JPH09245770A - Non-aqueous electrolyte battery - Google Patents
Non-aqueous electrolyte batteryInfo
- Publication number
- JPH09245770A JPH09245770A JP8049127A JP4912796A JPH09245770A JP H09245770 A JPH09245770 A JP H09245770A JP 8049127 A JP8049127 A JP 8049127A JP 4912796 A JP4912796 A JP 4912796A JP H09245770 A JPH09245770 A JP H09245770A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- negative pole
- graphite
- core body
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、非水電解液電池に関す
るもので、詳しくはその負極に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to a negative electrode thereof.
【0002】[0002]
【従来の技術】従来、非水電解液電池において負極活物
質に金属リチウムが広く使用されている。しかしなが
ら、金属リチウム単体を負極活物質として用いる場合、
放電の際にリチウムイオンとなって溶出すると、負極表
面が凹凸状となり、充電の際に、リチウムが負極表面の
凸部に集中的に電析して樹枝状に成長する結果、樹枝状
に成長したリチウムが正極と接して内部短絡を引き起こ
したり、あるいはリチウムが負極表面に苔状に析出して
脱落を起こしたりするため、充放電サイクルによる寿命
が極めて短いという問題点があった。2. Description of the Related Art Conventionally, metallic lithium has been widely used as a negative electrode active material in non-aqueous electrolyte batteries. However, when metallic lithium alone is used as the negative electrode active material,
When it is discharged as lithium ions during discharge, the surface of the negative electrode becomes uneven, and during charging, lithium is concentrated on the projections on the surface of the negative electrode and grows into dendritic shapes, resulting in dendritic growth. There is a problem in that the lithium is brought into contact with the positive electrode to cause an internal short circuit, or the lithium deposits on the surface of the negative electrode in a moss-like manner and falls off, resulting in a very short life due to charge / discharge cycles.
【0003】そこで、負極としてリチウム−アルミニウ
ム等のリチウム合金を使用することが提案された。この
リチウム合金を用いると、リチウムが負極表面上に樹枝
状あるいは苔状に生成することを抑制し、内部短絡や充
放電の繰り返しにより微粉化した負極活物質が負極から
脱落するのを防止して、充放電サイクル特性を向上させ
ることができる。Therefore, it has been proposed to use a lithium alloy such as lithium-aluminum as the negative electrode. By using this lithium alloy, it is possible to suppress the generation of lithium in the form of dendritic or moss on the surface of the negative electrode, and to prevent the finely divided negative electrode active material from falling off from the negative electrode due to repeated internal short circuits and repeated charging and discharging. The charge / discharge cycle characteristics can be improved.
【0004】しかしながら、リチウム−アルミニウム合
金等のリチウム合金は、非常に硬質なので、電極に形成
するために、リチウム合金を曲げたり、巻き取ったりす
ることが困難であり、扁平型等の限られた形状の電池で
しか使用することができないという問題点があった。However, since a lithium alloy such as a lithium-aluminum alloy is very hard, it is difficult to bend or wind the lithium alloy to form an electrode, and it is limited to a flat type. There is a problem that it can be used only with a shaped battery.
【0005】そこで、さらに上記問題点を解決するため
に、可撓性に優れ、充放電サイクルの繰り返しに伴う苔
状のリチウムが電析する恐れがない負極材料として黒鉛
材料を使用することが提案されている。Therefore, in order to further solve the above problems, it is proposed to use a graphite material as a negative electrode material which is excellent in flexibility and in which mossy lithium is not likely to be electrodeposited due to repeated charge and discharge cycles. Has been done.
【0006】しかしながら、負極材料に黒鉛を使用する
場合、黒鉛の自己潤滑性のためと推定される導電芯体界
面と黒鉛との接着性に多少難が有り、集電効率が低下す
る。[0006] However, when graphite is used as the negative electrode material, there is some difficulty in the adhesion between the conductive core interface and graphite, which is presumed to be due to the self-lubricating property of graphite, and the current collection efficiency decreases.
【0007】さらに、導電芯体に黒鉛を主体とする負極
活物質層を配置する場合、導電芯体上に対して黒鉛粒子
の(002)面が平行になるように積層される。ここ
で、黒鉛粒子は炭素原子の正六角環がその平面上で多数
連なって巨大な網平面(黒鉛層)を形成し、その網平面
が平行に積み重なったものといえる。この網平面が黒鉛
粒子の(002)面であり、網平面同志はファン・デル
ワールス力で弱く結合しており、黒鉛層間というもの
は、この網平面と網平面の間の層のことをいう。この黒
鉛層間において、アルカリ金属イオン等をインターカレ
ートして層間化合物を形成することができる。Further, when the negative electrode active material layer containing graphite as the main component is arranged on the conductive core, the graphite particles are laminated so that the (002) plane is parallel to the conductive core. Here, it can be said that the graphite particles are formed by stacking a large number of regular hexagonal rings of carbon atoms on the plane to form a huge net plane (graphite layer), and the net planes are stacked in parallel. This mesh plane is the (002) plane of the graphite particles, and the mesh planes are weakly bonded by the Van der Waals force. The graphite layer is a layer between the mesh planes. An intercalation compound can be formed by intercalating alkali metal ions or the like between the graphite layers.
【0008】従って、黒鉛粒子の(002)面が平行に
なるように積層されるということは、黒鉛層間も導電芯
体に対して平行に位置するということになる。従って、
この状態で、電解液を注液すると、電解液は黒鉛層間に
浸透されるので、その黒鉛層間が導電芯体と平行に位置
していると、電解液を注液することが困難になるという
問題があった。Therefore, the fact that the graphite particles are laminated so that the (002) planes are parallel to each other means that the graphite layers are also positioned parallel to the conductive core. Therefore,
In this state, when the electrolytic solution is injected, the electrolytic solution permeates between the graphite layers, so if the graphite layer is positioned parallel to the conductive core, it becomes difficult to inject the electrolytic solution. There was a problem.
【0009】[0009]
【発明が解決しようとする課題】本発明は、上記のよう
な問題点を解決し、負極の電解液の浸透性を改善し、電
解液を容易に注液することが可能になると共に、電池の
高率放電特性の向上を計るものである。DISCLOSURE OF THE INVENTION The present invention solves the above problems, improves the permeability of the electrolytic solution of the negative electrode, and makes it possible to easily inject the electrolytic solution, and at the same time, to provide a battery. It is intended to improve the high rate discharge characteristics of
【0010】[0010]
【課題を解決するための手段】本発明の非水電解液電池
は、正極と、非水電解液と、黒鉛材料を主体とする負極
活物質層と負極芯体とからなる負極とを備えた非水電解
液電池において、前記黒鉛材料は、黒鉛粒子のX線回折
による格子面(002)面の方向が、前記負極芯体に対
して垂直方向に配置されたものであることを特徴とす
る。The non-aqueous electrolyte battery of the present invention comprises a positive electrode, a non-aqueous electrolyte, and a negative electrode composed of a negative electrode active material layer mainly composed of a graphite material and a negative electrode core. In the non-aqueous electrolyte battery, the graphite material is characterized in that a lattice plane (002) plane of graphite particles by X-ray diffraction is arranged in a direction perpendicular to the negative electrode core body. .
【0011】又、前記負極芯体が銅箔であることが好ま
しい。The negative electrode core is preferably a copper foil.
【0012】[0012]
【作用】従来、黒鉛材料を主体とした負極活物質層を用
いた場合、負極芯体に対して、黒鉛粒子の(002)面
は平行になり、黒鉛粒子が平面に多数連なった黒鉛層が
互いに、積み重なるという状態であった(図1)。この
場合、黒鉛層同志の層間も負極芯体に対して平行に配置
されることになる。Conventionally, when a negative electrode active material layer mainly composed of a graphite material is used, a (002) plane of graphite particles is parallel to the negative electrode core, and a graphite layer in which a large number of graphite particles are arranged in a plane is formed. They were in a state of stacking with each other (Fig. 1). In this case, the layers of the graphite layers are also arranged parallel to the negative electrode core body.
【0013】黒鉛材料を負極に用いた電池では、黒鉛層
間へリチウムイオンが挿入・脱離することによって、電
流が流れる。従って、リチウムイオンは電解液に溶解し
て移動するので、リチウムイオンが黒鉛層間内を十分に
移動可能な状態にするためには、黒鉛層間内が十分な電
解液で満たされていることが必要となる。In a battery using a graphite material for the negative electrode, a current flows by inserting and releasing lithium ions between the graphite layers. Therefore, since lithium ions dissolve and move in the electrolyte solution, it is necessary that the graphite layers are sufficiently filled with the electrolyte solution in order to allow lithium ions to move sufficiently in the graphite layers. Becomes
【0014】これに対して、上述のような従来の負極で
は、黒鉛粒子が積み重なって、黒鉛層間が負極芯体に対
して平行に構成されており、さらに、負極作製後、圧延
ローラー等で適切な厚みに圧延されているので、負極表
面の黒鉛材料は緻密に圧縮された状態になっている。On the other hand, in the conventional negative electrode as described above, the graphite particles are piled up so that the graphite layers are parallel to the negative electrode core. Since it is rolled to a uniform thickness, the graphite material on the negative electrode surface is in a densely compressed state.
【0015】従って、電解液は、緻密化された負極表面
を容易に浸透することができず、たとえ、浸透したとし
ても黒鉛層間が負極芯体と平行に配置されているので、
負極活物質層表面から内部まで十分に電解液を満たすこ
とができない。つまり、負極内部のごく限られた範囲で
しか電解液が満たされていない。ゆえに、この限られた
範囲でしかリチウムイオンが移動できないという問題が
ある(図1:図中矢印はリチウムイオン(電流)の流れ
る方向を示す)。さらに、このような状態では、黒鉛層
間同志又は、負極芯体と負極活物質層との密着性が悪
く、容易に剥離するという問題がある。Therefore, the electrolytic solution cannot easily penetrate the densified negative electrode surface, and even if it penetrates, the graphite layer is arranged in parallel with the negative electrode core.
The electrolyte solution cannot be sufficiently filled from the surface of the negative electrode active material layer to the inside. That is, the electrolytic solution is filled only in a very limited area inside the negative electrode. Therefore, there is a problem that lithium ions can move only in this limited range (Fig. 1: arrows in the figure indicate the direction in which lithium ions (current) flow). Further, in such a state, there is a problem that the graphite layers are not in close contact with each other or the negative electrode core body and the negative electrode active material layer have poor adhesion, and are easily peeled off.
【0016】これに対して、本発明による非水電解液電
池では、黒鉛材料を主体とした負極活物質層を用いてい
るが、この黒鉛粒子の(002)面の方向が、負極芯体
に対して垂直方向に配置された構成になっている。従っ
て、黒鉛層間についても負極芯体に対して垂直に配置さ
れていることになり、電解液を注液する場合、黒鉛粒子
の層間から効率よく、負極内部全体に注液することがで
きる(図2:図中矢印はリチウムイオン(電流)の流れ
る方向を示す)。よって、負極活物質層内部まで十分に
電解液が保持されているので、高率放電等の電池特性が
向上するものである。On the other hand, in the non-aqueous electrolyte battery according to the present invention, the negative electrode active material layer mainly composed of the graphite material is used. The direction of the (002) plane of the graphite particles is the negative electrode core body. In contrast, it is arranged vertically. Therefore, the graphite layers are also arranged vertically with respect to the negative electrode core, and when injecting the electrolytic solution, it is possible to efficiently inject the entire interior of the negative electrode from the layers of the graphite particles (Fig. 2: The arrow in the figure indicates the direction in which lithium ions (current) flow. Therefore, since the electrolytic solution is sufficiently retained inside the negative electrode active material layer, the battery characteristics such as high rate discharge are improved.
【0017】ここで、垂直方向とは、負極芯体と黒鉛粒
子の(002)面の方向が正確に垂直であるという必要
はなく、負極芯体と(002)面の方向が若干の傾斜を
有している場合でも良い。Here, the vertical direction does not necessarily mean that the negative electrode core and the (002) plane of the graphite particles are exactly perpendicular to each other, and the direction of the negative electrode core and the (002) plane may be slightly inclined. You may have it.
【0018】さらに、負極芯体に対して黒鉛粒子が垂直
方向に配置されているので、負極芯体に比較的軟らかい
銅箔を用いた場合、黒鉛粒子の先端が銅箔にくいこむよ
うな形態になり、負極芯体と負極活物質層との密着性を
増加させることができる。Further, since the graphite particles are arranged in the vertical direction with respect to the negative electrode core, when a relatively soft copper foil is used for the negative electrode core, the tips of the graphite particles are difficult to dent into the copper foil. Therefore, the adhesion between the negative electrode core and the negative electrode active material layer can be increased.
【0019】ここで、本発明でいう黒鉛材料とは、黒鉛
粒子の(002)面の面間隔d002が3.40Å以下の
ものをいう。この黒鉛材料であれば、負極容量を高容量
化することができ、かつ電位は平坦性を有するので最適
である。The term "graphite material" as used in the present invention means a graphite particle having a (002) plane spacing d 002 of 3.40 Å or less. This graphite material is optimal because the negative electrode capacity can be increased and the potential has flatness.
【0020】[0020]
〔実施例1〕 [負極の作製]負極合剤として、粒子径5〜25μmの
天然黒鉛粉末((002)面の面間隔d002=3.35
7Å、Lc=1000Å)95重量部に、N−メチル−
2−ピロリドンに溶かしたポリフッ化ビニリデン(PV
dF)を固形分として5重量部となるように加えインク
状の負極スラリーとした。[Example 1] [Fabrication of negative electrode] As a negative electrode mixture, a natural graphite powder having a particle diameter of 5 to 25 µm (interval d 002 = 3.35 of (002) planes) was used.
7Å, L c = 1000Å) 95 parts by weight of N-methyl-
Polyvinylidene fluoride dissolved in 2-pyrrolidone (PV
dF) was added so as to have a solid content of 5 parts by weight to obtain an ink-like negative electrode slurry.
【0021】この負極スラリーを長さ510mm、幅5
8mm、厚さ18μmの負極芯体の銅箔上に両面塗布
し、乾燥して負極活物質層とする。ここで、負極スラリ
ーを負極芯体に塗布するとき、負極芯体に電界をかけな
がら負極スラリーのコーティングを行う。これは、黒鉛
粒子自身は、(002)面の方向にπ電子雲が広がって
いるので、負極芯体と平行な方向から負電荷をかけなが
ら、負極スラリーのコーティングを行うと、黒鉛粒子の
(002)面が負極芯体に対して、垂直に並んでコーテ
ィングすることができる(図2)。このように負極スラ
リーをコーティングして、乾燥させ、負極活物質層を得
る。以上のようにして負極を作製する。This negative electrode slurry has a length of 510 mm and a width of 5
Both sides are coated on a copper foil of a negative electrode core body having a thickness of 8 mm and a thickness of 18 μm, and dried to obtain a negative electrode active material layer. Here, when the negative electrode slurry is applied to the negative electrode core, the negative electrode slurry is coated while applying an electric field to the negative electrode core. This is because the graphite particles themselves have a π-electron cloud spreading in the direction of the (002) plane, so that when the negative electrode slurry is coated while applying a negative charge from the direction parallel to the negative electrode core, The 002) surface can be coated vertically on the negative electrode core (FIG. 2). Thus, the negative electrode slurry is coated and dried to obtain a negative electrode active material layer. The negative electrode is manufactured as described above.
【0022】[正極の作製]四三酸化コバルト(Co3
O4)と炭酸リチウムを原子比1:1になるように充分
混合した後、空気中で600℃で6時間焼成した後に粉
砕混合し、さらに850℃で12時間焼成して、リチウ
ムコバルト複合酸化物LiCoO2を合成し正極活物質
とした。[Preparation of Positive Electrode] Cobalt trioxide (Co 3
O 4 ) and lithium carbonate were mixed sufficiently so that the atomic ratio was 1: 1, then calcinated in air at 600 ° C. for 6 hours, pulverized and mixed, and further calcinated at 850 ° C. for 12 hours to obtain a lithium-cobalt composite oxide. The product LiCoO 2 was synthesized and used as the positive electrode active material.
【0023】上述の正極活物質を85重量部とり、人造
黒鉛粉末8重量部とカーボンブラック2重量部とを充分
混合した後、N−メチル−2−ピロリドンに溶かしたP
VdFを固形分として5重量部となるように加えスラリ
ーとした。After taking 85 parts by weight of the above-mentioned positive electrode active material, 8 parts by weight of artificial graphite powder and 2 parts by weight of carbon black were thoroughly mixed, and then P was dissolved in N-methyl-2-pyrrolidone.
VdF was added as a solid content to 5 parts by weight to obtain a slurry.
【0024】この正極スラリーを長さ500mm、幅5
6mm、厚さ20μmのアルミ箔上に両面塗布して、乾
燥後、ローラープレス機により圧延して、端部にニッケ
ルのリードスポット溶接して、110℃で3時間真空乾
燥処理して、正極を作製した。This positive electrode slurry has a length of 500 mm and a width of 5
Both sides were coated on an aluminum foil having a thickness of 6 mm and a thickness of 20 μm, dried, and then rolled by a roller press machine, nickel lead spot welding was performed on the ends, and vacuum drying treatment was performed at 110 ° C. for 3 hours to obtain a positive electrode. It was made.
【0025】[電解液の作製]電解液は、1mol/d
m3の濃度になるようにLiPF6をエチレンカーボネー
ト:ジエチルカーボネート=40:60(体積比)の混
合溶液に溶かしたものを調整した。[Preparation of Electrolyte Solution] The electrolyte solution is 1 mol / d.
A solution was prepared by dissolving LiPF 6 in a mixed solution of ethylene carbonate: diethyl carbonate = 40: 60 (volume ratio) so that the concentration became m 3 .
【0026】[電池の作製]上記負極と正極とを厚さ2
5μmのポリエチレン微多孔膜のセパレータを介して捲
回して渦巻電極体とした。この渦巻電極体をニッケルメ
ッキを施した鉄製の外装缶に入れ、電解液を注入した
後、ガスケットを介して封口体で外装缶を封口して、円
筒型の本発明電池A1を作製した。[Preparation of Battery] The negative electrode and the positive electrode were formed to a thickness of 2
A 5 μm polyethylene microporous membrane separator was wound to form a spirally wound electrode body. The spirally wound electrode body was placed in a nickel-plated iron outer can, and after the electrolytic solution was injected, the outer can was sealed with a sealing body through a gasket to prepare a cylindrical battery A1 of the present invention.
【0027】〔比較例1〕 [負極の作製]負極合剤として、粒子径5〜25μmの
天然黒鉛粉末95重量部に、N−メチル−2−ピロリド
ンに溶かしたPVdFを固形分として5重量部となるよ
うに加えインク状の負極スラリーとした。Comparative Example 1 [Preparation of Negative Electrode] As a negative electrode mixture, 95 parts by weight of natural graphite powder having a particle size of 5 to 25 μm was used, and 5 parts by weight of PVdF dissolved in N-methyl-2-pyrrolidone was used as a solid content. To obtain an ink-like negative electrode slurry.
【0028】この負極スラリーを長さ510mm、幅5
8mm、厚さ18μmの負極芯体の銅箔上に両面塗布し
て負極活物質層とする。この負極活物質層を乾燥後、ロ
ーラープレス機により圧延し、110℃で3時間真空乾
燥処理して、負極を作製した。上記のようにして作製さ
れた負極に関して、黒鉛粒子の(002)面の方向が負
極芯体に対して平行に構成されていることを電子顕微鏡
で確認した。This negative electrode slurry has a length of 510 mm and a width of 5
Both sides are coated on a copper foil of a negative electrode core body having a thickness of 8 mm and a thickness of 18 μm to form a negative electrode active material layer. After drying this negative electrode active material layer, it was rolled by a roller press and vacuum dried at 110 ° C. for 3 hours to prepare a negative electrode. With respect to the negative electrode produced as described above, it was confirmed with an electron microscope that the direction of the (002) plane of the graphite particles was parallel to the negative electrode core body.
【0029】[電池の作製]上記負極を使用する以外
は、実施例1と同様にして、電池を作製した。これを、
比較電池X1とする。[Production of Battery] A battery was produced in the same manner as in Example 1 except that the above negative electrode was used. this,
The comparative battery X1 is used.
【0030】〔実験1〕本発明電池A1と比較電池X1
の放電特性をそれぞれ比較した。測定条件は、室温(2
5℃)で、充電電流280mAで、電池電圧が4.2V
に達するまで充電した後、放電電流280mA(0.2
C)、700mA(0.5C)、1400mA(1.0
C)、2800mA(2.0C)でそれぞれ放電し、放
電曲線を図3及び図4に示した。[Experiment 1] Inventive Battery A1 and Comparative Battery X1
The discharge characteristics of each were compared. The measurement conditions are room temperature (2
5 ℃), charging current 280mA, battery voltage 4.2V
Discharge until the discharge current reaches 280 mA (0.2
C), 700 mA (0.5 C), 1400 mA (1.0
C) Discharged at 2800 mA (2.0 C), and discharge curves are shown in FIGS. 3 and 4.
【0031】図3及び図4から、本発明電池A1は、高
率放電(2.0C)した場合でも、低率放電と略同様の
放電容量が得られ、かつ、比較電池X1よりも高い作動
電圧が得ることができる。From FIGS. 3 and 4, the battery A1 of the present invention can obtain a discharge capacity substantially the same as the low rate discharge even at the time of high rate discharge (2.0 C), and has a higher operation than the comparative battery X1. The voltage can be obtained.
【0032】これは、上述したように、本発明電池A1
の負極は、黒鉛粒子の(002)面の面方向が負極芯体
に対して垂直に位置しているので、電解液が負極内部に
まで浸透でき、高率放電に対してもリチウムイオンの移
動が容易なので反応できるので、放電容量の低下が少な
いと考えられる。As described above, this is the battery A1 of the invention.
In the negative electrode, since the (002) plane direction of the graphite particles is positioned perpendicular to the negative electrode core, the electrolytic solution can penetrate into the negative electrode, and the lithium ions can move even in the high rate discharge. Since it is easy to react, the decrease in discharge capacity is considered to be small.
【0033】[0033]
【発明の効果】本発明は、黒鉛粒子の(002)面の面
方向が負極芯体に対して垂直に位置した状態の負極を用
いているので、電解液が負極内部にまで浸透でき、リチ
ウムイオンの移動が円滑にできるので、高率放電を向上
させることができる。The present invention uses the negative electrode in which the (002) plane of the graphite particles is positioned perpendicular to the negative electrode core, so that the electrolytic solution can penetrate into the negative electrode and the lithium Since ions can move smoothly, high rate discharge can be improved.
【図1】従来の負極の黒鉛粒子の形式図を示す。FIG. 1 shows a schematic diagram of graphite particles of a conventional negative electrode.
【図2】本発明の負極の黒鉛粒子の形式図を示す。FIG. 2 shows a schematic diagram of graphite particles of the negative electrode of the present invention.
【図3】本発明電池A1の放電特性図を示す。FIG. 3 shows a discharge characteristic diagram of a battery A1 of the invention.
【図4】比較電池X1の放電特性図を示す。FIG. 4 shows a discharge characteristic diagram of comparative battery X1.
Claims (2)
とする負極活物質層と負極芯体とからなる負極とを備え
た非水電解液電池において、前記黒鉛材料は、黒鉛粒子
のX線回折による格子面(002)面の方向が、前記負
極芯体に対して垂直方向に配置されたものであることを
特徴とする非水電解液電池。1. A non-aqueous electrolyte battery comprising a positive electrode, a non-aqueous electrolyte, and a negative electrode composed of a negative electrode active material layer mainly composed of a graphite material and a negative electrode core, wherein the graphite material is graphite particles. The non-aqueous electrolyte battery is characterized in that the direction of the lattice plane (002) plane by X-ray diffraction is arranged perpendicular to the negative electrode core body.
する請求項1記載の非水電解液電池。2. The non-aqueous electrolyte battery according to claim 1, wherein the negative electrode core body is a copper foil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04912796A JP3443227B2 (en) | 1996-03-06 | 1996-03-06 | Non-aqueous electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04912796A JP3443227B2 (en) | 1996-03-06 | 1996-03-06 | Non-aqueous electrolyte battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09245770A true JPH09245770A (en) | 1997-09-19 |
JP3443227B2 JP3443227B2 (en) | 2003-09-02 |
Family
ID=12822410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04912796A Expired - Fee Related JP3443227B2 (en) | 1996-03-06 | 1996-03-06 | Non-aqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3443227B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10134797A (en) * | 1996-10-25 | 1998-05-22 | Pilot Precision Co Ltd | Film electrode and manufacture thereof |
US7326497B2 (en) | 2001-12-21 | 2008-02-05 | Samsung Sdi Co., Ltd. | Graphite-containing composition, negative electrode for a lithium secondary battery, and lithium secondary battery |
JP2010192459A (en) * | 2010-04-28 | 2010-09-02 | Hitachi Maxell Ltd | Nonaqueous secondary battery |
WO2012111161A1 (en) * | 2011-02-18 | 2012-08-23 | トヨタ自動車株式会社 | Lithium-ion secondary cell and method for manufacturing same |
WO2013018180A1 (en) * | 2011-07-29 | 2013-02-07 | トヨタ自動車株式会社 | Lithium ion secondary battery |
JP2014137879A (en) * | 2013-01-16 | 2014-07-28 | Toyota Motor Corp | Secondary battery |
US9312568B2 (en) | 2011-12-21 | 2016-04-12 | Toyota Jidosha Kabushiki Kaisha | Lithium secondary battery |
US9509012B2 (en) | 2011-07-05 | 2016-11-29 | Toyota Jidosha Kabushiki Kaisha | Lithium ion secondary battery and method of manufacturing lithium ion secondary battery |
CN114068879A (en) * | 2021-11-09 | 2022-02-18 | 远景动力技术(江苏)有限公司 | Negative pole piece and preparation method and application thereof |
CN114628643A (en) * | 2020-12-10 | 2022-06-14 | 北京小米移动软件有限公司 | Method for manufacturing electrode, battery, electronic equipment and drying equipment |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH712877A2 (en) | 2016-09-06 | 2018-03-15 | Battrion Ag | Method and device for continuous application of magnetic fields to an object. |
WO2018047054A1 (en) | 2016-09-06 | 2018-03-15 | Battrion Ag | Method and device for applying magnetic fields to an object |
KR102255126B1 (en) | 2016-11-29 | 2021-05-21 | 삼성에스디아이 주식회사 | Electrode assembly and rechargeable battery including the same |
-
1996
- 1996-03-06 JP JP04912796A patent/JP3443227B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10134797A (en) * | 1996-10-25 | 1998-05-22 | Pilot Precision Co Ltd | Film electrode and manufacture thereof |
US7326497B2 (en) | 2001-12-21 | 2008-02-05 | Samsung Sdi Co., Ltd. | Graphite-containing composition, negative electrode for a lithium secondary battery, and lithium secondary battery |
JP2010192459A (en) * | 2010-04-28 | 2010-09-02 | Hitachi Maxell Ltd | Nonaqueous secondary battery |
JP5601550B2 (en) * | 2011-02-18 | 2014-10-08 | トヨタ自動車株式会社 | Lithium ion secondary battery and manufacturing method thereof |
WO2012111161A1 (en) * | 2011-02-18 | 2012-08-23 | トヨタ自動車株式会社 | Lithium-ion secondary cell and method for manufacturing same |
US9509012B2 (en) | 2011-07-05 | 2016-11-29 | Toyota Jidosha Kabushiki Kaisha | Lithium ion secondary battery and method of manufacturing lithium ion secondary battery |
CN103733390A (en) * | 2011-07-29 | 2014-04-16 | 丰田自动车株式会社 | Lithium ion secondary battery |
KR20140044914A (en) | 2011-07-29 | 2014-04-15 | 도요타지도샤가부시키가이샤 | Lithium ion secondary battery |
JPWO2013018180A1 (en) * | 2011-07-29 | 2015-03-02 | トヨタ自動車株式会社 | Lithium ion secondary battery |
CN103733390B (en) * | 2011-07-29 | 2016-08-17 | 丰田自动车株式会社 | Lithium rechargeable battery |
WO2013018180A1 (en) * | 2011-07-29 | 2013-02-07 | トヨタ自動車株式会社 | Lithium ion secondary battery |
US9553299B2 (en) | 2011-07-29 | 2017-01-24 | Toyota Jidosha Kabushiki Kaisha | Lithium-ion secondary battery |
US9312568B2 (en) | 2011-12-21 | 2016-04-12 | Toyota Jidosha Kabushiki Kaisha | Lithium secondary battery |
JP2014137879A (en) * | 2013-01-16 | 2014-07-28 | Toyota Motor Corp | Secondary battery |
CN114628643A (en) * | 2020-12-10 | 2022-06-14 | 北京小米移动软件有限公司 | Method for manufacturing electrode, battery, electronic equipment and drying equipment |
CN114068879A (en) * | 2021-11-09 | 2022-02-18 | 远景动力技术(江苏)有限公司 | Negative pole piece and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3443227B2 (en) | 2003-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20090066019A (en) | Anode comprising surface treated anode active material and lithium battery using the same | |
CN111564612B (en) | High-thermal-conductivity and high-electrical-conductivity lithium battery positive electrode material and preparation method thereof | |
CN107732172B (en) | Lithium ion battery cathode material and preparation method thereof | |
CN111799470B (en) | Positive pole piece and sodium ion battery | |
JP3443227B2 (en) | Non-aqueous electrolyte battery | |
CN114094068B (en) | Cobalt-coated positive electrode material, preparation method thereof, positive electrode plate and lithium ion battery | |
CN115881897A (en) | Metal composite material, preparation method thereof and application of metal composite material as battery current collector | |
CN109860584B (en) | High-energy density lithium ion secondary battery | |
JPH10241670A (en) | Electrode for nonaqueous electrolytic secondary battery and manufacture thereof | |
JPH0684516A (en) | Nonaqueous electrolyte secondary cell | |
JP2004234977A (en) | Positive electrode material for lithium secondary battery, manufacturing method of same, and lithium secondary battery using same | |
JP2002042812A (en) | Positive electrode active material for lithium secondary battery and lithium secondary battery using the same | |
JPH06111818A (en) | Carbon negative electrode for nonaqueous electrolyte secondary battery | |
CN112186166B (en) | Molybdenum/cobalt oxide-carbon composite material and preparation method thereof, lithium ion battery negative electrode piece and lithium ion battery | |
JP3440705B2 (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JP4656710B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3582823B2 (en) | Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery | |
JP2013191484A (en) | Negative electrode active material layer, manufacturing method therefor and nonaqueous electrolyte secondary cell | |
JPH0684515A (en) | Nonaqueous electrolyte secondary cell | |
CN117012907A (en) | Composite positive electrode containing lithium supplementing additive, and preparation method and application thereof | |
JPH1064515A (en) | Lithium ion secondary battery | |
CN116885149A (en) | Preparation method of polyanion-type sodium ion battery positive electrode material with interface modification layer | |
CN116053481A (en) | Graphite composite material, battery cathode using same and battery | |
JPH07326345A (en) | Negative electrode for lithium secondary battery, its manufacture, and lithium secondary battery using the same | |
JP2003263979A (en) | Nonaqueous electrolyte secondary battery and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080620 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090620 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090620 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |