JPH09213202A - Field emission type cold cathode device and manufacture thereof - Google Patents

Field emission type cold cathode device and manufacture thereof

Info

Publication number
JPH09213202A
JPH09213202A JP1744896A JP1744896A JPH09213202A JP H09213202 A JPH09213202 A JP H09213202A JP 1744896 A JP1744896 A JP 1744896A JP 1744896 A JP1744896 A JP 1744896A JP H09213202 A JPH09213202 A JP H09213202A
Authority
JP
Japan
Prior art keywords
gate electrode
film
cold cathode
field emission
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1744896A
Other languages
Japanese (ja)
Other versions
JP3320603B2 (en
Inventor
Toshi Cho
利 張
Tadashi Sakai
忠司 酒井
Tomio Ono
富男 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1744896A priority Critical patent/JP3320603B2/en
Publication of JPH09213202A publication Critical patent/JPH09213202A/en
Application granted granted Critical
Publication of JP3320603B2 publication Critical patent/JP3320603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable low-voltage drive and high-frequency field emission. SOLUTION: Grooves 12b are formed in an N-type semiconductor substrate 11. A thin film of P-type diamond 13, a gate insulating film 16, and a gate electrode 17 are buried in the grooves 12b. The thin film 13, the gate insulating film 16, and the gate electrode 17 at their exposed ends 20 are on the same plane and are interposed to cross with the interfaces of the films 13, 16 at right angles. An anode electrode 18 is interposed to face the ends 20 through the vacuum atmosphere. Applying a voltage across the gate electrode 17 and the substrate 11 to provide the gate electrode 17 with a positive decreases the work function at the surface region of the thin film 13 of diamond facing the gate electrode 17. Applying a potential higher than that of the gate electrode 17 to the anode electrode 18 emits electrons from the part on the end 20 of the surface region having the decreased work function.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体プロセスを利
用した電界放出型冷陰極装置及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field emission cold cathode device using a semiconductor process and a method for manufacturing the same.

【0002】[0002]

【従来の技術】半導体集積回路を中心に発達してきた微
細加工技術を用いて微小冷陰極装置を形成する方法の開
発が近年活発に進められている。これまでに、超高周波
数素子、フラットディスプレイ、光源、センサー等への
微小冷陰極装置の応用研究が行われている。そして、そ
の電子源の特徴を生かした、半導体の固体素子の限界を
越えるデバイスの開発への期待が寄せられている。
2. Description of the Related Art In recent years, development of a method for forming a micro cold cathode device by using a fine processing technique developed mainly for semiconductor integrated circuits has been actively pursued. So far, application research of micro cold cathode devices for ultra-high frequency devices, flat displays, light sources, sensors, etc. has been conducted. Further, there are expectations for the development of a device that takes advantage of the characteristics of the electron source and goes beyond the limit of a semiconductor solid-state element.

【0003】その典型的な例としてはC.A.Spindt
により提案された電界放出型冷陰極装置が知られてい
る。この電界放出型冷陰極装置の例を図9に示す。同図
に示すように、この装置は、Si等からなる基板1上に
形成された、Mo等からなるエミッタ2、SiO2 等か
らなる酸化膜3、Mo等からなるゲート電極4等を具備
する。なお、エミッタ2は、先端部ができるだけ鋭くな
るよう、縦断面がほぼ三角形となるように形成されてい
る。
A typical example thereof is C.I. A. Spindt
A field emission type cold cathode device proposed by K.K. is known. An example of this field emission type cold cathode device is shown in FIG. As shown in the figure, this device is provided with an emitter 2 made of Mo or the like, an oxide film 3 made of SiO 2 or the like, a gate electrode 4 made of Mo or the like formed on a substrate 1 made of Si or the like. . The emitter 2 is formed to have a substantially triangular vertical cross section so that its tip portion is as sharp as possible.

【0004】電界放出型エミッタの原理としてFowler-
Nordheim の理論が用いられている。この理論によれ
ば、放出電流値は、エミッタ材料の仕事関数と電子を放
射する部分の電界強度とによって決まる。
As a principle of field emission type Fowler-
The Nordheim theory is used. According to this theory, the emission current value is determined by the work function of the emitter material and the electric field strength of the part that emits electrons.

【0005】放出電流を高める方法としては、エミッタ
の先端の曲率半径を小さくして電界強度を高める方法
と、エミッタ材料として親和力の小さい材料を用いるこ
とにより仕事関数を小さくする方法と、が用いられてい
る。
As a method of increasing the emission current, there are used a method of decreasing the radius of curvature of the tip of the emitter to increase the electric field strength, and a method of decreasing the work function by using a material having a low affinity as the emitter material. ing.

【0006】従来の電界放出型冷陰極装置の基本構造
は、金属或いは半導体を鋭く尖らせた電子放射部(エミ
ッタ)と、エミッタの先端部に強い電界を誘起させるゲ
ートとからなる。この様なエミッタ及びゲートの組合わ
せが、アレイ基板上に多数集積配置される。
The basic structure of the conventional field emission type cold cathode device comprises an electron emitting portion (emitter) in which a metal or a semiconductor is sharply pointed, and a gate for inducing a strong electric field at the tip of the emitter. A large number of such combinations of emitters and gates are arranged on the array substrate.

【0007】しかしながら、上述した従来の電界放出型
冷陰極装置及びその製造方法においては、以下の重要な
問題点がある。
However, the above-mentioned conventional field emission type cold cathode device and its manufacturing method have the following important problems.

【0008】従来の電界放出型冷陰極装置では、エミッ
タの形状に依存して電界集中させるため、エミッタ先端
部の成形時におけるナノメートルオーダーサイズの制御
が不可欠となる。しかし、現在の微細加工技術では、エ
ミッタの高さや先端部の形状等にはバラ付きが生じやす
く、エミッタの構造を均一化することが困難である。エ
ミッタ放射電流は極めて構造に対して敏感であるため、
エミッタの寸法にバラツキがあると、アレイの一部しか
動作しない状態が生じる。これは、電界放出電流の低下
等の問題につながる。
In the conventional field emission type cold cathode device, since the electric field is concentrated depending on the shape of the emitter, it is indispensable to control the nanometer order size at the time of molding the tip of the emitter. However, current microfabrication technology tends to cause variations in the height of the emitter, the shape of the tip, and the like, and it is difficult to make the structure of the emitter uniform. Since the emitter emission current is extremely structure sensitive,
Variations in the dimensions of the emitters create a situation where only part of the array is active. This leads to problems such as a decrease in field emission current.

【0009】また、エミッタアレイの形状に凹凸が存在
するため、その後にゲート電極を形成する際、エミッタ
先端とゲート電極との間の距離の制御が難しくなる。即
ち、プロセスの再現性及び歩留まりが悪くなる上、LS
Iのプレーナ技術との整合性に欠けることとなる。
Further, since there are irregularities in the shape of the emitter array, it becomes difficult to control the distance between the tip of the emitter and the gate electrode when the gate electrode is subsequently formed. That is, the process reproducibility and the yield are deteriorated, and the LS
It will be inconsistent with I's planar technology.

【0010】一方、親和力が小さいまたは負になるエミ
ッタ材料として、最近、ダイヤモンドの研究が行われて
いる。ダイヤモンドは親和力が小さい以外に、耐久性と
耐熱性等構造的に安定であることも優れたエミッタ材料
として有望である。この場合、平面型エミッタの形成も
可能であり、エミッタを尖らせるための加工は必ずしも
必要ではないが、以下のような問題点がある。
On the other hand, diamond has recently been studied as an emitter material having a low or negative affinity. In addition to its low affinity, diamond is also a promising emitter material because of its structural stability such as durability and heat resistance. In this case, it is possible to form a planar emitter, and the processing for sharpening the emitter is not always necessary, but there are the following problems.

【0011】現在の成膜技術では、ダイヤモンド薄膜が
P型しか形成できない。従って、P型ダイヤモンドの場
合、電子親和力が負であっても、仕事関数はフェルミレ
ベルから真空準位までの差であるから、この値が約5.
5eV程大きくなる。このため、十分な電界放出電流が
取れない。
With the current film forming technology, only a P-type diamond thin film can be formed. Therefore, in the case of P-type diamond, even if the electron affinity is negative, the work function is the difference from the Fermi level to the vacuum level, so this value is about 5.
It becomes as large as 5 eV. Therefore, a sufficient field emission current cannot be obtained.

【0012】[0012]

【発明が解決しようとする課題】上述の如く、従来の電
界放出型冷陰極は、エミッタ形状の再現性や均一性が低
く、ゲート電極等の形成プロセスの制御性が悪いため、
電界放出効率の低下や不均一化、プレーナ技術との整合
性が悪い等の多くの問題をかかえている。
As described above, the conventional field emission type cold cathode has low reproducibility and uniformity of the emitter shape and poor controllability of the formation process of the gate electrode and the like.
It has many problems such as reduction of field emission efficiency, non-uniformity, and poor compatibility with planar technology.

【0013】また、ダイヤモンドエミッタの場合、成膜
技術の限界によりP型しか形成できないため、負の電子
親和力にも係らず、仕事関数は十分な低い値がとれな
い。従って、低電圧駆動の大電流放出は実現できていな
い。
Further, in the case of a diamond emitter, only the P-type can be formed due to the limitation of the film forming technique, so that the work function cannot take a sufficiently low value despite the negative electron affinity. Therefore, low voltage driving and large current emission have not been realized.

【0014】本発明の目的は、低電圧駆動下でも電界放
出効率の向上及び均一化が可能な電界放出型冷陰極装置
及びその製造方法を提供することである。
It is an object of the present invention to provide a field emission type cold cathode device capable of improving and uniforming the field emission efficiency even under low voltage driving, and a method for manufacturing the same.

【0015】本発明の別の目的は、プレーナプロセスと
の整合性を図ることができる電界放出型冷陰極装置及び
その製造方法を提供することである。
Another object of the present invention is to provide a field emission type cold cathode device and a method for manufacturing the same, which can achieve compatibility with a planar process.

【0016】本発明の更に別の目的は、大面積化が可能
で量産性に富んだ電界放出型冷陰極装置及びその製造方
法を提供することである。
Still another object of the present invention is to provide a field emission type cold cathode device which can have a large area and is highly producible, and a manufacturing method thereof.

【0017】[0017]

【課題を解決するための手段】本発明の第1の視点は、
電界放出型冷陰極装置において、電子親和力の小さい半
導体からなるP型半導体膜と、前記P型半導体層上に配
設された絶縁膜と、前記P型半導体膜と前記絶縁膜と
は、それらの界面に対して交差する端面を有すること
と、前記端面の近傍において前記絶縁膜を介して前記P
型半導体膜と対向するゲート電極と、を具備し、前記ゲ
ート電極と前記P型半導体膜との間に前記ゲート電極が
正となるように電圧を付与することにより、前記ゲート
電極と対向する前記P型半導体膜の表面領域の仕事関数
を低下させ、前記端面に位置する前記表面領域の部分か
ら電子を電界放出させることを特徴とする。
SUMMARY OF THE INVENTION A first aspect of the present invention is as follows.
In a field emission cold cathode device, a P-type semiconductor film made of a semiconductor having a low electron affinity, an insulating film provided on the P-type semiconductor layer, the P-type semiconductor film and the insulating film are Having an end face intersecting with the interface, and in the vicinity of the end face, the P
A gate electrode facing the gate-type semiconductor film, and a voltage is applied between the gate electrode and the P-type semiconductor film so that the gate electrode is positive, thereby facing the gate electrode. It is characterized in that the work function of the surface region of the P-type semiconductor film is lowered, and electrons are field-emitted from the portion of the surface region located at the end face.

【0018】本発明の第2の視点は、第1の視点の電界
放出型冷陰極装置において、前記P型半導体膜が基板上
に配設され、前記基板は前記P型半導体膜、前記絶縁膜
及び前記ゲート電極を埋め込む溝を有し、前記端面が複
数個、同一平面上に配置されることを特徴とする。
A second aspect of the present invention is the field emission type cold cathode device according to the first aspect, wherein the P-type semiconductor film is disposed on a substrate, and the substrate is the P-type semiconductor film and the insulating film. And a plurality of the end faces arranged on the same plane, the trench having a groove for burying the gate electrode.

【0019】本発明の第3の視点は、第1または第2の
視点の電界放出型冷陰極装置において、前記端面が薄い
絶縁膜で被覆されることを特徴とする。
A third aspect of the present invention is characterized in that, in the field emission cold cathode device according to the first or second aspect, the end face is covered with a thin insulating film.

【0020】本発明の第4の視点は、第2の視点の電界
放出型冷陰極装置の製造方法において、前記基板上に前
記溝を形成する工程と、前記基板上に前記P型半導体
膜、前記絶縁膜、前記ゲート電極の夫々の材料膜を順に
形成する工程と、少なくとも、前記絶縁膜、前記ゲート
電極の夫々の材料膜をエッチングし、前記端面の複数個
を、同一平面上に露出させる工程と、を具備することを
特徴とする。
According to a fourth aspect of the present invention, in the method for manufacturing a field emission cold cathode device according to the second aspect, the step of forming the groove on the substrate, the P-type semiconductor film on the substrate, A step of sequentially forming each material film of the insulating film and the gate electrode, and at least etching each material film of the insulating film and the gate electrode to expose a plurality of the end faces on the same plane. And a process.

【0021】本発明においては、凸形エミッタを加工形
成するのではなく、積層技術を用いてダイヤモンド等の
薄膜を含むMOSダイオードを構成し、同薄膜の端面の
表面領域をエミッタとしている。これにより、ナノメー
トルオーダーサイズのエミッタ層を制御よく形成するこ
とができる。
In the present invention, instead of forming a convex emitter by machining, a MOS diode including a thin film of diamond or the like is formed by using a lamination technique, and the surface region of the end face of the thin film is used as an emitter. Thereby, the nanometer-order-sized emitter layer can be formed with good control.

【0022】また、トレンチ型のMOS構造を利用して
プレーナ型エミッタアレイを形成すると、大面積化可能
なトレンチ型MOSダイオードの断面から電子を電界放
出させることができる。
Further, when the planar type emitter array is formed by utilizing the trench type MOS structure, electrons can be field-emitted from the cross section of the trench type MOS diode whose area can be increased.

【0023】また、電子親和力の小さいまたは負の半導
体からなるP型半導体に電界を付与し、その表面領域の
仕事関数を大幅に低減しているため、低電圧駆動の高効
率な電界放出特性を得ることができる。
Further, since an electric field is applied to the P-type semiconductor made of a semiconductor having a small electron affinity or a negative electron affinity and the work function of the surface region thereof is significantly reduced, a highly efficient field emission characteristic of low voltage driving can be obtained. Obtainable.

【0024】本発明におけるエミッタ材料としては、ダ
イヤモンド等の親和力の小さいまたは負の半導体、或い
はSiC等の親和力の小さい半導体を用いることができ
る。また、エミッタ材料としては、P型半導体以外にN
型半導体を用いることができる。半導体の成膜技術とし
ては、CVD、MBE等を用いることができる。
As the emitter material in the present invention, a semiconductor having a low affinity or a negative affinity such as diamond, or a semiconductor having a low affinity such as SiC can be used. In addition to the P-type semiconductor, N is used as the emitter material.
Type semiconductors can be used. As a semiconductor film forming technique, CVD, MBE, or the like can be used.

【0025】[0025]

【発明の実施の形態】図1は本発明の実施の形態に係る
電界放出型冷陰極装置を製造工程順に示す断面図であ
る。本実施の形態においては、ダイヤモンド薄膜を具備
するトレンチ型MOS構造が利用される。以下、図1を
参照し、この電界放出型冷陰極装置の製造工程を説明す
る。
1 is a sectional view showing a field emission type cold cathode device according to an embodiment of the present invention in the order of manufacturing steps. In this embodiment, a trench type MOS structure including a diamond thin film is used. The manufacturing process of this field emission cold cathode device will be described below with reference to FIG.

【0026】先ず、通常の半導体ウェハの標準洗浄によ
り表面処理したN型Si基板11を用意する。なお、S
i基板11はP型としてもよい。次に、フォトリソグラ
フィによりパターニングしたレジストマスクを使用し、
基板11をドライエッチングする。これにより、図1
(a)に示すように、多数の円柱状の凸部12aとこれ
を囲む溝12bとを基板11上に形成する。
First, an N-type Si substrate 11 whose surface is treated by standard cleaning of a normal semiconductor wafer is prepared. Note that S
The i substrate 11 may be a P type. Next, using a resist mask patterned by photolithography,
The substrate 11 is dry-etched. As a result, FIG.
As shown in (a), a large number of cylindrical protrusions 12 a and grooves 12 b surrounding the protrusions 12 a are formed on the substrate 11.

【0027】次に、図1(b)に示すように、基板11
全面上、即ち凸部12a及び溝12bの全体上にCVD
を用いて数μm厚さのダイヤモンド薄膜13を成膜す
る。この際、ダイヤモンド薄膜13はP型の導電型を有
することとなる。次に、図1(c)に示すように、ダイ
ヤモンド薄膜13上にSiO2 絶縁膜14を蒸着法によ
り成膜する。そして、図1(d)に示すように、絶縁膜
14上にCVD法によりポリシリコン膜15を形成す
る。
Next, as shown in FIG. 1B, the substrate 11
CVD on the entire surface, that is, the entire convex portion 12a and groove 12b.
Is used to form a diamond thin film 13 having a thickness of several μm. At this time, the diamond thin film 13 has a P-type conductivity type. Next, as shown in FIG. 1C, a SiO 2 insulating film 14 is formed on the diamond thin film 13 by a vapor deposition method. Then, as shown in FIG. 1D, a polysilicon film 15 is formed on the insulating film 14 by the CVD method.

【0028】次に、ドライエッチングを用いてポリシリ
コン膜15及びSiO2 絶縁膜14をエッチングし、ダ
イヤモンド薄膜13が露出したところでエッチングを停
止し、図1(e)に示すように、ゲート絶縁膜16及び
ゲート電極17を形成する。ここで、ダイヤモンド薄膜
13、ゲート絶縁膜16及びゲート電極17の露出端面
20は、同一平面上にあり且つ膜13、16の界面に直
交する。最後に、端面20に対して、真空雰囲気を介し
て対向するように、アノード電極18を配設する。図2
は図1図示の工程により製造された電界放出型冷陰極装
置を示す部分断面斜視図である。
Next, the polysilicon film 15 and the SiO 2 insulating film 14 are etched by dry etching, the etching is stopped when the diamond thin film 13 is exposed, and as shown in FIG. 1E, the gate insulating film is formed. 16 and the gate electrode 17 are formed. Here, the exposed end faces 20 of the diamond thin film 13, the gate insulating film 16, and the gate electrode 17 are on the same plane and are orthogonal to the interface between the films 13 and 16. Finally, the anode electrode 18 is arranged so as to face the end surface 20 with a vacuum atmosphere therebetween. FIG.
FIG. 2 is a partial cross-sectional perspective view showing a field emission cold cathode device manufactured by the process shown in FIG. 1.

【0029】図1及び図2図示の電界放出型冷陰極装置
においては、ゲート電極17が正となるようにゲート電
極17と基板11との間に電圧が印加されると、ダイヤ
モンド薄膜13とゲート絶縁膜16と界面に沿ったダイ
ヤモンド薄膜13の表面領域の仕事関数が低下する。表
面領域の仕事関数は、ダイヤモンド薄膜13の電子親和
力及び電極17と基板11との間の電圧に依存し、ゼロ
近傍まで低減することができる。また、薄膜13の電子
親和力が負ではなく、小さいが正の場合は、表面領域の
導電型を反転させ、N型とすることができる。従って、
アノード電極18にゲート電極17よりも高い電位が印
加されると、仕事関数が低下したダイヤモンド薄膜13
の表面領域の端面20上の部分から、図1(e)中に矢
印で示すように、電子が放出される。
In the field emission type cold cathode device shown in FIGS. 1 and 2, when a voltage is applied between the gate electrode 17 and the substrate 11 so that the gate electrode 17 becomes positive, the diamond thin film 13 and the gate are The work function of the surface region of the diamond thin film 13 along the interface with the insulating film 16 decreases. The work function of the surface region depends on the electron affinity of the diamond thin film 13 and the voltage between the electrode 17 and the substrate 11, and can be reduced to near zero. When the electron affinity of the thin film 13 is not negative but small but positive, the conductivity type of the surface region can be inverted to make it N-type. Therefore,
When a higher potential than that of the gate electrode 17 is applied to the anode electrode 18, the diamond thin film 13 whose work function is lowered
Electrons are emitted from the portion of the surface region of the end face 20 on the end face 20 as indicated by an arrow in FIG.

【0030】図3はダイヤモンド等の負の親和力をもつ
P型半導体のエネギーバンドの概念を示す。同図におい
て、Eoは真空準位を表わし、Efはフェルミレベルを
表わす。また、EcとEvと夫々伝導帯の底と価電帯の
上限とを表わし、Eiは禁止帯の中央を表わす。仕事関
数WはEoからEfまでのエネルギー差を表わす。図3
より、P型半導体の場合、負の親和力をもつにも係ら
ず、仕事関数Wは依然として大きいことがわかる。
FIG. 3 shows the concept of the energy band of a P-type semiconductor having a negative affinity such as diamond. In the figure, Eo represents a vacuum level and Ef represents a Fermi level. Ec and Ev represent the bottom of the conduction band and the upper limit of the valence band, respectively, and Ei represents the center of the forbidden band. The work function W represents the energy difference from Eo to Ef. FIG.
From the above, it can be seen that in the case of a P-type semiconductor, the work function W is still large despite having a negative affinity.

【0031】図4は図1(e)に示す構成におけるエネ
ルギーバンドの概念を示す。図4に示すように、このM
OS構造は半導体層31(図1では膜13)、絶縁膜3
2(図1では膜16)及びゲート電極33(図1では電
極17)により構成されている。半導体層31に電界が
かかると、半導体層31と絶縁層32との界面に沿っ
た、半導体層31表面内の厚みが数ナノメートルオーダ
ーの表面領域34の仕事関数が低下する。この時、図4
より、フェルミレベルが伝導帯の底より上に上がり、仕
事関数が大幅に低減されることがわかる。従って、電界
放出に必要な駆動電圧は半導体MOSダイオードの動作
電圧と同レベルのわずか数ボルトとなる。また、アノー
ド電圧も非常に低い電圧で放出電流を収集することがで
きる。
FIG. 4 shows the concept of the energy band in the structure shown in FIG. As shown in FIG.
The OS structure includes the semiconductor layer 31 (the film 13 in FIG. 1) and the insulating film 3.
2 (membrane 16 in FIG. 1) and gate electrode 33 (electrode 17 in FIG. 1). When an electric field is applied to the semiconductor layer 31, the work function of the surface region 34 along the interface between the semiconductor layer 31 and the insulating layer 32 whose thickness in the surface of the semiconductor layer 31 is on the order of several nanometers is lowered. At this time, FIG.
It can be seen that the Fermi level rises above the bottom of the conduction band and the work function is significantly reduced. Therefore, the driving voltage required for field emission is only a few volts, which is the same level as the operating voltage of the semiconductor MOS diode. Also, the emission voltage can be collected with a very low anode voltage.

【0032】図5は本発明の別の実施の形態に係る電界
放出型冷陰極装置を示す部分断面斜視図である。
FIG. 5 is a partial sectional perspective view showing a field emission type cold cathode device according to another embodiment of the present invention.

【0033】この冷陰極装置を製造する場合、先ず、N
型或いはP型のSi基板41に、断面がV字形の複数の
溝を平行に形成する。次に、ダイヤモンド薄膜42をC
VDにより全面に成膜する。次に、SiO2 膜を全面に
堆積成膜すると共にエッチングによりパターニングし、
ゲート絶縁膜43を形成する。次に、電極材料膜、例え
ばポリシリコン膜を全面に堆積成膜する共にエッチング
によりパターニングし、ゲート電極44を形成する。こ
こで、ダイヤモンド薄膜42及びゲート絶縁膜43の界
面に交差するように、膜42、43及びゲート電極44
の端面46が露出する。最後に、端面46に対して、真
空雰囲気を介して対向するように、アノード電極45を
配設する。
When manufacturing this cold cathode device, first, N
A plurality of V-shaped grooves are formed in parallel on the Si substrate 41 of the mold or P type. Next, the diamond thin film 42 is replaced with C
A film is formed on the entire surface by VD. Next, a SiO 2 film is deposited and formed on the entire surface and patterned by etching,
The gate insulating film 43 is formed. Next, an electrode material film, for example, a polysilicon film is deposited and formed on the entire surface and is patterned by etching to form a gate electrode 44. Here, the films 42 and 43 and the gate electrode 44 are arranged so as to intersect the interface between the diamond thin film 42 and the gate insulating film 43.
The end surface 46 of is exposed. Finally, the anode electrode 45 is arranged so as to face the end surface 46 via a vacuum atmosphere.

【0034】図5図示の電界放出型冷陰極装置において
も、ゲート電極44が正となるようにゲート電極44と
基板41との間に電圧が印加されると、ダイヤモンド薄
膜42とゲート絶縁膜43と界面に沿ったダイヤモンド
薄膜42の表面領域の仕事関数が低下する。従って、ア
ノード電極45にゲート電極44よりも高い電位が印加
されると、仕事関数が低下したダイヤモンド薄膜42の
表面領域の端面46上の部分から、図5中に矢印で示す
ように、電子が放出される。
Also in the field emission type cold cathode device shown in FIG. 5, when a voltage is applied between the gate electrode 44 and the substrate 41 so that the gate electrode 44 becomes positive, the diamond thin film 42 and the gate insulating film 43 are formed. And the work function of the surface region of the diamond thin film 42 along the interface decreases. Therefore, when a potential higher than that of the gate electrode 44 is applied to the anode electrode 45, electrons are emitted from the portion on the end face 46 of the surface region of the diamond thin film 42 having a reduced work function, as indicated by an arrow in FIG. Is released.

【0035】図6は本発明の更に別の実施の形態に係る
電界放出型冷陰極装置を示す断面図である。
FIG. 6 is a sectional view showing a field emission type cold cathode device according to still another embodiment of the present invention.

【0036】この冷陰極装置を製造する場合、先ず、N
型或いはP型のSi基板41に、断面がV字形の複数の
溝を平行に形成する。次に、ダイヤモンド薄膜42をC
VDにより全面に成膜する。次に、厚みが数ナノメート
ルの薄いSiO2 絶縁膜53を全面に堆積成膜する。最
後に、絶縁膜53の尾根に対して、真空雰囲気を介して
対向するように引出し電極54を配設する。
When manufacturing this cold cathode device, first, N
A plurality of V-shaped grooves are formed in parallel on the Si substrate 41 of the mold or P type. Next, the diamond thin film 42 is replaced with C
A film is formed on the entire surface by VD. Next, a thin SiO 2 insulating film 53 having a thickness of several nanometers is deposited and formed on the entire surface. Finally, the extraction electrode 54 is arranged so as to face the ridge of the insulating film 53 via a vacuum atmosphere.

【0037】図6図示の電界放出型冷陰極装置において
は、引出し電極54が図5図示の構造のゲート電極44
及びアノード電極45の両者の役割を兼ねる。引出し電
極54が正となるように電極54と基板41との間に電
圧が印加されると、ダイヤモンド薄膜42と絶縁膜53
と界面に沿ったダイヤモンド薄膜42の表面領域の仕事
関数が低下する。そして、Si基板41の尾根に隣接す
るダイヤモンド薄膜42と絶縁膜53との界面の端面5
6から、図6中に矢印で示すように、絶縁膜53を通過
して電子が放出される。また、ダイヤモンド薄膜42上
に薄いSiO2膜53が形成されているため、ダイヤモ
ンドの表面が理想的となり、表面準位を大幅に低減する
ことができる。
In the field emission cold cathode device shown in FIG. 6, the extraction electrode 54 has the gate electrode 44 having the structure shown in FIG.
And both of the anode electrode 45. When a voltage is applied between the electrode 54 and the substrate 41 so that the extraction electrode 54 becomes positive, the diamond thin film 42 and the insulating film 53
And the work function of the surface region of the diamond thin film 42 along the interface decreases. Then, the end surface 5 of the interface between the diamond thin film 42 and the insulating film 53 adjacent to the ridge of the Si substrate 41.
6, electrons are emitted through the insulating film 53, as indicated by the arrow in FIG. Further, since the thin SiO 2 film 53 is formed on the diamond thin film 42, the surface of the diamond becomes ideal, and the surface level can be significantly reduced.

【0038】図7は本発明の更に別の実施の形態に係る
電界放出型冷陰極装置を示す断面図である。
FIG. 7 is a sectional view showing a field emission type cold cathode device according to still another embodiment of the present invention.

【0039】この冷陰極装置を製造する場合、先ず、図
1の(a)〜(e)までと同様な工程を経て図1(e)
に示すような中間構造物を形成する。次に、ポリシリコ
ン膜をエッチングし、ゲート電極67を形成する。この
際、ゲート絶縁膜66となる薄いSiO2 酸化膜をエッ
チングせず、ダイヤモンド薄膜13を覆った状態のまま
に残す。この場合、SiO2 酸化膜66の厚みは数ナノ
メートルの薄いものとする。
In the case of manufacturing this cold cathode device, first, the steps similar to those in FIGS.
An intermediate structure as shown in is formed. Next, the polysilicon film is etched to form the gate electrode 67. At this time, the thin SiO 2 oxide film serving as the gate insulating film 66 is not etched, and the diamond thin film 13 is left covered. In this case, the thickness of the SiO 2 oxide film 66 is as thin as several nanometers.

【0040】図7図示の電界放出型冷陰極装置において
も、ゲート電極67が正となるようにゲート電極67と
基板11との間に電圧が印加されると共に、アノード電
極68にゲート電極67よりも高い電位が印加される
と、図7中に矢印で示すように、ゲート絶縁膜66を通
過して電子が放出される。ダイヤモンド薄膜13上にS
iO2 膜66が存在しているため、ダイヤモンド薄膜1
3の断面は表面準位のない理想状態となる。従って、よ
り低電圧駆動と高放出効率とが実現できる。
Also in the field emission type cold cathode device shown in FIG. 7, a voltage is applied between the gate electrode 67 and the substrate 11 so that the gate electrode 67 becomes positive, and the anode electrode 68 is applied to the anode electrode 68 by the gate electrode 67. When a high potential is applied, electrons are emitted through the gate insulating film 66 as shown by the arrow in FIG. S on the diamond thin film 13
Since the iO 2 film 66 exists, the diamond thin film 1
The cross section of 3 is in an ideal state with no surface states. Therefore, lower voltage driving and higher emission efficiency can be realized.

【0041】図8は本発明の更に別の実施の形態に係る
電界放出型冷陰極装置を示す部分断面斜視図である。
FIG. 8 is a partial cross-sectional perspective view showing a field emission type cold cathode device according to still another embodiment of the present invention.

【0042】この冷陰極装置を製造する場合、先ず、N
型或いはP型のSi基板71上に、ダイヤモンド薄膜、
SiO2 膜、及び電極材料膜を順に形成する。次に、エ
ッチングにより、これらの膜を順に選択的に除去すると
共に、Si基板71に断面がU字形の複数の溝を平行に
形成する。これにより、Si基板71の凸部上に、ダイ
ヤモンド薄膜72、ゲート絶縁膜73、ゲート電極74
が積層された構造が得られる。最後に、Si基板71の
凸部に対して、真空雰囲気を介して対向するように、ア
ノード電極75を配設する。
When manufacturing this cold cathode device, first, N
Diamond film,
A SiO 2 film and an electrode material film are sequentially formed. Next, these films are selectively removed in order by etching, and a plurality of grooves having a U-shaped cross section are formed in parallel on the Si substrate 71. As a result, the diamond thin film 72, the gate insulating film 73, and the gate electrode 74 are formed on the convex portion of the Si substrate 71.
A laminated structure is obtained. Finally, the anode electrode 75 is arranged so as to face the convex portion of the Si substrate 71 via a vacuum atmosphere.

【0043】図8図示の電界放出型冷陰極装置において
も、ゲート電極74が正となるようにゲート電極74と
基板71との間に電圧が印加されると共に、アノード電
極75にゲート電極74よりも高い電位が印加される
と、ダイヤモンド薄膜72とゲート絶縁膜73との界面
の端面76上の部分から、図8中に矢印で示すように、
電子が放出される。
Also in the field emission type cold cathode device shown in FIG. 8, a voltage is applied between the gate electrode 74 and the substrate 71 so that the gate electrode 74 becomes positive, and the anode electrode 75 is applied to the anode electrode 75 by the gate electrode 74. When a high potential is applied, as shown by the arrow in FIG. 8, from the portion on the end face 76 at the interface between the diamond thin film 72 and the gate insulating film 73,
Electrons are emitted.

【0044】[0044]

【発明の効果】本発明によれば、従来に比べて非常に小
さい仕事関数を有するエミッタを具備し、低電圧駆動と
高効率電界放出が可能な電界放出型冷陰極装置を実現で
きる。また、エミッタの凸形状加工なしに、プレーナ型
で量産性に富んだ大面積な電界放出型冷陰極装置を提供
することができる。
According to the present invention, it is possible to realize a field emission type cold cathode device which has an emitter having a work function much smaller than that of a conventional one and is capable of low voltage driving and high efficiency field emission. Further, it is possible to provide a planar type large-area field-emission cold cathode device that is highly producible and mass-produced without processing the convex shape of the emitter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る電界放出型冷陰極装
置を製造工程順に示す断面図。
FIG. 1 is a cross-sectional view showing a field emission cold cathode device according to an embodiment of the present invention in the order of manufacturing steps.

【図2】図1図示の工程により製造された電界放出型冷
陰極装置を示す部分断面斜視図。
FIG. 2 is a partial sectional perspective view showing a field emission cold cathode device manufactured by the process shown in FIG.

【図3】負の親和力をもつP型半導体のエネギーバンド
の概念図。
FIG. 3 is a conceptual diagram of an energy band of a P-type semiconductor having a negative affinity.

【図4】図1(e)に示す構成におけるエネルギーバン
ドの概念図。
FIG. 4 is a conceptual diagram of energy bands in the configuration shown in FIG.

【図5】本発明の別の実施の形態に係る電界放出型冷陰
極装置を示す部分断面斜視図。
FIG. 5 is a partial sectional perspective view showing a field emission cold cathode device according to another embodiment of the present invention.

【図6】本発明の更に別の実施の形態に係る電界放出型
冷陰極装置を示す断面図。
FIG. 6 is a sectional view showing a field emission type cold cathode device according to still another embodiment of the present invention.

【図7】本発明の更に別の実施の形態に係る電界放出型
冷陰極装置を示す断面図。
FIG. 7 is a sectional view showing a field emission type cold cathode device according to still another embodiment of the present invention.

【図8】本発明の更に別の実施の形態に係る電界放出型
冷陰極装置を示す部分断面斜視図。
FIG. 8 is a partial sectional perspective view showing a field emission cold cathode device according to still another embodiment of the present invention.

【図9】従来の電界放出型冷陰極装置を示す断面図。FIG. 9 is a sectional view showing a conventional field emission cold cathode device.

【符号の説明】[Explanation of symbols]

11、41、71…基板、13、42、72…ダイヤモ
ンド薄膜、16、43、66、73…ゲート絶縁膜、1
7、44、67、74…ゲート電極、18、45、6
8、75…アノード電極、20、46、56、76…端
面、53…薄い絶縁膜、54…引出し電極。
11, 41, 71 ... Substrate, 13, 42, 72 ... Diamond thin film, 16, 43, 66, 73 ... Gate insulating film, 1
7, 44, 67, 74 ... Gate electrodes, 18, 45, 6
8, 75 ... Anode electrode, 20, 46, 56, 76 ... End face, 53 ... Thin insulating film, 54 ... Extraction electrode.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電子親和力の小さい半導体からなるP型半
導体膜と、 前記P型半導体層上に配設された絶縁膜と、前記P型半
導体膜と前記絶縁膜とは、それらの界面に対して交差す
る端面を有することと、 前記端面の近傍において前記絶縁膜を介して前記P型半
導体膜と対向するゲート電極と、 を具備し、前記ゲート電極と前記P型半導体膜との間に
前記ゲート電極が正となるように電圧を付与することに
より、前記ゲート電極と対向する前記P型半導体膜の表
面領域の仕事関数を低下させ、前記端面に位置する前記
表面領域の部分から電子を電界放出させることを特徴と
する電界放出型冷陰極装置。
1. A P-type semiconductor film made of a semiconductor having a low electron affinity, an insulating film provided on the P-type semiconductor layer, and the P-type semiconductor film and the insulating film with respect to an interface between them. And a gate electrode facing the P-type semiconductor film via the insulating film in the vicinity of the end face, wherein the gate electrode and the P-type semiconductor film are provided between the gate electrode and the P-type semiconductor film. By applying a voltage so that the gate electrode becomes positive, the work function of the surface region of the P-type semiconductor film facing the gate electrode is lowered, and electrons are generated from the surface region portion located at the end face. A field-emission cold cathode device characterized by emitting light.
【請求項2】前記P型半導体膜が基板上に配設され、前
記基板は前記P型半導体膜、前記絶縁膜及び前記ゲート
電極を埋め込む溝を有し、前記端面が複数個、同一平面
上に配置されることを特徴とする請求項1に記載の電界
放出型冷陰極装置。
2. The P-type semiconductor film is disposed on a substrate, and the substrate has a groove for filling the P-type semiconductor film, the insulating film and the gate electrode, and a plurality of the end faces are on the same plane. The field emission cold cathode device according to claim 1, wherein
【請求項3】前記端面が薄い絶縁膜で被覆されることを
特徴とする請求項1または2に記載の電界放出型冷陰極
装置。
3. The field emission type cold cathode device according to claim 1, wherein the end face is covered with a thin insulating film.
【請求項4】前記基板上に前記溝を形成する工程と、 前記基板上に前記P型半導体膜、前記絶縁膜、前記ゲー
ト電極の夫々の材料膜を順に形成する工程と、 少なくとも、前記絶縁膜、前記ゲート電極の夫々の材料
膜をエッチングし、前記端面の複数個を、同一平面上に
露出させる工程と、 を具備することを特徴とする請求項2に記載の電界放出
型冷陰極装置の製造方法。
4. A step of forming the groove on the substrate, a step of sequentially forming material films of the P-type semiconductor film, the insulating film, and the gate electrode on the substrate, at least the insulating film. 3. The field emission type cold cathode device according to claim 2, further comprising the step of etching the film and each material film of the gate electrode to expose a plurality of the end faces on the same plane. Manufacturing method.
JP1744896A 1996-02-02 1996-02-02 Field emission cold cathode device and method of manufacturing the same Expired - Fee Related JP3320603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1744896A JP3320603B2 (en) 1996-02-02 1996-02-02 Field emission cold cathode device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1744896A JP3320603B2 (en) 1996-02-02 1996-02-02 Field emission cold cathode device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09213202A true JPH09213202A (en) 1997-08-15
JP3320603B2 JP3320603B2 (en) 2002-09-03

Family

ID=11944312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1744896A Expired - Fee Related JP3320603B2 (en) 1996-02-02 1996-02-02 Field emission cold cathode device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3320603B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100296710B1 (en) * 1997-09-18 2001-08-07 오길록 Method of manufacturing a diamond vacuum microelectronic device
KR100575632B1 (en) * 1999-06-12 2006-05-03 엘지전자 주식회사 Field Emission Display Driving with Radio Frequency
JP2009054372A (en) * 2007-08-24 2009-03-12 Nec Lighting Ltd Field emission type cathode and field emission type lamp
CN111627873A (en) * 2020-04-17 2020-09-04 柯文政 Diamond film conductive layer structure with high heat conductivity and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100296710B1 (en) * 1997-09-18 2001-08-07 오길록 Method of manufacturing a diamond vacuum microelectronic device
KR100575632B1 (en) * 1999-06-12 2006-05-03 엘지전자 주식회사 Field Emission Display Driving with Radio Frequency
JP2009054372A (en) * 2007-08-24 2009-03-12 Nec Lighting Ltd Field emission type cathode and field emission type lamp
CN111627873A (en) * 2020-04-17 2020-09-04 柯文政 Diamond film conductive layer structure with high heat conductivity and manufacturing method thereof

Also Published As

Publication number Publication date
JP3320603B2 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
US5757344A (en) Cold cathode emitter element
JP3135823B2 (en) Cold electron-emitting device and method of manufacturing the same
US7102157B2 (en) Nanotube-based vacuum devices
JPH0982213A (en) Field emission type cold cathode device and its manufacture
US7176478B2 (en) Nanotube-based vacuum devices
JP3320603B2 (en) Field emission cold cathode device and method of manufacturing the same
JP3195547B2 (en) Vacuum sealed field emission type electron source device and manufacturing method thereof
JP3266503B2 (en) Optimal gate control design and fabrication method for lateral field emission device
CN113594006B (en) Vacuum channel transistor and manufacturing method thereof
JPH08306302A (en) Field emission type electron source and its manufacture
JP2763219B2 (en) Field emission type electronic device
JP3010304B2 (en) Vacuum tube
JP2912635B2 (en) Semiconductor device
JP3295864B2 (en) Field emission cathode and method of manufacturing the same
JPH0963467A (en) Cold electron emitting element, and manufacture of it
JP2737675B2 (en) Manufacturing method of vertical micro cold cathode
JP2001160355A (en) Electron-emitting element and image display device
JP3282950B2 (en) Field emission type electronic device and method of manufacturing the same
JPH0817332A (en) Field emission electronic device and its manufacture
JPH1092296A (en) Electron emitting element and its manufacture
JP2846988B2 (en) Field emission type electron emission element
KR100279749B1 (en) Manufacturing method of field emission array superimposed gate and emitter
JP2000067737A (en) Field emission type cold cathode element
KR100218684B1 (en) Manufacturing method of field emission device
JPH04206124A (en) Manufacture of electron emission element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees