preventing film on a metallic face in contact with the cooling water in the initial stage of the operation, by the quantity to be consumed by the operation for at least one year and by the remaining quantity equal to the quantity to be consumed by the reaction on the initial stage of the operation after the operation for at least one year. After the prescribed operation, the remaining quantity is measured, and the remaining quantity of regulated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、腐食防止のために
冷却水に添加されるインヒビタを含む場合の電子計算機
の防食方法と運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anticorrosion method and an operating method for a computer including an inhibitor added to cooling water to prevent corrosion.

【0002】[0002]

【従来の技術】電子計算機の冷却装置には鉄系,銅系材
料が多く使われており、通常はインヒビタを添加してこ
れらの腐食防止を図っている。しかし、インヒビタは分
解,還元及び吸着等により消耗するので厳重な濃度管理
が必要である。
2. Description of the Related Art Iron-based and copper-based materials are often used for electronic computer cooling devices, and inhibitors are usually added to prevent corrosion of these materials. However, inhibitors are consumed by decomposition, reduction, adsorption, etc., so strict concentration control is necessary.

【0003】従来のインヒビタ濃度の管理方法は、冷却
装置より冷却水を直接サンプリングして、化学分析によ
り計測する方法、あるいは間接的にインヒビタ濃度と発
生ガス量との関係を把握しておいて発生ガス量を計測
し、インヒビタ濃度を推定する方法がある。これらの方
法はインヒビタの種類や装置によって使いわけられてい
る。後者は化学分析などの直接的な方法による試料採取
の煩雑性を改良することを目的としたもので、特開昭52
−37257 号公報はインヒビタの分解ガスで生じる配管内
の内圧変化を計測することでインヒビタの消耗量を知る
方法であり、分解ガスを発生しないインヒビタの場合は
特開昭52−46552 号公報に腐食により発生する水素ガス
量を計測することでインヒビタ濃度を知る方法が示され
ている。
The conventional inhibitor concentration control method is one in which cooling water is directly sampled from a cooling device and measured by chemical analysis, or indirectly, the relationship between the inhibitor concentration and the amount of generated gas is grasped. There is a method of measuring the gas amount and estimating the inhibitor concentration. These methods are used properly depending on the type and device of the inhibitor. The latter is intended to improve the complexity of sampling by a direct method such as chemical analysis.
-37257 is a method of knowing the consumption of the inhibitor by measuring the internal pressure change in the pipe caused by the decomposed gas of the inhibitor.In the case of an inhibitor that does not generate decomposed gas, the corrosion is disclosed in JP-A-52-46552. A method of knowing the inhibitor concentration by measuring the amount of hydrogen gas generated by is shown.

【0004】また、特公昭55−10831 号公報はベンゾト
リアゾールと金属イオンとの反応を利用し、ベンゾトリ
アゾール濃度を化学分析して計測する方法も示されてい
る。また、特公平5−32702号公報には自動車エンジン冷
却用のラジエータ溶液中の銅系防食材の劣化程度を色濃
度変化で測定する方法が記載されている。この測定方法
は、エチレングリコールがラジエータ溶液の3割を占め
ている該ラジエータ溶液中の銅系防食剤であるベンゾト
リアゾールと銅イオンとの沈殿反応を利用し、沈殿物を
ろ別し、過剰の銅イオンを含むろ液にジエチルジチオカ
ルバミン酸ナトリウムを投入し、発色化合物を酢酸エチ
ル等で抽出して、その発色の程度を基準色見本チャート
と比較対比して劣化程度を判定するというものである。
Further, Japanese Patent Publication No. 55-10831 discloses a method of measuring the concentration of benzotriazole by utilizing the reaction between benzotriazole and metal ions. In addition, Japanese Patent Publication No. 32702/1993 describes a method of measuring the degree of deterioration of a copper-based anticorrosive material in a radiator solution for cooling an automobile engine by a change in color density. This measuring method utilizes a precipitation reaction of benzotriazole, which is a copper-based anticorrosive in the radiator solution with ethylene glycol, which accounts for 30% of the radiator solution, and copper ions, and filters the precipitate to remove excess excess. Sodium diethyldithiocarbamate is added to a filtrate containing copper ions, the color-developing compound is extracted with ethyl acetate or the like, and the degree of color development is compared with a reference color sample chart to determine the degree of deterioration.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術のうち、
間接的な方法ではインヒビタの濃度を正確に把握できな
い恐れがあり、直接的な方法では分析機器を用いる化学
分析以外に濃度を直接計測できる方法は確立されていな
い。特にベンゾトリアゾールとモリブデン酸塩などのイ
ンヒビタではその測定法の確立は難しい。特公昭55−10
831 号公報及び特公平5−32702号公報にはベンゾトリア
ゾールを過剰の銅イオンで沈殿させ、未反応の銅イオン
を発色化合物にして抽出し、その抽出液の発色の程度か
らのベンゾトリアゾール濃度を測定する方法が記載され
ているが、抽出工程が入るため、測定操作が煩雑とな
り、現場で測定する方法としては現実的には不向きであ
った。すなわち、冷却装置においては装置の運転を停止
することなく、また、化学分析の分別,定量等の煩雑な
操作及び分析機器類を必要とせず、現地において簡単に
インヒビタ濃度を計測することができないという問題が
あった。
SUMMARY OF THE INVENTION Among the above prior arts,
The indirect method may not be able to accurately determine the concentration of the inhibitor, and the direct method has not been established to directly measure the concentration other than the chemical analysis using an analytical instrument. Especially for inhibitors such as benzotriazole and molybdate, it is difficult to establish the measuring method. Japanese Examined Japanese Patent Publication 55-10
No. 831 and Japanese Patent Publication No. 5-32702 disclose that benzotriazole is precipitated with an excess of copper ions, unreacted copper ions are extracted as a color-forming compound, and the concentration of benzotriazole from the degree of color development of the extract is determined. Although the method of measurement is described, since the extraction step is included, the measurement operation is complicated, and it is not practically suitable as a method of measurement on site. That is, in the cooling device, the operation of the device is not stopped, and complicated operations such as separation and quantification of chemical analysis and analytical instruments are not required, and the inhibitor concentration cannot be easily measured on site. There was a problem.

【0006】本発明の目的は、メンテナンス回数を少な
くして防食効果の高い電子計算機の防食方法及び運転方
法を提供するにある。
An object of the present invention is to provide an anticorrosion method and an operating method for a computer, which has a high anticorrosion effect by reducing the maintenance frequency.

【0007】[0007]

【課題を解決するための手段】本発明は、半導体モジュ
ール密閉循環系による冷却水によって冷却しながら運転
する電子計算機の防食方法において、前記冷却水は腐食
抑制剤が含有され、該腐食抑制剤は前記運転時に少なく
とも1年間の前記運転で消費される量と好ましくは少な
くとも1年間の前記運転後に前記運転の初期の反応で消
費される量の半分以上、より好ましくはそれと同等の量
が残存する量とを有することを特徴とする電子計算機の
防食方法にある。
SUMMARY OF THE INVENTION The present invention provides a corrosion prevention method for a computer operated while being cooled by cooling water by a semiconductor module closed circulation system, wherein the cooling water contains a corrosion inhibitor, and the corrosion inhibitor is The amount consumed in the operation for at least one year during the operation and preferably half or more of the amount consumed in the initial reaction of the operation after the operation for at least one year, and more preferably the amount equivalent thereto. There is a method for preventing corrosion of an electronic computer, which comprises:

【0008】更に、本発明は、半導体モジュール密閉循
環系による冷却水によって冷却しながら運転する電子計
算機の運転方法において、前記冷却水は腐食抑制剤が含
有され、該腐食抑制剤は前記運転時に少なくとも1年間
の前記運転で消費される量と好ましくは少なくとも1年
間の前記運転後に前記運転初期の反応で消費される量の
半分以上、より好ましくはそれと同等の量が残存する量
とを有し、少なくとも前記1年後の所望の時期に前記腐
食抑制剤の残存する量を測定し、次回の所望の運転後に
前記残存する前記腐食抑制剤の含有量を調整することを
特徴とする電子計算機の運転方法にある。
Further, the present invention provides a method of operating an electronic computer which is operated while being cooled by cooling water by a semiconductor module closed circulation system, wherein the cooling water contains a corrosion inhibitor, and the corrosion inhibitor is at least during the operation. Having an amount consumed in the operation for one year and preferably at least half of the amount consumed in the reaction in the early stage of the operation after the operation for at least one year, and more preferably an amount equivalent thereto. Operation of a computer characterized by measuring the remaining amount of the corrosion inhibitor at least at a desired time after the one year, and adjusting the content of the corrosion inhibitor remaining after the next desired operation. On the way.

【0009】本発明は、腐食抑制剤(インヒビタ)成分
が金属イオンと一定の割合で反応して沈殿を生成する反
応を利用して過剰量の金属イオンと反応させ、その未反
応の金属イオンを計測する方法において、未反応の金属
イオンの錯化合物を形成して発色させることにより、該
発色の程度によってインヒビタ濃度を測定するのが好ま
しい。
The present invention utilizes a reaction in which a corrosion inhibitor (inhibitor) component reacts with a metal ion at a constant ratio to form a precipitate, and reacts with an excessive amount of the metal ion to remove the unreacted metal ion. In the measuring method, it is preferable to form an unreacted metal ion complex compound to cause color development, and thereby measure the inhibitor concentration according to the degree of color development.

【0010】すなわち、冷却装置の構造材料の腐食防止
のためにインヒビタが添加されてなる冷却水を一定量採
取し、その採取した冷却水に前記インヒビタに対して過
剰量の金属イオンを所定量加えて該インヒビタを全て沈
殿させ、未反応の金属イオンを含む溶液から錯化合物を
生成して発色させ、その発色の程度を濃度既知の標準液
と比較してインヒビタの濃度を測るのが好ましい。
That is, a certain amount of cooling water added with an inhibitor for preventing corrosion of the structural material of the cooling device is sampled, and a predetermined amount of an excessive amount of metal ion is added to the sampled cooling water. It is preferable to precipitate all of the inhibitor, form a complex compound from a solution containing unreacted metal ions to cause coloration, and compare the degree of coloration with a standard solution of known concentration to measure the concentration of the inhibitor.

【0011】冷却装置の銅系材料のインヒビタとしてベ
ンゾトリアゾールが添加されてなる冷却水を一定量採取
し、その採取した冷却水に前記ベンゾトリアゾールに対
して過剰量の銅イオンを所定量加えて該ベンゾトリアゾ
ールを全て沈殿させ、未反応の銅イオンを含む溶液をア
ルカリ性にして銅−ベンゾトリアゾール錯体を生成して
発色させ、その発色の程度を濃度既知の標準液と比較し
てインヒビタの濃度を測るのが好ましい。
A certain amount of cooling water, to which benzotriazole is added as an inhibitor of the copper-based material of the cooling device, is sampled, and a predetermined amount of an excess amount of copper ions is added to the sampled cooling water to obtain the cooling water. All the benzotriazole is precipitated, and the solution containing unreacted copper ions is made alkaline to form a copper-benzotriazole complex that causes color development, and the degree of color development is compared with a standard solution of known concentration to measure the inhibitor concentration. Is preferred.

【0012】冷却装置の鉄系材料のインヒビタとして無
機系のモリブデン酸塩が添加されてなる冷却水を一定量
採取し、その採取した冷却水に前記モリブデン酸塩に対
して過剰量の鉄イオンを所定量加えて該モリブデン酸塩
を全て沈殿させ、未反応の鉄イオンを含む溶液を還元し
て錯化合物を生成して発色させ、その発色の程度を濃度
既知の標準液と比較してインヒビタの濃度を測るのが好
ましい。
A certain amount of cooling water to which an inorganic molybdate is added is used as an inhibitor of the iron-based material of the cooling device, and an excessive amount of iron ions is added to the collected cooling water. A predetermined amount was added to precipitate all the molybdate, and a solution containing unreacted iron ions was reduced to form a complex compound for color development, and the degree of color development was compared with a standard solution of known concentration to inhibit It is preferable to measure the concentration.

【0013】モリブデン酸塩に対して過剰量の鉄イオン
を含むチオシアン酸鉄溶液を所定量加えてモリブデン酸
塩を沈殿させた後、塩化スズ溶液を添加して未反応の鉄
イオンを含む溶液を還元してチオシアン酸モリブデンの
錯化合物を生成して発色させるのが好ましい。
A predetermined amount of iron thiocyanate solution containing an excess amount of iron ions with respect to molybdate is added to precipitate molybdate, and then a tin chloride solution is added to prepare a solution containing unreacted iron ions. It is preferable to reduce and form a complex compound of molybdenum thiocyanate to develop a color.

【0014】錯化合物生成後にろ過し、ろ液の発色の程
度によりインヒビタの濃度を測ることが好ましい。
It is preferable that after the complex compound is formed, it is filtered and the concentration of the inhibitor is measured by the degree of color development of the filtrate.

【0015】インヒビタ成分が金属イオンと1:1の割
合で反応することを利用したものである。冷却水中に含
まれるベンゾトリアゾール濃度とそれよりも高い濃度の
例えば硫酸銅溶液とを反応させてベンゾトリアゾールを
沈殿させ、未反応の銅イオンを含む溶液をアルカリ性に
して銅−ベンゾトリアゾール錯体を形成し、発色させる
ものである。この発色の程度は冷却水中にベンゾトリア
ゾールが多いほど薄くなり、少ないほど濃くなる関係に
ある。
The fact that the inhibitor component reacts with the metal ion at a ratio of 1: 1 is utilized. The benzotriazole concentration contained in the cooling water is reacted with a higher concentration such as a copper sulfate solution to precipitate benzotriazole, and the solution containing unreacted copper ions is made alkaline to form a copper-benzotriazole complex. , To develop color. The degree of this color development is such that the more benzotriazole is in the cooling water, the lighter it becomes, and the less it is, the darker it becomes.

【0016】一方、インヒビタがモリブデン酸塩の場合
で、冷却水中に含まれるモリブデン酸塩の濃度より高い
濃度の例えばチオシアン酸鉄溶液の一定量と反応させ、
未反応の鉄イオンを含む溶液を還元することによりチオ
シアン酸モリブデンの錯化合物を形成し、発色させるも
のである。この発色の程度は冷却水中にモリブデン酸塩
が多いほど濃くなり、少ないほど薄くなる関係にある。
On the other hand, when the inhibitor is molybdate, it is reacted with a fixed amount of iron thiocyanate solution having a concentration higher than that of the molybdate contained in the cooling water,
By reducing a solution containing unreacted iron ions, a complex compound of molybdenum thiocyanate is formed to develop color. The degree of color development is such that the more molybdate is in the cooling water, the darker it is, and the less it is, the lighter it is.

【0017】これらは、事前に被検液と同じ溶液を用い
て上記手順により、ベンゾトリアゾールと硫酸銅溶液の
間及びモリブデン酸塩とチオシアン酸モリブデン溶液の
間で濃度の違いによる発色の程度の異なる標準液を作成
しておき、冷却水から採取したサンプル液と標準液との
発色の程度の違いを比較することによって、冷却水中の
インヒビタ濃度を簡易に計測することができる。
These are different in the degree of color development between the benzotriazole and the copper sulfate solution and between the molybdate and the molybdenum thiocyanate solution by the above procedure using the same solution as the test solution in advance. By preparing a standard solution and comparing the difference in the degree of color development between the sample solution collected from the cooling water and the standard solution, the inhibitor concentration in the cooling water can be easily measured.

【0018】冷却装置の構造材料の腐食防止のためにイ
ンヒビタが添加されてなる冷却水の適量を抽出槽に採取
し、これを希釈槽に送って純水で希釈し、その反応槽に
送り、この反応槽にて前記インヒビタ成分と化合して沈
殿物質を生じる金属イオンの溶液を供給して反応させ、
更に未反応金属イオンを含む溶液から有色の錯化合物を
生成する錯化合物生成用溶液を供給して反応させ、その
後ろ過槽に送って、その発色の程度を標準液のそれと比
較対比してインヒビタの濃度の測定が終了する。
An appropriate amount of cooling water added with an inhibitor to prevent corrosion of the structural material of the cooling device is sampled in an extraction tank, sent to a diluting tank to be diluted with pure water, and then sent to the reaction tank. In this reaction tank, a solution of metal ions that combine with the inhibitor component to generate a precipitated substance is supplied and reacted,
Further, a solution for forming a complex compound that forms a colored complex compound from a solution containing unreacted metal ions is supplied to react and then sent to a filtration tank, and the degree of color development is compared with that of the standard solution and The concentration measurement is completed.

【0019】本発明に係る腐食抑制剤は、無機系の酸化
剤型のモリブデン酸塩,硝酸塩,亜硝酸塩,クロム酸
塩,タングステン酸塩から選ばれる少なくとも一種と、
有機系のベンゾトリアゾール及びその誘導体,トリアゾ
ール及びその誘導体,イミダゾール及びその誘導体,ベ
ンゾイミダゾールおよびその誘導体,メルカプトベンゾ
イミダゾール及びその誘導体からなる化合物群から選択
した少なくとも一種の化合物を混合したものであるのが
よい。また、冷却媒体中の無機系及び有機系の混合腐食
抑制剤の濃度範囲が1×10-6mol/l〜1×10-1mol
/lで、混合比が1:10〜10:1であるのがよい。
The corrosion inhibitor according to the present invention comprises at least one selected from inorganic oxidant type molybdates, nitrates, nitrites, chromates and tungstates.
It is a mixture of at least one compound selected from the group consisting of organic benzotriazole and its derivative, triazole and its derivative, imidazole and its derivative, benzimidazole and its derivative, mercaptobenzimidazole and its derivative. Good. The concentration range of the inorganic and organic mixed corrosion inhibitors in the cooling medium is 1 × 10 −6 mol / l to 1 × 10 −1 mol.
/ L, the mixing ratio is preferably 1:10 to 10: 1.

【0020】本発明者らは冷却装置を構成する鉄系及び
銅系材に適用できる腐食抑制剤について検討した。ベン
ゾトリアゾール(BTA)は銅に対する有効なインヒビ
タであるが、BTAを添加することにより銅の電位が高
くなり、ステンレス鋼と銅を接合した部分での電位差に
よるガルバニック腐食が発生することが分かった。そこ
で、ステンレス鋼の電位を高めるようなインヒビタを探
索した。その結果、無機系の酸化剤型のインヒビタがス
テンレス鋼を不動態化して電位を高くし効果のあること
がわかった。無機系の酸化剤型のインヒビタとBTAの
ような有機系の化合物形成型のインヒビタを混合して添
加することにより、無機系のインヒビタは鉄系に、有機
系のインヒビタは銅系に効果を示すのは勿論であるが、
従来問題であったステンレス鋼と銅の接合部の腐食にも
効果を示した。
The present inventors have examined a corrosion inhibitor applicable to iron-based and copper-based materials constituting a cooling device. Although benzotriazole (BTA) is an effective inhibitor for copper, it was found that the addition of BTA increases the potential of copper and galvanic corrosion occurs due to the potential difference at the portion where stainless steel and copper are joined. Therefore, we searched for inhibitors that could increase the potential of stainless steel. As a result, it was found that the inorganic oxidizer type inhibitor had an effect to passivate stainless steel and raise the potential. By mixing and adding the inorganic oxidizer type inhibitor and the organic compound forming type inhibitor such as BTA, the inorganic type inhibitor is effective for the iron type and the organic type inhibitor is effective for the copper type. Of course,
It was also effective in corroding the joint between stainless steel and copper, which had been a problem in the past.

【0021】無機系のインヒビタとしては、モリブデン
酸塩,硝酸塩,亜硝酸塩,クロム酸塩,タングステン酸
塩等が好ましく、有機系のインヒビタとしては例えば、
トリアゾール及びその誘導体,ベンゾトリアゾール及び
その誘導体,イミダゾール及びその誘導体,ベンゾイミ
ダゾール及びその誘導体、メルカプトベンゾイミダゾー
ル及びその誘導体等が好ましい。誘導体の具体例は表1
乃至表3にその名称及び構造式を示した。
The inorganic inhibitors are preferably molybdates, nitrates, nitrites, chromates, tungstates, etc. As organic inhibitors, for example,
Triazole and its derivatives, benzotriazole and its derivatives, imidazole and its derivatives, benzimidazole and its derivatives, mercaptobenzimidazole and its derivatives and the like are preferable. Specific examples of derivatives are shown in Table 1.
Through Table 3, its name and structural formula are shown.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】また、腐食抑制剤の濃度管理法の一例とし
ては、冷却水経路内に腐食抑制剤が防食性能を示す金属
で構成された一対の電極を設置し、該電極間に周波数1
kHz以上及び1Hz以下の交流の微小電圧を印加し、各
周波数のインピーダンス値を検出することにより達成で
きる。前記電極素子の電極間の抵抗値から、金属の腐食
に関与する腐食抵抗値と溶液のみの抵抗値を分離して求
めることにより腐食抑制剤の濃度の状況を知ることがで
きる。
Further, as an example of the method of controlling the concentration of the corrosion inhibitor, a pair of electrodes made of a metal whose corrosion inhibitor exhibits anticorrosive performance is installed in the cooling water passage, and a frequency of 1 is set between the electrodes.
This can be achieved by applying a minute AC voltage of not less than 1 kHz and not less than 1 Hz and detecting the impedance value of each frequency. From the resistance value between the electrodes of the electrode element, the corrosion resistance value involved in metal corrosion and the resistance value of only the solution are separately obtained, so that the state of the concentration of the corrosion inhibitor can be known.

【0026】電極間に観測される抵抗成分には、溶液の
抵抗Rsと金属電極の腐食反応による抵抗値Rcが関与
する。Rc値は金属電極の腐食速度Icorrとの関係によ
り求めることができる。
The resistance component observed between the electrodes involves the resistance Rs of the solution and the resistance value Rc due to the corrosion reaction of the metal electrode. The Rc value can be obtained from the relationship with the corrosion rate Icorr of the metal electrode.

【0027】従って腐食速度Icorrを求めるには、腐食
抵抗値Rc値が分かれば算出することができる。上記R
c値を精度良く測定する方法としては交流インピーダン
ス法が最適である。この方法は一対の電極間に高周波数
の微小な交流電圧と低周波数の微小な交流電圧を印加
し、それぞれの周波数におけるインピーダンスを測定す
る方法である。
Therefore, the corrosion rate Icorr can be calculated if the corrosion resistance value Rc is known. R above
The AC impedance method is the most suitable method for accurately measuring the c value. This method is a method of applying a high frequency minute AC voltage and a low frequency minute AC voltage between a pair of electrodes and measuring the impedance at each frequency.

【0028】即ち、測定電極の銅の腐食抵抗値Rcが小
さくなることで混合腐食抑制剤中のBTAの濃度の減少
がわかり、溶液の抵抗値Rsが大きくなることで混合腐
食抑制剤中のモリブデン酸塩の濃度の減少が分かる。
That is, the decrease in the corrosion resistance value Rc of copper of the measuring electrode shows the decrease in the concentration of BTA in the mixed corrosion inhibitor, and the increase in the resistance value Rs of the solution increases the molybdenum in the mixed corrosion inhibitor. One can see the decrease in the acid salt concentration.

【0029】このように、電子計算機の冷却装置に有機
系と無機系例えばBTAとモリブデン酸塩とからなる混
合腐食抑制剤を含む冷却水を循環し、冷却系統にインピ
ーダンス測定系,腐食抑制剤注入系及び腐食抑制剤を注
入させる制御系を設けることにより、電子計算機の冷却
装置は高い信頼性を有することが明らかになった。
In this way, the cooling water containing the mixed corrosion inhibitor composed of organic and inorganic materials such as BTA and molybdate is circulated in the cooling device of the electronic computer, and the impedance measurement system and the corrosion inhibitor are injected into the cooling system. By providing a system and a control system for injecting a corrosion inhibitor, it became clear that the cooling device of the electronic computer has high reliability.

【0030】[0030]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)図1は本発明の電子計算機冷却装置の系統
図である。冷却水1は腐食抑制剤を含む冷却水である。
この冷却水1は、ポンプ2により電子計算機の複数個の
LSI素子を備えた半導体モジュールの冷却部3に送ら
れ、熱交換されて発熱したLSI素子は冷却されると同時
に、冷却水1は昇温され、冷却水タンク4に流入され
る。冷却水タンク4から出た冷却水1はポンプ2により
冷却器5に送られる。冷却器5には冷凍器6に連結され
た熱交換器7が設けられており、電子計算機の発熱体を
冷却して昇温された冷却水1は冷却器5の中で再び冷却
される。次いで、冷却器5から出た冷却水1は流量制御
装置8で制御され、電子計算機の冷却部3に送られる。
このとき、冷却水系統内には腐食抑制剤の濃度管理をす
る冷却水の取出口9であるバルブが設置されている。
(Embodiment 1) FIG. 1 is a system diagram of a computer cooling device of the present invention. Cooling water 1 is cooling water containing a corrosion inhibitor.
This cooling water 1 is supplied to a plurality of electronic calculators by a pump 2.
The cooling water 3 is sent to the cooling unit 3 of the semiconductor module including the LSI device and heat-exchanged to generate heat. At the same time, the cooling water 1 is heated and flows into the cooling water tank 4. The cooling water 1 discharged from the cooling water tank 4 is sent to the cooler 5 by the pump 2. The cooler 5 is provided with a heat exchanger 7 connected to the refrigerator 6, and the cooling water 1 that has been heated by cooling the heating element of the electronic computer is cooled again in the cooler 5. Then, the cooling water 1 discharged from the cooler 5 is controlled by the flow rate control device 8 and sent to the cooling unit 3 of the electronic computer.
At this time, a valve serving as a cooling water outlet 9 for controlling the concentration of the corrosion inhibitor is installed in the cooling water system.

【0031】図2は、ムライト,AlN,アルミナ等の
セラミック焼結体からなる多層回路基板13に半導体素
子16を搭載し、その上にくし歯状のフィンを有する熱
伝導ディスク11を接触させて銅製の金属製ハウジング
19で封止し、内部にHeガスを入れた半導体モジュー
ル構造を示す部分断面図である。熱伝導ディスク11は
セラミック焼結体からなり、熱伝導率として室温で0.
2cal/cm・sec.℃以上を持つAlN又はSiC焼結体
が好ましい。この焼結体としてSiCに0.1〜3重量
%Beを含む(特にBeOが好ましい)ものが好まし
い。半導体素子16は集積回路として発熱量が大きいの
で、冷却口20よりインヒビタを含む水が送られて冷却
され、出口21より次のモジュールに送られる。金属製
ハウジング19は半導体素子16側と冷却水側の2重密
閉構造を有する。半導体素子16側は熱伝導ディスク1
1のフィンにミクロンオーダーのギャップで接触するよ
うに設けられたフィン17が形成されている。更に、冷
却水側もその中にインヒビタ入りの冷却水が高速で流
れ、冷却効率を高めるのに上下でフィン17が設けられ
ている。これらは銅製であり、前述の如くインヒビタの
添加が必要である。特に、近年半導体素子の高集積化が
高まっているので、その発熱量が高く、冷却効率を高め
る必要があり、より冷却水の流速も高く、そのための防
食は特に重要になっている。
In FIG. 2, a semiconductor element 16 is mounted on a multilayer circuit board 13 made of a ceramic sintered body of mullite, AlN, alumina or the like, and a heat conducting disk 11 having comb-teeth fins is contacted thereon. FIG. 3 is a partial cross-sectional view showing a semiconductor module structure in which a metal housing 19 made of copper is sealed and He gas is put inside. The heat conduction disk 11 is made of a ceramic sintered body and has a heat conductivity of 0.
An AlN or SiC sintered body having 2 cal / cm · sec. ° C. or higher is preferable. It is preferable that the sintered body contains 0.1 to 3 wt% Be in SiC (especially BeO is preferable). Since the semiconductor element 16 as an integrated circuit generates a large amount of heat, water containing an inhibitor is sent from the cooling port 20 to be cooled, and then sent to the next module from the outlet 21. The metal housing 19 has a double sealed structure on the semiconductor element 16 side and the cooling water side. The semiconductor element 16 side is the heat conduction disk 1
A fin 17 is formed so as to contact the first fin with a gap of micron order. Further, on the cooling water side as well, the cooling water containing the inhibitor flows at a high speed, and fins 17 are provided above and below in order to enhance the cooling efficiency. Since these are made of copper, it is necessary to add an inhibitor as described above. In particular, since the degree of integration of semiconductor devices has been increasing in recent years, the amount of heat generated is high and it is necessary to enhance the cooling efficiency. The flow velocity of cooling water is also higher, and the corrosion protection for that is particularly important.

【0032】図3は図2の半導体モジュール24をポリ
イミド等の有機樹脂からなる多層プリント回路板25に
ピンを介して装着するとともに、多層プリント回路板2
5に設けられた端子を介してプラッタ26のコネクタ2
7に装着した半導体モジュール24を三次元実装された
コンピュータ実装構造を示す斜視図である。
In FIG. 3, the semiconductor module 24 of FIG. 2 is mounted on a multilayer printed circuit board 25 made of an organic resin such as polyimide via pins, and the multilayer printed circuit board 2 is mounted.
Connector 2 of the platter 26 via the terminals provided on the
7 is a perspective view showing a computer mounting structure in which the semiconductor module 24 mounted on the device 7 is three-dimensionally mounted. FIG.

【0033】このような構造にすることにより、コンピ
ュータ実装はコンパクトにでき、前述のように比誘電率
も低いので信号処理スピードも高いものが得られる。
With such a structure, the computer can be compactly mounted, and the signal processing speed is high because the relative dielectric constant is low as described above.

【0034】図4は銅の腐食量に及ぼすBTA濃度の影
響について、冷却水環境下を模擬し、40℃,2m/s
の純水中で二百時間腐食試験して調べた結果を示す。図
から、BTA濃度5ppm 以上あれば銅の腐食を抑制でき
る。ここで、腐食抑制剤の有効濃度範囲は5ppm から2
×104ppmである。これは、低い添加濃度では、腐食抑
制効果がなく、高い添加濃度ではBTAの溶解度により
沈殿物が生じ、その沈殿物が系統内を浮遊し、伝熱部等
に付着して冷却性能を低下させる等のトラブルの原因に
なるためである。
FIG. 4 shows the effect of BTA concentration on the amount of corrosion of copper in a cooling water environment simulated at 40 ° C. and 2 m / s.
The results obtained by conducting a corrosion test in pure water for 200 hours are shown below. From the figure, corrosion of copper can be suppressed if the BTA concentration is 5 ppm or more. Here, the effective concentration range of the corrosion inhibitor is from 5 ppm to 2
It is × 10 4 ppm. This is because at a low addition concentration, there is no corrosion inhibiting effect, and at a high addition concentration, a precipitate is generated due to the solubility of BTA, and the precipitate floats in the system and adheres to the heat transfer part etc. to reduce the cooling performance. This is because it causes troubles such as.

【0035】図5及び図6は、SUS304ステンレス鋼の隙
間腐食及び銅の腐食に対し、腐食抑制剤の抑制効果を塩
化物存在下の加速環境を模擬した10-2mol/l のNa
Cl溶液中で60℃,200時間腐食試験して調べた結
果を示す。図から、ステンレス鋼の隙間腐食に対しては
モリブデン酸塩が、銅の腐食に対してはベンゾトリアゾ
ールの腐食抑制効果の高いことがわかる。また、本発明
の混合腐食抑制剤はステンレス鋼及び銅の双方に対して
腐食抑制効果が高い。従って、鉄系及び銅系の共存する
系には混合腐食抑制剤の良いことがわかる。ここで、混
合腐食抑制剤の濃度範囲は1×10-6mol/lから1×
10-1mol/lで、混合比が1:10〜10:1である
ことが望ましい。
FIG. 5 and FIG. 6 show the inhibitory effect of the corrosion inhibitor on crevice corrosion and copper corrosion of SUS304 stainless steel, simulating an accelerated environment in the presence of chloride for 10 -2 mol / l Na.
The results of the corrosion test conducted in a Cl solution at 60 ° C. for 200 hours are shown below. From the figure, it can be seen that molybdate is highly effective for crevice corrosion of stainless steel and benzotriazole is highly effective for corrosion of copper. Further, the mixed corrosion inhibitor of the present invention has a high corrosion inhibition effect on both stainless steel and copper. Therefore, it is understood that the mixed corrosion inhibitor is good for the system in which the iron system and the copper system coexist. Here, the concentration range of the mixed corrosion inhibitor is from 1 × 10 −6 mol / l to 1 ×
It is preferably 10 -1 mol / l and the mixing ratio is 1:10 to 10: 1.

【0036】これは、低い添加濃度では腐食抑制効果が
なく、高い添加濃度ではベンゾトリアゾールの溶解度に
より沈殿物が生じ、その沈殿物が系統内を浮遊し、伝熱
管等に付着してトラブルの原因になるためである。また
前記混合比の根拠は表4に示した。モリブデン酸塩,タ
ングステン酸塩及びクロム酸塩のいずれも上記範囲で腐
食抑制効果が得られている。
This is because at a low addition concentration, there is no corrosion inhibiting effect, and at a high addition concentration, a precipitate is generated due to the solubility of benzotriazole, and the precipitate floats in the system and adheres to the heat transfer tube etc., causing a trouble. This is because The basis of the mixing ratio is shown in Table 4. Any of molybdate, tungstate, and chromate has a corrosion inhibiting effect within the above range.

【0037】[0037]

【表4】 [Table 4]

【0038】図7はインヒビタ濃度と抵抗値の関係を調
べた結果である。ここで、混合インヒビタにはモリブデ
ン酸塩とBTAを用い、インピーダンス測定用電極には
銅を用いた。電極間に高周波数側に10kHz,低周波
数側には10mHzを印加した。図7から、銅の腐食抵
抗値Rcと溶液抵抗値Rsとの関係を調べると両者は直
線関係にあり、インヒビタ濃度が減少すれば測定電極の
銅の腐食抵抗値が小さくなり、溶液抵抗値は大きくなる
のでこの値をモニターすればインヒビタの濃度が推定で
きる。
FIG. 7 shows the results of examining the relationship between the inhibitor concentration and the resistance value. Here, molybdate and BTA were used for the mixed inhibitor, and copper was used for the impedance measurement electrode. 10 kHz was applied between the electrodes on the high frequency side and 10 mHz on the low frequency side. When the relationship between the corrosion resistance value Rc of copper and the solution resistance value Rs is examined from FIG. 7, they are in a linear relationship, and if the inhibitor concentration decreases, the corrosion resistance value of copper of the measurement electrode decreases, and the solution resistance value is Since it becomes large, the inhibitor concentration can be estimated by monitoring this value.

【0039】また、インヒビタとして冷却装置用として
鉄系材に効果のある無機系のモリブデン酸塩と銅系材に
効果のあるベンゾトリアゾールを用いた。分析操作の手
順は冷却水100mlを採取後、100mlメスフラス
コに10ml分取し、水で70mlに希釈した後、硫酸
銅溶液をベンゾトリアゾール推定量の1.25 倍相当量
(ベンゾトリアゾール200ppm の場合は1g/lの硫
酸銅溶液25ml)を正確に加えて沈殿させた後、20
%アンモニア水溶液を1.5ml 添加し、水で100m
lとして溶液をアルカリ性にし、銅−ベンゾトリアゾー
ル錯体を形成する。よく混合し、10分間放置して、そ
の溶液の発色の程度をあらかじめ作成してある標準液と
比較してベンゾトリアゾール量を求める。この場合、沈
殿を熟成させた後にろ紙(No.5C)で沈殿をろ過し、
そのろ液の発色の程度をあらかじめ作成してある標準液
と比較してベンゾトリアゾール量を求めるとさらに正確
な濃度を求めることができる。
As an inhibitor, an inorganic molybdate, which is effective for iron-based materials, and a benzotriazole, which is effective for copper-based materials, were used for a cooling device. The procedure of the analysis procedure is to collect 100 ml of cooling water, collect 10 ml in a 100 ml volumetric flask, dilute to 70 ml with water, and then add the copper sulfate solution to 1.25 times the estimated amount of benzotriazole (for 200 ppm of benzotriazole). 1 g / l copper sulphate solution (25 ml) was added exactly to precipitate and then 20
% Aqueous ammonia solution (1.5 ml) and add water to 100 m
The solution is made alkaline as 1 to form a copper-benzotriazole complex. Mix well, leave for 10 minutes, and compare the degree of color development of the solution with a standard solution prepared in advance to determine the amount of benzotriazole. In this case, after aging the precipitate, filter the precipitate with filter paper (No. 5C),
A more accurate concentration can be determined by comparing the degree of color development of the filtrate with a standard solution prepared in advance to determine the amount of benzotriazole.

【0040】ベンゾトリアゾールの場合と同じように冷
却水100mlを採取後、100mlメスフラスコに10
ml分取し、水で65mlに希釈した後、チオシアン酸
鉄溶液(3価の鉄イオンを10mg含む1:4の硫酸溶
液と10%のシアンアンモニウム溶液の混合液)をモリ
ブデン酸塩推定量の1.25 倍相当量である5mlを正
確に加えて沈殿させた後によく混合し、10%塩化スズ
溶液を5ml添加後、水で100mlとしてチオシアン
酸鉄を還元し、チオシアン酸モリブデンの錯化合物を形
成する。20分間放置して、その溶液の発色の程度をあ
らかじめ作成してある標準液と比較してモリブデン酸塩
量を求めることができる。
As in the case of benzotriazole, 100 ml of cooling water was collected and placed in a 100 ml volumetric flask.
After taking up 1 ml and diluting with water to 65 ml, an iron thiocyanate solution (mixture of a 1: 4 sulfuric acid solution containing 10 mg of trivalent iron ions and a 10% cyanoammonium solution) was added to an estimated amount of molybdate. Accurately add 1.25 times the equivalent amount of 5 ml to precipitate and mix well, add 5 ml of 10% tin chloride solution, reduce to 100 ml with water to reduce iron thiocyanate, and form a complex compound of molybdenum thiocyanate. Form. After leaving for 20 minutes, the molybdate amount can be determined by comparing the degree of color development of the solution with a standard solution prepared in advance.

【0041】本発明の検量用の標準液の作成は、ベンゾ
トリアゾール及びモリブデン酸塩ともそれぞれ0.1m
g〜100mg を100mlメスフラスコに採取し、
水で希釈してベンゾトリアゾール及び、モリブデン酸塩
を前述に従って操作して発色させておき、各濃度におけ
る検量用の標準液とする。標準液以外にもインヒビタの
各濃度における発色の程度をまとめた比較表を作成して
おき、その表とサンプル液の発色の程度を比較してイン
ヒビタ濃度を求めてもよい。
The preparation of the standard solution for calibration of the present invention was carried out by using 0.1 m of both benzotriazole and molybdate.
g ~ 100 mg was collected in a 100 ml volumetric flask,
Dilute with water to operate the benzotriazole and molybdate in accordance with the above to develop color, and use them as standard solutions for calibration at each concentration. It is also possible to prepare a comparison table summarizing the degree of color development at each concentration of the inhibitor other than the standard solution, and compare the degree of color development of the table and the sample solution to obtain the inhibitor concentration.

【0042】表5は本発明による分析手法の測定精度を
みるための比較試験の結果で、冷却水1000mlにベ
ンゾトリアゾール及びモリブデン酸ナトリウムをそれぞ
れ一定量を添加して試験液を作成した後、前述の分析手
法によって計測した。ベンゾトリアゾール及びモリブデ
ン酸ナトリウムの計測値はいずれも添加量の±10%の
範囲内にあり、本発明の評価法は冷却装置における冷却
水中のベンゾトリアゾール及びモリブデン酸塩インヒビ
タ濃度の計測法として効果的であることが分かる。
Table 5 shows the results of a comparative test for checking the measurement accuracy of the analytical method according to the present invention. A test solution was prepared by adding a fixed amount of each of benzotriazole and sodium molybdate to 1000 ml of cooling water. It was measured by the analytical method. The measured values of benzotriazole and sodium molybdate are both within ± 10% of the added amount, and the evaluation method of the present invention is effective as a method for measuring benzotriazole and molybdate inhibitor concentrations in cooling water in a cooling device. It turns out that

【0043】[0043]

【表5】 [Table 5]

【0044】密閉循環型の電子計算機の水冷却における
インヒビタ濃度の時間変化を測定した結果、モリブデン
酸ナトリウムは初期の1000hで25ppm 及びベンゾ
トリアゾールは約500時間の初期に25ppm 減少し、
その後いずれも徐々に減少し、1年後に前者が約25pp
m ,後者が約45ppm 減少することが分かった。このよ
うなことから予め運転の初期に消費される量とその後に
合計1年後に消費される量を求め、系全体で初期に急激
に消費される量が1年後に残存するように運転時に密閉
循環系での冷却システムでその純水中にインヒビタを添
加するものである。そして、1年後のメンテナンス時に
上述の各々のインヒビタ濃度を測定することにより残存
するインヒビタの量を測定する。その残存する量は前述
の運転の初期に消費される量の半分以上となるように運
転時に添加される。より好ましくはそれと同等の量又は
それ以上の量が残存されるようにするものである。イン
ヒビタの量を多量に入れ過ぎると冷却効率が低下するの
で好ましくなく、運転初期に消費される量の1.5倍 以
下が好ましい。次回のインヒビタの残存する量の測定は
更に1年後でよく、その後も年1回の残存量の検査を行
うものである。尚、冷却水の温度を20〜40℃,流速
を1〜2m/秒で行った。
As a result of measuring the time variation of the inhibitor concentration in water cooling of a closed circulation type computer, sodium molybdate decreased by 25 ppm in the initial 1000 hours and benzotriazole decreased by 25 ppm in the initial period of about 500 hours.
After that, both gradually decreased, and one year later, the former was about 25pp
It was found that m and the latter decreased by about 45 ppm. From this, the amount consumed in the early stage of operation and the amount consumed after a total of one year after that are obtained in advance, and the amount consumed rapidly in the initial stage of the entire system is sealed during operation so that it remains after one year. The inhibitor is added to the pure water by the cooling system in the circulation system. Then, the amount of the remaining inhibitor is measured by measuring each inhibitor concentration described above at the time of maintenance one year later. The remaining amount is added at the time of operation so that it becomes more than half of the amount consumed at the beginning of the above operation. More preferably, an amount equal to or more than that is left. If the amount of the inhibitor is excessively large, the cooling efficiency is lowered, which is not preferable, and it is preferably 1.5 times or less the amount consumed in the initial stage of the operation. The next time the remaining amount of the inhibitor is measured one year later, the remaining amount is inspected once a year thereafter. The cooling water temperature was 20 to 40 ° C. and the flow rate was 1 to 2 m / sec.

【0045】本実施例では、所定の濃度でインヒビタと
してはベンゾトリアゾールとモリブデン酸塩の混合イン
ヒビタを添加した冷却水はポンプ2により冷却部3に送
り、LSIモジュールを冷却するものである。そして、
冷却水循環系路内に取出口9が設けられ、必要に応じて
冷却水を取出し上記方法によりインヒビタ濃度を計測
し、インヒビタの濃度が機器の腐食を抑制するために不
十分な場合には冷却水タンク4に設けられた投入口30
よりインヒビタを補給し、逆にインヒビタ濃度が濃すぎ
て他の機器に悪影響を及ぼす場合には同じように冷却水
を補給するなど、常に機器の健全性を保つためのインヒ
ビタの有効濃度の範囲内に維持する。
In this embodiment, the cooling water to which a mixed inhibitor of benzotriazole and molybdate is added as the inhibitor at a predetermined concentration is sent to the cooling section 3 by the pump 2 to cool the LSI module. And
An outlet 9 is provided in the cooling water circulation system, cooling water is taken out if necessary, and the inhibitor concentration is measured by the above method. If the inhibitor concentration is insufficient to suppress the corrosion of the equipment, the cooling water is used. Input port 30 provided in the tank 4
If the inhibitor concentration is too high, and if the inhibitor concentration is too high and adversely affects other equipment, the cooling water will be replenished in the same way. To maintain.

【0046】図8はBTA,モリブデン酸塩及びBTA
とモリブデン酸塩を混合した場合に白色光の吸光光度法
によりそれぞれの吸収曲線を測定した結果を示す。いず
れも濃度は10ppm とした。図から、混合の場合の吸収
曲線はいずれの波長においても、BTAとモリブデン酸
塩の吸収曲線をプラスした所にある。従って、混合の場
合吸収曲線から各々の吸収曲線を差し引けば、各々の腐
食抑制剤の濃度が推定できる。すなわち、波長270n
mの吸収ピークがモリブデン酸塩濃度によらずBTAの
濃度を示すことと、220nmの波長における吸光度の
構成がモリブデン酸塩の吸光度と270nmの吸収ピー
クから求めたBTAの吸光度の1/7の絶対値から成る
ことを用いて、モリブデン酸塩の濃度とBTAの濃度を
2波長の吸光度から推定できる。
FIG. 8 shows BTA, molybdate and BTA.
The results of measuring the respective absorption curves by the absorptiometric method of white light in the case of mixing and molybdate are shown. In each case, the concentration was 10 ppm. From the figure, the absorption curve in the case of mixing is at the position where the absorption curves of BTA and molybdate are added at any wavelength. Therefore, in the case of mixing, the concentration of each corrosion inhibitor can be estimated by subtracting each absorption curve from the absorption curve. That is, the wavelength 270n
The absorption peak of m indicates the concentration of BTA regardless of the molybdate concentration, and the absorbance composition at the wavelength of 220 nm is the absolute value of 1/7 of the absorbance of BTA obtained from the absorbance of molybdate and the absorption peak at 270 nm. Consistency of the values can be used to estimate the concentration of molybdate and the concentration of BTA from the absorbance at two wavelengths.

【0047】このように、本発明は腐食抑制剤の白色光
の吸収特性を測定し、各波長における吸光度の測定値を
比較することにより簡易に腐食抑制剤の濃度管理を行う
ことができる。
As described above, according to the present invention, the corrosion inhibitor concentration can be easily controlled by measuring the white light absorption characteristics of the corrosion inhibitor and comparing the measured absorbance values at the respective wavelengths.

【0048】[0048]

【発明の効果】本発明の電子計算機の防食方法及び運転
方法によれば、メンテナンス回数を少なくでき、冷却液
中に無機系及び有機系の混合腐食抑制剤が存在し、さら
に冷却液中の腐食抑制剤の濃度の状況を把握でき、更に
その消耗量を検出し、定期的に腐食抑制剤の調整を行う
ので、冷却装置の腐食による冷却液の漏洩等のトラブル
を事前に防止することが可能となり、極めて高い信頼性
が得られるものである。特に、本発明の混合腐食抑制剤
は鉄系,銅系金属及びそれらが共存する系に対し優れた
耐食性を示し、さらに、腐食抑制剤が防食性能を示す金
属を電極とし、その腐食抵抗及び溶液抵抗を測定するこ
とにより簡易に腐食抑制剤の濃度管理を行うことができ
る。
According to the anticorrosion method and operation method of the electronic computer of the present invention, the number of maintenances can be reduced, the inorganic and organic mixed corrosion inhibitors are present in the cooling liquid, and the corrosion in the cooling liquid is further increased. It is possible to grasp the status of the inhibitor concentration, detect the amount of consumption, and periodically adjust the corrosion inhibitor, so it is possible to prevent problems such as leakage of coolant due to corrosion of the cooling device in advance. Therefore, extremely high reliability can be obtained. In particular, the mixed corrosion inhibitor of the present invention shows excellent corrosion resistance to iron-based, copper-based metals and systems in which they coexist, and further, the corrosion inhibitor has a metal having an anticorrosion property as an electrode, and its corrosion resistance and solution. The concentration of the corrosion inhibitor can be easily controlled by measuring the resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電子計算機冷却装置の一実施例を示す
系統図。
FIG. 1 is a system diagram showing an embodiment of a computer cooling device of the present invention.

【図2】半導体モジュールの冷却構造を示す部分切断面
を示す斜視図。
FIG. 2 is a perspective view showing a partially cut surface showing a cooling structure of a semiconductor module.

【図3】電子計算機の実装構造を示す斜視図。FIG. 3 is a perspective view showing a mounting structure of an electronic computer.

【図4】銅の腐食量とBTA量との関係を示す線図。FIG. 4 is a diagram showing the relationship between the amount of corrosion of copper and the amount of BTA.

【図5】SUS304の腐食速度とインヒビタ濃度との関係を
示す線図。
FIG. 5 is a diagram showing the relationship between the corrosion rate of SUS304 and the inhibitor concentration.

【図6】銅の腐食速度とインヒビタ濃度との関係を示す
線図。
FIG. 6 is a diagram showing the relationship between the corrosion rate of copper and the inhibitor concentration.

【図7】インヒビタ濃度と抵抗値との関係を示す線図。FIG. 7 is a diagram showing the relationship between inhibitor concentration and resistance value.

【図8】吸光度と波長との関係を示す線図。FIG. 8 is a diagram showing the relationship between absorbance and wavelength.

【符号の説明】[Explanation of symbols]

1…冷却水、2…ポンプ、3…冷却部、4…冷却水タン
ク、5…冷却器、6…冷凍器、7…熱交換器、8…流量
制御装置、11…熱伝導ディスク、13…多層回路基
板、16…半導体素子、19…金属製ハウジング、24
…半導体モジュール、25…多層プリント回路板。
DESCRIPTION OF SYMBOLS 1 ... Cooling water, 2 ... Pump, 3 ... Cooling part, 4 ... Cooling water tank, 5 ... Cooler, 6 ... Refrigerator, 7 ... Heat exchanger, 8 ... Flow control device, 11 ... Heat conduction disk, 13 ... Multilayer circuit board, 16 ... Semiconductor element, 19 ... Metal housing, 24
… Semiconductor module, 25… Multilayer printed circuit board.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 7/20 H05K 7/20 N (72)発明者 笠井 憲一 神奈川県秦野市堀山下1番地 株式会社日 立製作所汎用コンピュータ事業部内 (72)発明者 平賀 良 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location H05K 7/20 H05K 7/20 N (72) Inventor Kenichi Kasai 1 Horiyamashita, Hadano City, Kanagawa Stock Company General Manager Computer Division, Hiritsu Manufacturing Co., Ltd. (72) Ryo Hiraga 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo Hitachi, Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】半導体モジュールを密閉循環系による冷却
水によって冷却しながら運転する電子計算機の防食方法
において、前記冷却水は腐食抑制剤が含有され、該腐食
抑制剤は前記運転時に少なくとも1年間の前記運転で消
費される量と残存する量とを有することを特徴とする電
子計算機の防食方法。
1. A corrosion prevention method for a computer, wherein a semiconductor module is operated while being cooled by cooling water in a closed circulation system, wherein the cooling water contains a corrosion inhibitor, and the corrosion inhibitor is used for at least one year during the operation. An anticorrosion method for a computer, comprising: an amount consumed in the operation and an amount remaining.
【請求項2】半導体モジュールを密閉循環系による冷却
水によって冷却しながら運転する電子計算機の運転方法
において、前記冷却水は腐食抑制剤が含有され、該腐食
抑制剤は前記運転時に少なくとも1年間の前記運転で消
費される量と残存する量とを有し、少なくとも前記1年
後の所望の時期に前記腐食抑制剤の残存する量を測定
し、次回の所望の運転後に前記残存する前記腐食抑制剤
の含有量を調整することを特徴とする電子計算機の運転
方法。
2. A method of operating an electronic computer, wherein a semiconductor module is operated while being cooled by cooling water in a closed circulation system, wherein the cooling water contains a corrosion inhibitor, and the corrosion inhibitor is used for at least one year during the operation. There is an amount consumed and a remaining amount in the operation, the remaining amount of the corrosion inhibitor is measured at least at a desired time after the one year, and the remaining corrosion inhibition after the next desired operation. A method for operating an electronic computer, which comprises adjusting the content of an agent.
【請求項3】請求項2において、前記冷却水を一定量採
取し、その採取した冷却水に前記腐食抑制剤に対して過
剰量の金属イオンを所定量加えて該腐食抑制剤を全て沈
殿させ、未反応の金属イオンを含む溶液から錯化合物を
生成して発色させ、その発色の程度を濃度既知の標準液
と比較する電子計算機の運転方法。
3. The method according to claim 2, wherein a predetermined amount of the cooling water is sampled, and a predetermined amount of an excessive amount of metal ions is added to the collected cooling water to precipitate the corrosion inhibitor. , A method of operating an electronic computer in which a complex compound is produced from a solution containing unreacted metal ions to cause color development, and the degree of color development is compared with a standard solution of known concentration.
【請求項4】請求項2又は3において、前記腐食抑制剤
としてベンゾトリアゾールが添加されてなる冷却水を一
定量採取し、その採取した冷却水に前記ベンゾトリアゾ
ールに対して過剰量の銅イオンを所定量加えて該ベンゾ
トリアゾールを全て沈殿させ、未反応の銅イオンを含む
溶液をアルカリ性にして銅−ベンゾトリアゾール錯体を
生成して発色させ、その発色の程度を濃度既知の標準液
と比較して前記腐食抑制剤の濃度を測る電子計算機の運
転方法。
4. The method according to claim 2 or 3, wherein a certain amount of cooling water containing benzotriazole as the corrosion inhibitor is sampled, and an excessive amount of copper ions is added to the sampled cooling water. A predetermined amount is added to precipitate all of the benzotriazole, and a solution containing unreacted copper ions is made alkaline to form a copper-benzotriazole complex to cause color development, and the degree of color development is compared with a standard solution of known concentration. A method of operating an electronic computer for measuring the concentration of the corrosion inhibitor.
【請求項5】請求項2又は3において、前記腐食抑制剤
として無機系のモリブデン酸塩が添加されて成る冷却水
を一定量採取し、その採取した冷却水に前記モリブデン
酸塩に対して過剰量の鉄イオンを所定量加えて該モリブ
デン酸塩を全て沈殿させ、未反応の鉄イオンを含む溶液
を還元して錯化合物を生成して発色させ、その発色の程
度を濃度既知の標準液と比較して前記腐食抑制剤の濃度
を測る電子計算機の運転方法。
5. The method according to claim 2 or 3, wherein a certain amount of cooling water containing an inorganic molybdate as the corrosion inhibitor is sampled, and the collected cooling water is excessive with respect to the molybdate. A predetermined amount of iron ion is added to precipitate all of the molybdate, and a solution containing unreacted iron ion is reduced to form a complex compound for color development, and the degree of color development is compared with a standard solution of known concentration. A method of operating an electronic computer, which compares and measures the concentration of the corrosion inhibitor.
【請求項6】請求項5において、モリブデン酸塩に対し
て過剰量の鉄イオンを含むチオシアン酸鉄溶液を所定量
加えてモリブデン酸塩を沈殿させた後、塩化スズ溶液を
添加して未反応の鉄イオンを含む溶液を還元してチオシ
アン酸モリブデンの錯化合物を生成して発色させる電子
計算機の運転方法。
6. The method according to claim 5, wherein a predetermined amount of iron thiocyanate solution containing an excess amount of iron ions is added to the molybdate to precipitate the molybdate, and then a tin chloride solution is added to cause unreacted reaction. A method of operating an electronic computer for reducing a solution containing iron ions to form a complex compound of molybdenum thiocyanate to develop color.
【請求項7】請求項3〜6のいずれかにおいて、錯化合
物生成後にろ過し、ろ液の発色の程度により腐食抑制剤
の濃度を測る電子計算機の運転方法。
7. The method of operating an electronic computer according to claim 3, wherein the complex compound is filtered and then filtered, and the concentration of the corrosion inhibitor is measured by the degree of color development of the filtrate.
【請求項8】半導体モジュールを密閉循環系による冷却
水によって冷却しながら運転する電子計算機の防食方法
において、前記冷却水は腐食抑制剤が含有され、該腐食
抑制剤は前記運転時に少なくとも1年間の前記運転で消
費される量と、少なくとも1年間の前記運転後に前記運
転の初期の反応で消費される量の半分以上の量が残存す
る量とを有することを特徴とする電子計算機の防食方
法。
8. A method for preventing corrosion of a computer, wherein a semiconductor module is operated while being cooled by cooling water in a closed circulation system, wherein the cooling water contains a corrosion inhibitor, and the corrosion inhibitor is used for at least one year during the operation. An anticorrosion method for a computer, comprising: an amount consumed in the operation and an amount in which at least one half of the amount consumed in an initial reaction of the operation remains after the operation for at least one year.
【請求項9】半導体モジュールを密閉循環系による冷却
水によって冷却しながら運転する電子計算機の運転方法
において、前記冷却水は腐食抑制剤が含有され、該腐食
抑制剤は前記運転時に少なくとも1年間の前記運転で消
費される量と少なくとも1年間の前記運転後に前記運転
の初期の反応で消費される量の半分以上の量が残存する
量とを有し、少なくとも前記1年後の所望の時期に前記
腐食抑制剤の残存する量を測定し、次回の所望の運転後
に前記残存する前記腐食抑制剤の含有量を調整すること
を特徴とする電子計算機の運転方法。
9. A method of operating an electronic computer, wherein a semiconductor module is operated while being cooled by cooling water in a closed circulation system, wherein the cooling water contains a corrosion inhibitor, and the corrosion inhibitor is used for at least one year during the operation. The amount consumed in the operation and the amount remaining at least half the amount consumed in the initial reaction of the operation after the operation for at least one year, and at least at a desired time after the one year. A method for operating an electronic computer, comprising: measuring the remaining amount of the corrosion inhibitor and adjusting the content of the remaining corrosion inhibitor after the next desired operation.
JP7980796A 1996-04-02 1996-04-02 Method for preventing corrosion of electronic computer and method for operating the same Pending JPH09268386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7980796A JPH09268386A (en) 1996-04-02 1996-04-02 Method for preventing corrosion of electronic computer and method for operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7980796A JPH09268386A (en) 1996-04-02 1996-04-02 Method for preventing corrosion of electronic computer and method for operating the same

Publications (1)

Publication Number Publication Date
JPH09268386A true JPH09268386A (en) 1997-10-14

Family

ID=13700494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7980796A Pending JPH09268386A (en) 1996-04-02 1996-04-02 Method for preventing corrosion of electronic computer and method for operating the same

Country Status (1)

Country Link
JP (1) JPH09268386A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757169B2 (en) 2001-09-04 2004-06-29 Hitachi, Ltd. Electronic apparatus
US6947282B2 (en) 2002-06-28 2005-09-20 Hitachi, Ltd. Electronic device, liquid cooling system and tank
JP2010144223A (en) * 2008-12-19 2010-07-01 Kobe Steel Ltd Surface treated metallic material having excellent anticorrosive performance to dissimilar metal contact corrosion and dissimilar material joint body provided with surface treated metallic material
WO2013065207A1 (en) * 2011-11-02 2013-05-10 三菱電機株式会社 Corrosion prevention performance degradation detection sensor, hot-water supply heating system, and equipment
WO2014038687A1 (en) * 2012-09-10 2014-03-13 三菱電機株式会社 Anticorrosive performance deterioration detection sensor, and hot-water supply and heating system provided with same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757169B2 (en) 2001-09-04 2004-06-29 Hitachi, Ltd. Electronic apparatus
US6885556B2 (en) 2001-09-04 2005-04-26 Hitachi, Ltd. Electronic apparatus
US6947282B2 (en) 2002-06-28 2005-09-20 Hitachi, Ltd. Electronic device, liquid cooling system and tank
JP2010144223A (en) * 2008-12-19 2010-07-01 Kobe Steel Ltd Surface treated metallic material having excellent anticorrosive performance to dissimilar metal contact corrosion and dissimilar material joint body provided with surface treated metallic material
WO2013065207A1 (en) * 2011-11-02 2013-05-10 三菱電機株式会社 Corrosion prevention performance degradation detection sensor, hot-water supply heating system, and equipment
CN103917863A (en) * 2011-11-02 2014-07-09 三菱电机株式会社 Corrosion prevention performance degradation detection sensor, hot-water supply heating system, and equipment
JPWO2013065207A1 (en) * 2011-11-02 2015-04-02 三菱電機株式会社 Anti-corrosion performance deterioration detection sensor, hot water supply heating system and equipment
US9677992B2 (en) 2011-11-02 2017-06-13 Mitsubishi Electric Corporation Corrosion protection performance degradation detection sensor, hot-water supply heating system, and facility apparatus
WO2014038687A1 (en) * 2012-09-10 2014-03-13 三菱電機株式会社 Anticorrosive performance deterioration detection sensor, and hot-water supply and heating system provided with same
JP5837211B2 (en) * 2012-09-10 2015-12-24 三菱電機株式会社 Anti-corrosion performance deterioration detection sensor and hot water heating / heating system provided with the same
JPWO2014038687A1 (en) * 2012-09-10 2016-08-12 三菱電機株式会社 Anti-corrosion performance deterioration detection sensor and hot water heating / heating system provided with the same

Similar Documents

Publication Publication Date Title
EP2775297B1 (en) Corrosion prevention performance degradation detection sensor, hot-water supply heating system, and equipment
Epelboin et al. Use of impedance measurements for the determination of the instant rate of metal corrosion
JP3751652B2 (en) Method for adjusting water treatment agent in-system concentration in industrial fluid systems
Han et al. Investigation of the galvanic mechanism for localized carbon dioxide corrosion propagation using the artificial pit technique
EP2240626B1 (en) Method and apparatus for plating solution analysis and control
US5236845A (en) On-line iron (II) concentration monitoring to continuously determine corrosion in boiler systems
JP2001514075A (en) Performance-based control system
JPH09268386A (en) Method for preventing corrosion of electronic computer and method for operating the same
JPH08313099A (en) Absorption type refrigeration system and working fluid
US5744365A (en) Method for measuring the level of carboxylate anion in engine coolant
Eldredge et al. Inhibitors of Corrosion of Aluminum.
US6238589B1 (en) Methods for monitoring components in the TiW etching bath used in the fabrication of C4s
JPS5845384A (en) Composition and method for previnting corrosion of metal base body by water
KR20030094327A (en) Pickle liquor acid analyzer
EP0837919B1 (en) Heat and mass transfer additives for improved aqueous absorption fluids
JP3024301B2 (en) How to control the concentration of azoles
Yang et al. Evaluation of Corrosion Inhibitors in Cooling Water Systems Using a Coupled Multi-Electrode Array Sensor
Chung-Gin et al. Chlorophosphonazo-m-NO2, a new reagent for the spectrophotometric determination of cerium sub-group rare earth elements in the presence of yttrium sub-group elements
JPH03191274A (en) Cooling device for electronic computer
WO2004051216A2 (en) Analysis of sulfate using conductometric end-point detection with suppression of cationic co-precipitation
USRE33349E (en) Controlling sulfide scavenger content of drilling fluid
Chao et al. The solubility products of some slightly soluble lead salts and the potentiometric titration of molybdate, tungstate, perrhenate and fluoride with use of a lead ion-selective electrode
JPH0894528A (en) Method and device for measuring inhibitor concentration of cooling water
Mottola Kinetic determinations of reactants utilizing uncatalyzed reactions
Wiggle et al. A Rapid Method to Predict the Effectiveness of Inhibited Engine Coolants in Aluminum Heat Exchangers