JPH09199326A - Magnetoresistance effect film and its manufacture - Google Patents
Magnetoresistance effect film and its manufactureInfo
- Publication number
- JPH09199326A JPH09199326A JP8006616A JP661696A JPH09199326A JP H09199326 A JPH09199326 A JP H09199326A JP 8006616 A JP8006616 A JP 8006616A JP 661696 A JP661696 A JP 661696A JP H09199326 A JPH09199326 A JP H09199326A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- film
- magnetic
- ferromagnetic layer
- magnetoresistive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000000694 effects Effects 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 230000005291 magnetic effect Effects 0.000 claims abstract description 83
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 66
- 230000005290 antiferromagnetic effect Effects 0.000 claims abstract description 24
- 239000002184 metal Substances 0.000 claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002923 metal particle Substances 0.000 claims abstract description 10
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 7
- 239000010941 cobalt Substances 0.000 claims abstract description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910000531 Co alloy Inorganic materials 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 24
- 239000000956 alloy Substances 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 19
- 238000004544 sputter deposition Methods 0.000 claims description 17
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 239000006104 solid solution Substances 0.000 claims description 5
- 230000005389 magnetism Effects 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 abstract description 11
- 230000005330 Barkhausen effect Effects 0.000 abstract description 6
- 230000006866 deterioration Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 43
- 239000010949 copper Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 11
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 239000002245 particle Substances 0.000 description 7
- 229910001316 Ag alloy Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910015136 FeMn Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 230000005381 magnetic domain Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910003321 CoFe Inorganic materials 0.000 description 2
- 239000002772 conduction electron Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000005292 diamagnetic effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
- Physical Vapour Deposition (AREA)
- Thin Magnetic Films (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はハードディスクドラ
イブ(HDD) の磁気抵抗効果ヘッドに用いられる磁気抵抗
効果膜に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect film used in a magnetoresistive effect head of a hard disk drive (HDD).
【0002】高密度記録媒体の再生に用いられる磁気抵
抗効果ヘッドは磁気抵抗効果膜が,外部磁界によってそ
の電気抵抗が変化する現象を利用している。以下, 明細
書では, (1) :としてフリー層となる強磁性層に粒子
分散型合金膜の適用,(2) :として強磁性層であるコバ
ルト膜の低保磁力化に分けて説明する。A magnetoresistive head used for reproducing a high-density recording medium uses a phenomenon in which a magnetoresistive film changes its electric resistance due to an external magnetic field. In the following description, the description will be divided into (1): application of a particle-dispersed alloy film to the ferromagnetic layer that becomes the free layer, and (2): reduction of the coercive force of the cobalt film that is the ferromagnetic layer.
【0003】[0003]
(1) :ハードディスクドライブ(HDD) の小型化, 大容量
化に伴い, ハードディスクの高密度磁気記録の開発が進
められている。強磁性層/非磁性層/強磁性層と積層さ
れた層状の磁気センサの電気抵抗変化は,非磁性体を挟
んだ強磁性層間での伝導電子のスピン依存性移動,及び
層境界面におけるその移動に伴うスピン依存性散乱に起
因する顕著な磁気抵抗効果(MR)により生じ, スピンバル
ブ効果と呼ばれている。(1): Development of high-density magnetic recording for hard disks is progressing as hard disk drives (HDD) are becoming smaller and larger in capacity. The electric resistance change of a layered magnetic sensor laminated with a ferromagnetic layer / a non-magnetic layer / a ferromagnetic layer is caused by spin-dependent transfer of conduction electrons between ferromagnetic layers sandwiching a non-magnetic material and It is caused by a remarkable magnetoresistive effect (MR) caused by spin-dependent scattering accompanying movement, and is called the spin valve effect.
【0004】このような, 磁気センサは感度がよく大き
なMR変化が観察されるため, MRヘッドとして有望であ
る。磁気抵抗素子の材料に要求される特性は,磁界印加
に伴う抵抗の変化の比 (MR比) が大きいこと,磁界感度
が高いこと, 磁界印加時の磁壁移動に起因するバルクハ
ウゼンノイズがないことである。Since such a magnetic sensor has high sensitivity and a large MR change is observed, it is promising as an MR head. The characteristics required for the material of the magnetoresistive element are that the ratio of change in resistance (MR ratio) with application of a magnetic field is large, the magnetic field sensitivity is high, and there is no Barkhausen noise due to domain wall motion when a magnetic field is applied. Is.
【0005】図5に従来の磁気抵抗効果膜を示す。基板
1上に下地層 2/強磁性層 3/非磁性層 4/強磁性層
5/反強磁性層 6/キャップ層 7が積層されている。
強磁性層 5は反磁性層 6によりピンニングされてお
り,強磁性層 3はピンニングされていないフリー層で
NiFeがよく用いられている。FIG. 5 shows a conventional magnetoresistive film. substrate
Underlayer 2 / Ferromagnetic layer 3 / Nonmagnetic layer 4 / Ferromagnetic layer on 1
5 / antiferromagnetic layer 6 / cap layer 7 are laminated.
The ferromagnetic layer 5 is pinned by the diamagnetic layer 6, and the ferromagnetic layer 3 is a non-pinned free layer.
NiFe is often used.
【0006】(2) :コンピュータの小型化,記録装置の
大容量化に伴いHDD に使用される記録媒体(ディスク)
の高密度化が要求されている。記録密度が大きくなり 1
Gbit/in2を越えると, 装置サイズは小さくなるが, 読
み取りヘッドと記録媒体間の相対速度が低下し,磁束の
時間的変化を読み取る従来の誘導式読み取りヘッドでは
十分な再生出力を得ることはできない。そこで,磁束そ
のものを検出することで,相対速度が小さくても再生出
力を大きく取り出せる磁気抵抗(MR)効果を利用した読み
取りヘッドが開発されている。しかし,さらに高い10 G
bit/in2 以上の記録密度を実現する上で,再生感度の高
い巨大磁気抵抗(GMR) 効果を利用した高感度の読み取り
ヘッド用材料の開発が進んでいる。(2): Recording media (disks) used in HDDs due to downsizing of computers and increasing capacity of recording devices
Higher density is required. Increased recording density 1
When Gbit / in 2 is exceeded, the device size decreases, but the relative speed between the read head and the recording medium decreases, and a conventional inductive read head that reads the temporal change in magnetic flux cannot obtain sufficient playback output. Can not. Therefore, a read head has been developed that utilizes the magnetoresistive (MR) effect that can detect a large reproduction output even if the relative speed is small by detecting the magnetic flux itself. But even higher 10 G
In order to achieve a recording density of bit / in 2 or more, development of highly sensitive read head materials utilizing the giant magnetoresistive (GMR) effect with high read sensitivity is progressing.
【0007】このGMR 効果を有する材料の一つに, 特開
平04-358310 等に示されるように,基板/NiFe/Cu/Ni
Fe/FeMnの積層膜で構成される, いわゆるスピンバルブ
材料がある。このスピンバルブ材料はMR比が大きく, 高
感度でヘッド材料としての適用が期待されている。As one of the materials having the GMR effect, as shown in Japanese Patent Laid-Open No. 04-358310, a substrate / NiFe / Cu / Ni is used.
There is a so-called spin valve material composed of a laminated film of Fe / FeMn. This spin valve material has a large MR ratio and is expected to be applied as a head material with high sensitivity.
【0008】[0008]
(1) :従来例で説明したNiFeフリー層は下記のような欠
点がある。(1): The NiFe free layer described in the conventional example has the following drawbacks.
【0009】NiFeは保磁力が小さく,飽和磁場が小さい
という特性がありヘッドとしては有利であるが,磁区を
形成し,素子化したときに理想的な磁区構造,すなわ
ち,外部に対して磁極を形成しないで静磁エネルギーを
最小にする還流磁区構造を形成しないことがあり,外部
磁場により磁壁移動が起こり,バルクハウゼンノイズ発
生の原因となる。また,ヘッドの形成プロセスは 280℃
の高温熱処理が含まれるが, これにより非磁性材料とし
て大きなMR比を得ることができる銅(Cu)を使用したとき
に, 非磁性層/強磁性層間で熱拡散によるニッケル(Ni)
合金が形成され,MR特性を劣化させるという問題があ
る。NiFe is advantageous as a head because it has a small coercive force and a small saturation magnetic field, but it is an ideal magnetic domain structure when a magnetic domain is formed and formed into an element, that is, a magnetic pole is provided to the outside. The free magnetic domain structure that minimizes the magnetostatic energy without forming the magnetic field may not be formed, and domain wall movement may occur due to the external magnetic field, causing Barkhausen noise. The head formation process is 280 ℃
However, when copper (Cu) that can obtain a large MR ratio is used as the non-magnetic material, nickel (Ni) due to thermal diffusion between the non-magnetic layer and the ferromagnetic layer is included.
There is a problem that the alloy is formed and deteriorates the MR characteristics.
【0010】(2) :従来のスピンバルブ材料において
は,NiFeに含まれるNiはCuと全率固溶であるため,熱処
理時にNiFe/Cu 界面での相互拡散が大きく, 220℃程度
の熱処理で層構造が破壊され, MR特性が劣化する。ヘッ
ド製造プロセスにおいては 280℃程度の熱処理が不可避
であるため,この点の改善が望まれている。(2): In the conventional spin valve material, since Ni contained in NiFe is a solid solution with Cu, the mutual diffusion at the NiFe / Cu interface is large during the heat treatment, and the heat treatment at about 220 ° C. The layer structure is destroyed and the MR characteristics deteriorate. Since heat treatment at about 280 ° C is inevitable in the head manufacturing process, improvement of this point is desired.
【0011】そこで,Cuと非固溶もしくは難固溶である
磁性層を用いることが考えられる。CoはCuとの固溶度も
小さく耐熱性の面からは適当であるが,保磁力が〜300
Oeと大きくMR曲線にヒステリシスを生じ, 且つ低磁場で
の応答性が低下するため,磁性層に適用するのは難し
い。このために, Coの保磁力を小さくする技術が求めら
れる。Therefore, it is conceivable to use a magnetic layer that does not form a solid solution with Cu or a solid solution with Cu. Co has a small solid solubility with Cu and is suitable in terms of heat resistance, but it has a coercive force of ~ 300
It is difficult to apply it to the magnetic layer because the MR curve has a large hysteresis with Oe and the response in a low magnetic field decreases. For this reason, a technology for reducing the coercive force of Co is required.
【0012】本発明は, (1):磁壁のないフリー層を形
成して磁気抵抗効果素子のバルクハウゼンノイズをなく
し,且つ非磁性層とフリー層との間の熱拡散を防止して
MR特性の劣化を防止すること, 及び (2):強磁性膜とし
てのCoの保持力を小さくすることを目的とする。According to the present invention, (1): a Barkhausen noise of a magnetoresistive effect element is eliminated by forming a free layer having no domain wall, and thermal diffusion between a nonmagnetic layer and a free layer is prevented.
The purpose is to prevent deterioration of MR characteristics, and (2): to reduce the coercive force of Co as a ferromagnetic film.
【0013】[0013]
【課題を解決するための手段】上記課題の解決は, (1) : 1)第1の強磁性層/非磁性層/第2の強磁性層/反強
磁性層の積層構造を有する巨大磁気抵抗効果膜におい
て,該第1の強磁性層は,磁性を持つ金属粒子が磁性を
持たない金属のマトリクス中に分散されてなる磁気抵抗
効果膜,あるいは 2)前記磁性を持つ金属粒子の飽和磁場が,前記反強磁
性膜の一方向異方性磁場より小さい前記1記載の磁気抵
抗効果膜,あるいは 3)前記磁性を持つ金属粒子が,Ni, FeまたはCoの少な
くとも1つを含む合金からなる前記1記載の磁気抵抗効
果膜,あるいは 4)前記第2の強磁性層が,FeまたはCoの少なくとも1
つを含む合金からなる前記1記載の磁気抵抗効果膜,あ
るいは 5)前記磁性を持たない金属のマトリクスがAgであるこ
とを特徴とする前記1記載の磁気抵抗効果膜,あるいは 6)前記磁性反強磁性層が,Mnを含む合金, またはNiを
含む酸化物からなる前記1記載の磁気抵抗効果膜,ある
いは 7)前記第1の強磁性層を基板上に加熱しながらスパッ
タして堆積し,続いて該第1の強磁性層のスパッタより
低い温度で前記非磁性層/第2の強磁性層/反強磁性層
をスパッタして堆積する磁気抵抗効果膜の製造方法,あ
るいは 8)前記第1の強磁性層/非磁性層/第2の強磁性層/
反強磁性層を基板上に積層し,その後にスパッタ時の磁
場方向と垂直方向の磁場中で熱処理をする磁気抵抗効果
膜の製造方法,あるいは (2) : 9)強磁性層としてコバルト合金膜を用い,該コバルト
合金膜はコバルトに非固溶もしくは難固溶の非磁性金属
を 5〜30at%含む磁気抵抗効果膜,あるいは 10)コバルトターゲットと, 非磁性金属ターゲットと
を同時に放電して,これらのターゲットに対向する基板
を回転しながら該基板上にスパッタする磁気抵抗効果膜
の製造方法,あるいは 11)前記10の工程の後,前記基板に 200〜300 ℃の
熱処理を行う磁気抵抗効果膜の製造方法により達成され
る。[Means for Solving the Problems] (1): 1) Giant magnetic having a laminated structure of a first ferromagnetic layer / a non-magnetic layer / a second ferromagnetic layer / an antiferromagnetic layer. In the resistance effect film, the first ferromagnetic layer is a magnetoresistive effect film in which magnetic metal particles are dispersed in a non-magnetic metal matrix, or 2) the saturation magnetic field of the magnetic metal particles. However, the magnetoresistive film according to 1 above, which is smaller than the one-way anisotropic magnetic field of the antiferromagnetic film, or 3) the magnetic metal particles are made of an alloy containing at least one of Ni, Fe, and Co. 4) The magnetoresistive film according to 1 above, or 4) the second ferromagnetic layer is at least 1 of Fe or Co.
5. The magnetoresistive effect film according to 1 above, which is composed of an alloy containing one of 5 or 5) The magnetoresistive effect film according to 1 above, characterized in that the non-magnetic metal matrix is Ag; 7. The magnetoresistive film as described in 1 above, wherein the ferromagnetic layer is made of an alloy containing Mn or an oxide containing Ni, or 7) the first ferromagnetic layer is deposited on a substrate by heating while sputtering, Then, a method of manufacturing a magnetoresistive film, in which the nonmagnetic layer / second ferromagnetic layer / antiferromagnetic layer is deposited by sputtering at a temperature lower than that of the sputtering of the first ferromagnetic layer, or 8) the above 1 ferromagnetic layer / non-magnetic layer / second ferromagnetic layer /
A method of manufacturing a magnetoresistive film in which an antiferromagnetic layer is laminated on a substrate and then heat-treated in a magnetic field perpendicular to the magnetic field direction during sputtering, or (2): 9) a cobalt alloy film as a ferromagnetic layer The cobalt alloy film is a magnetoresistive film containing 5 to 30 at% of non-magnetic or non-solid solution non-magnetic metal in cobalt, or 10) a cobalt target and a non-magnetic metal target are simultaneously discharged, A method of manufacturing a magnetoresistive film in which a substrate facing these targets is rotated while being sputtered on the substrate, or 11) after the step 10, the magnetoresistive film is subjected to heat treatment at 200 to 300 ° C. It is achieved by the manufacturing method of.
【0014】次に,本発明の構成の詳細及び作用につい
て説明する。 (1) :図1は本発明の原理説明図である。Next, the details and operation of the configuration of the present invention will be described. (1): FIG. 1 is a diagram illustrating the principle of the present invention.
【0015】図において,基板 1上に下地層 2/強磁性
層 3A /非磁性層 4/強磁性層5/反強磁性層 6/
キャップ層 7が積層されている。強磁性層 5は反磁性
層 6によりピンニングされており,強磁性層 3A はピ
ンニングされていないフリー層で, NiFe-Ag 合金を使用
する。NiFe-Ag 合金はNiFe粒子をAg中に分散した合金薄
膜となるように, 下地層 2のTa膜を形成後の基板1を 30
0℃に加熱しながらスパッタにより形成する。In the figure, an underlayer 2 / a ferromagnetic layer 3A / a nonmagnetic layer 4 / a ferromagnetic layer 5 / an antiferromagnetic layer 6 / on a substrate 1
The cap layer 7 is laminated. The ferromagnetic layer 5 is pinned by the diamagnetic layer 6, and the ferromagnetic layer 3A is a non-pinned free layer that uses a NiFe-Ag alloy. The NiFe-Ag alloy was formed on the substrate 1 after forming the Ta film of the underlayer 2 so that the NiFe-Ag alloy became an alloy thin film in which NiFe particles were dispersed in Ag.
It is formed by sputtering while heating to 0 ° C.
【0016】この加熱スパッタが終了後, 基板温度を 2
00℃以下に冷却して非磁性層 4のCu層, 強磁性層 5の
NiFe層, 反強磁性層 6のFeMn層, キャップ層 7のTa層を
順にスパッタする。After the heating sputtering is completed, the substrate temperature is set to 2
After cooling to below 00 ℃, the Cu layer of the non-magnetic layer 4 and the ferromagnetic layer 5
The NiFe layer, the FeMn layer of the antiferromagnetic layer 6 and the Ta layer of the cap layer 7 are sputtered in this order.
【0017】このように, フリー層の強磁性層 3A を
磁性を持たない金属で囲まれた磁性金属微粒子とすると
磁壁をつくらない。さらに, NiFe微粒子の周囲を囲む非
磁性金属に強磁性層材料と合金を形成しない材料を用い
て相互間の熱拡散の防止し,又は, 合金が形成されても
その合金が磁性層となることで,たとえ拡散により合金
が形成されても磁性膜であれば磁気特性に悪影響を与え
ない。As described above, when the free ferromagnetic layer 3A is made of magnetic metal particles surrounded by a metal having no magnetism, no magnetic domain wall is formed. Furthermore, the non-magnetic metal surrounding the NiFe particles is made of a material that does not form an alloy with the ferromagnetic layer material to prevent thermal diffusion between them, or even if an alloy is formed, the alloy becomes a magnetic layer. Thus, even if an alloy is formed by diffusion, it does not adversely affect the magnetic properties as long as it is a magnetic film.
【0018】すなわち,フリー層を, 磁性を持つ金属の
微粒子とその周囲を囲み磁性を持たない金属のマトリク
スとからなる粒子分散型合金薄膜とすることにより, 磁
壁のないフリー層を形成でき, また,非磁性層として有
利なCuまたはCu合金を使用したときの熱拡散を防止する
ことができる。That is, by forming the free layer as a particle-dispersed alloy thin film composed of fine particles of magnetic metal and a matrix of a metal that surrounds it and has no magnetism, a free layer without a domain wall can be formed. , It is possible to prevent thermal diffusion when using Cu or Cu alloy, which is advantageous for the non-magnetic layer.
【0019】(2) :本発明はCo中に 5〜30 at %のAg,C
u,Au等の非磁性金属を添加する。ここで,Coとこれらの
金属は固溶度が小さいため,均一な合金を作製するには
スパッタ等の冷却速度の大きい成膜方法が望ましい。ま
た,所望の合金組成となるように印加電力を調整した個
別のターゲットを同時に放電し,基板を回転しながら成
膜することにより, 一層均一な合金膜が得られる。成膜
後, 200〜300 ℃で1時間程度の真空熱処理を施す。(2): The present invention uses 5 to 30 at% Ag, C in Co.
Add non-magnetic metal such as u and Au. Here, since Co and these metals have a small solid solubility, a film forming method with a high cooling rate such as sputtering is desirable for producing a uniform alloy. In addition, a more uniform alloy film can be obtained by simultaneously discharging individual targets whose applied power has been adjusted so that the desired alloy composition is obtained and forming the film while rotating the substrate. After film formation, vacuum heat treatment is performed at 200 to 300 ° C for about 1 hour.
【0020】本発明では,Ag,Cu,Au等のコバルトに非固
溶もしくは難固溶の非磁性金属を添加することにより,
非磁性金属中のCo粒子はその成長が抑制され,保磁力の
低減が可能となる。また,回転成膜することにより,成
膜時に微細な積層構造が形成されるために, Co粒子の成
長抑制がより効果的となる。さらに,成膜後に熱処理を
することにより,再結晶等により微細なCo粒子が減少す
るため更に保磁力が低下する。In the present invention, by adding a non-magnetic metal or a non-solid-solving non-magnetic metal to cobalt such as Ag, Cu and Au,
The growth of Co particles in non-magnetic metal is suppressed and the coercive force can be reduced. In addition, by spin-coating, a fine laminated structure is formed during film formation, so that the growth of Co particles is more effectively suppressed. In addition, heat treatment after film formation further reduces the coercive force because fine Co particles are reduced due to recrystallization and the like.
【0021】[0021]
(1) :図2(A),(B) は本発明の実施の形態1の説明図で
ある。(1): FIGS. 2A and 2B are explanatory views of the first embodiment of the present invention.
【0022】この例では,基板 1上に下地層 2/第1の
強磁性層として厚さ80Åの強磁性層 3A /厚さ25Åの
非磁性層 4/第2の強磁性層として厚さ40Åの強磁性層
5/厚さ80Åの反強磁性層 6/キャップ層 7を磁場中
でスパッタする。In this example, a base layer 2 on the substrate 1 / a ferromagnetic layer 3A having a thickness of 80Å as the first ferromagnetic layer / a nonmagnetic layer 4 having a thickness of 25Å / a layer of 40Å as the second ferromagnetic layer Ferromagnetic layer
5 / Sputter 80 Å antiferromagnetic layer 6 / Cap layer 7 in magnetic field.
【0023】次に工程順に製造プロセスを説明する。図
2(A) において,強磁性層 3A としてNiFe-Ag 合金を
使用する。NiFe-Ag合金はNiFe粒子がAg中に分散した合
金薄膜となるように, 下地層のTa層を形成後の基板を 2
80〜320 ℃に加熱しながらスパッタする。Next, the manufacturing process will be described in the order of steps. In Fig. 2 (A), a NiFe-Ag alloy is used as the ferromagnetic layer 3A. The NiFe-Ag alloy was formed on the substrate after forming the underlayer Ta layer so that the NiFe particles become an alloy thin film in which Ag particles are dispersed in Ag.
Sputter while heating to 80-320 ℃.
【0024】図2(B) において,上記の加熱スパッタを
終了後, 基板温度を 200℃以下にし, 非磁性層 4のCu
層, 強磁性層 5の CoFe層, 反強磁性層 6のFeMn層,
キャップ層 7のTa層を順にスパッタする。In FIG. 2 (B), after the above-mentioned heating sputtering is completed, the substrate temperature is set to 200 ° C. or lower, and the Cu of the nonmagnetic layer 4 is
Layer, CoFe layer of ferromagnetic layer 5, FeMn layer of antiferromagnetic layer 6,
The Ta layer of the cap layer 7 is sputtered in order.
【0025】スパッタはガス圧を 5×10-7 Torr 以下に
して行う。スパッタ後, 反強磁性層6によりピンニング
方向を90°回転させるために, スパッタ時の磁場方向と
垂直方向の磁場中で210 ℃のアニールを行う。The sputtering is carried out at a gas pressure of 5 × 10 −7 Torr or less. After sputtering, in order to rotate the pinning direction 90 ° by the antiferromagnetic layer 6, annealing is performed at 210 ° C in a magnetic field perpendicular to the magnetic field direction during sputtering.
【0026】非磁性層 4の材料としては, Cu以外にもA
u, Agまたはこれらの元素を含む合金を使用することが
できる。なお,非磁性層材料の膜厚は強磁性層間の伝導
電子移動行程以下となるように設定する。As the material of the non-magnetic layer 4, in addition to Cu, A
u, Ag or alloys containing these elements can be used. The thickness of the non-magnetic layer material is set so as to be less than the conduction electron transfer process between the ferromagnetic layers.
【0027】強磁性層 5は,この例ではCoFeを使用し
たが,この他にFe, Co系の合金を使用できる。反強磁性
層 6は, この例ではFeMnを使用したが,この他にMn系の
合金や,NiO,NiCoO等のNiをベースとした酸化物の使用
が可能である。Although CoFe was used for the ferromagnetic layer 5 in this example, Fe, Co-based alloys can be used in addition to this. Although FeMn was used for the antiferromagnetic layer 6 in this example, other Mn-based alloys or Ni-based oxides such as NiO and NiCoO can also be used.
【0028】このような, 構造をとることにより,従来
に比べて耐熱温度が上がり, バルクハウゼンノイズの発
生率が減少した。図3(A),(B) は本発明の実施の形態2
の説明図である。By adopting such a structure, the heat-resistant temperature is increased and the occurrence rate of Barkhausen noise is reduced as compared with the conventional case. 3A and 3B show a second embodiment of the present invention.
FIG.
【0029】図3(A) において,基板 1上に下地層 2/
厚さ80Åの強磁性層 3A /厚さ25Åの非磁性層 4/厚
さ40Åの強磁性層 5/厚さ80Åの反強磁性層 6/キャ
ップ層 7を基板の加熱を行うことなく磁場中でスパッタ
する。In FIG. 3 (A), the base layer 2 /
80A thick ferromagnetic layer 3A / 25L thick non-magnetic layer 4 / 40L thick ferromagnetic layer 5 / 80L thick antiferromagnetic layer 6 / Cap layer 7 in a magnetic field without heating the substrate Sputter with.
【0030】図3(B) において,スパッタ後, 強磁性層
3A をグラニュラ化するために280〜320 ℃で1時間
以上の1サイクル以上の熱処理を行う。280〜320 ℃の
熱処理は 1 kOe以上の磁場中で行い, 反強磁性層による
磁化ピンニング方向を90°回転させるために, スパッタ
時の磁場方向と垂直方向の磁場中で行う。In FIG. 3B, after sputtering, the ferromagnetic layer
In order to granulate 3A, heat treatment is performed at 280 to 320 ° C for 1 hour or more for 1 cycle or more. Heat treatment at 280-320 ℃ is performed in a magnetic field of 1 kOe or more, and in order to rotate the magnetization pinning direction by the antiferromagnetic layer by 90 °, it is performed in a magnetic field perpendicular to the magnetic field direction during sputtering.
【0031】この例では,反強磁性層 6として,PdMnを
用いた。上記の方法によっても実施の形態1と同様の効
果が得られた。実施の形態2では,全部の層を積層した
後の熱処理により, 非磁性層 4/強磁性層 5間の相互
拡散が起こらないようにしなければならない。従って,
この場合は, Cuに拡散して合金を形成するのはNiである
ため,強磁性層はNiを含まない合金にすることが必要
である。In this example, PdMn was used as the antiferromagnetic layer 6. The same effect as that of the first embodiment can be obtained by the above method. In the second embodiment, it is necessary to prevent mutual diffusion between the non-magnetic layer 4 and the ferromagnetic layer 5 by heat treatment after stacking all layers. Therefore,
In this case, since it is Ni that diffuses into Cu to form an alloy, the ferromagnetic layer must be an alloy that does not contain Ni.
【0032】また, 実施の形態1,2においては,強磁
性層 3A の磁性を持つ金属粒子の飽和磁場が,反強磁
性膜の一方向異方性磁場より小さいことが必要である。
その理由はスピンバルブ膜の動作原理から当然,媒体か
ら発生する検出磁場に対し,フリー層(強磁性層)の
飽和磁場は小さく,反強磁性膜の一方向異方性磁場は大
きくしなければならず,必然的に,強磁性層,即ちそ
れの構成要素である磁性を持つ金属粒子の飽和磁場は反
強磁性膜の一方向異方性磁場より小さいことが要求され
る。Further, in the first and second embodiments, the saturation magnetic field of the magnetic metal particles of the ferromagnetic layer 3A needs to be smaller than the unidirectional anisotropic magnetic field of the antiferromagnetic film.
The reason is that from the operating principle of the spin valve film, the saturation magnetic field of the free layer (ferromagnetic layer) is small and the unidirectional anisotropic magnetic field of the antiferromagnetic film is large with respect to the detection magnetic field generated from the medium. Inevitably, the saturation magnetic field of the ferromagnetic layer, that is, the magnetic metal particles that are the constituent elements of the ferromagnetic layer is required to be smaller than the unidirectional anisotropic magnetic field of the antiferromagnetic film.
【0033】(2) : 実施の形態3の説明 ガラス基板上にDCマグネトロンスパッタ装置を用いて次
の構成の薄膜を作製する。(2): Description of Embodiment 3 A thin film having the following constitution is formed on a glass substrate by using a DC magnetron sputtering apparatus.
【0034】 ガラス/ Co 600Å ガラス/ 95 at%Co-Ag 600Å ガラス/ 77 at%Co-Ag 600Å ガラス/ 69 at%Co-Ag 600Å 成膜は, 予め求めらたスパッタレートから所望の組成と
なるように印加電力を調整したCoターゲットとAgターゲ
ットを同時に放電し, ターゲットに対向する基板ホルダ
を10 r.p.m. で回転させながら行った。Glass / Co 600 Å Glass / 95 at% Co-Ag 600 Å Glass / 77 at% Co-Ag 600 Å Glass / 69 at% Co-Ag 600 Å The film formation is the desired composition from the previously determined sputter rate The Co target and the Ag target whose applied powers were adjusted in this way were simultaneously discharged, and the substrate holder facing the target was rotated at 10 rpm.
【0035】次いで,得られた合金膜を 1×10-4 Pa 以
下の真空中で1時間熱処理を行う。室温における各試料
の磁化曲線をVSM (Vibrating Sample Magnetometer) を
用いて測定した。その結果を図4に示す。熱処理前で
は,純Co膜の保磁力(Hc)は約250 Oeと大きいが,Agを添
加することにより, 保磁力は 95 at%Co-Ag で 56 Oeま
で低下する。この試料を 260℃で真空熱処理することに
より, 保磁力はさらに低下し 22 Oeまで低下した。しか
しながら 350℃の熱処理では, 熱拡散によりCoの粒成長
が進むため保磁力は再び増加した。Then, the obtained alloy film is heat-treated in a vacuum of 1 × 10 -4 Pa or less for 1 hour. The magnetization curve of each sample at room temperature was measured using a VSM (Vibrating Sample Magnetometer). FIG. 4 shows the results. Before the heat treatment, the coercive force (Hc) of the pure Co film is as large as about 250 Oe, but the coercive force decreases to 56 Oe at 95 at% Co-Ag by adding Ag. By subjecting this sample to vacuum heat treatment at 260 ° C, the coercive force further decreased to 22 Oe. However, in the heat treatment at 350 ℃, the coercive force increased again because Co grain growth proceeded by thermal diffusion.
【0036】[0036]
【発明の効果】本発明によれば, (1):強磁性層 (フリ
ー層) /非磁性層/強磁性層 (ピン層) の積層構造を有
する磁気抵抗効果膜において,磁壁のないフリー層を形
成することにより,バルクハウゼンノイズの発生を防止
し,また,中間層となる非磁性層として実績のあるCuを
採用してもフリー層/非磁性層間の熱拡散を防止してMR
特性の劣化を抑制し,耐熱温度を上げることができ,製
造歩留を向上させることができる。According to the present invention, in a magnetoresistive effect film having a laminated structure of (1): ferromagnetic layer (free layer) / non-magnetic layer / ferromagnetic layer (pin layer), a free layer having no domain wall is provided. To prevent the generation of Barkhausen noise, and to prevent the thermal diffusion between the free layer and the non-magnetic layer even if Cu, which has a proven record as the non-magnetic layer for the intermediate layer, is used to prevent MR.
The deterioration of characteristics can be suppressed, the heat resistant temperature can be raised, and the manufacturing yield can be improved.
【0037】また, (2):保持力の小さいCo膜が作製で
き, 強磁性膜として非磁性膜との間に熱拡散のないCo膜
をスピンバルブ膜として用いることができる。(2): A Co film having a small coercive force can be produced, and a Co film that does not cause thermal diffusion between the ferromagnetic film and the nonmagnetic film can be used as the spin valve film.
【図面の簡単な説明】[Brief description of drawings]
【図1】 本発明の原理説明図FIG. 1 is a diagram illustrating the principle of the present invention.
【図2】 本発明の実施の形態1の説明図FIG. 2 is an explanatory diagram of Embodiment 1 of the present invention.
【図3】 本発明の実施の形態2の説明図FIG. 3 is an explanatory diagram of a second embodiment of the present invention.
【図4】 本発明の実施の形態3の効果説明図FIG. 4 is an explanatory diagram of effects of the third embodiment of the present invention.
【図5】 従来例の説明図FIG. 5 is an explanatory view of a conventional example.
1 基板 2 下地層 3,3A 強磁性層 4 非磁性層 5 強磁性層 6 反強磁性層 7 キャップ層 1 Substrate 2 Underlayer 3,3A Ferromagnetic layer 4 Nonmagnetic layer 5 Ferromagnetic layer 6 Antiferromagnetic layer 7 Cap layer
Claims (11)
性層/反強磁性層の積層構造を有する巨大磁気抵抗効果
膜において,該第1の強磁性層は,磁性を持つ金属粒子
が磁性を持たない金属のマトリクス中に分散されてなる
ことを特徴とする磁気抵抗効果膜。1. In a giant magnetoresistive effect film having a laminated structure of a first ferromagnetic layer / a non-magnetic layer / a second ferromagnetic layer / an antiferromagnetic layer, the first ferromagnetic layer is magnetic. A magnetoresistive effect film characterized in that metal particles possessed therein are dispersed in a matrix of a metal having no magnetism.
前記反強磁性膜の一方向異方性磁場より小さいことを特
徴とする請求項1記載の磁気抵抗効果膜。2. The saturation magnetic field of the magnetic metal particles is
The magnetoresistive film according to claim 1, wherein the antiferromagnetic film has a unidirectional anisotropic magnetic field smaller than that.
はCoの少なくとも1つを含む合金からなることを特徴と
する請求項1記載の磁気抵抗効果膜。3. The magnetoresistive film according to claim 1, wherein the magnetic metal particles are made of an alloy containing at least one of Ni, Fe and Co.
なくとも1つを含む合金からなることを特徴とする請求
項1記載の磁気抵抗効果膜。4. The magnetoresistive effect film according to claim 1, wherein the second ferromagnetic layer is made of an alloy containing at least one of Fe and Co.
Agであることを特徴とする請求項1記載の磁気抵抗効果
膜。5. The matrix of metal having no magnetism
The magnetoresistive film according to claim 1, wherein the magnetoresistive film is Ag.
またはNiを含む酸化物からなることを特徴とする請求項
1記載の磁気抵抗効果膜。6. The magnetic antiferromagnetic layer is an alloy containing Mn,
The magnetoresistive film according to claim 1, which is made of an oxide containing Ni.
がらスパッタして堆積し,続いて該第1の強磁性層のス
パッタより低い温度で前記非磁性層/第2の強磁性層/
反強磁性層をスパッタして堆積することを特徴とする磁
気抵抗効果膜の製造方法。7. The first ferromagnetic layer is sputter-deposited on a substrate while being heated, and then the nonmagnetic layer / second ferromagnetic layer is formed at a temperature lower than that of the sputtering of the first ferromagnetic layer. layer/
A method for manufacturing a magnetoresistive film, comprising depositing an antiferromagnetic layer by sputtering.
強磁性層/反強磁性層を基板上に積層し,その後にスパ
ッタ時の磁場方向と垂直方向の磁場中で熱処理をするこ
とを特徴とする磁気抵抗効果膜の製造方法。8. The first ferromagnetic layer / nonmagnetic layer / second ferromagnetic layer / antiferromagnetic layer is laminated on a substrate, and then heat-treated in a magnetic field perpendicular to the magnetic field direction during sputtering. A method of manufacturing a magnetoresistive effect film, comprising:
該コバルト合金膜はコバルトに非固溶もしくは難固溶の
非磁性金属を 5〜30at%含むことを特徴とする磁気抵抗
効果膜。9. A cobalt alloy film is used as the ferromagnetic layer,
A magnetoresistive effect film characterized in that the cobalt alloy film contains 5 to 30 at% of a non-solid metal or a non-solid solution in cobalt.
ーゲットとを同時に放電して,これらのターゲットに対
向する基板を回転しながら該基板上にスパッタすること
を特徴とする磁気抵抗効果膜の製造方法。10. A method of manufacturing a magnetoresistive effect film, which comprises simultaneously discharging a cobalt target and a non-magnetic metal target and sputtering a substrate facing these targets while rotating the substrate.
00〜300 ℃の熱処理を行うことを特徴とする磁気抵抗効
果膜の製造方法。11. The substrate after the step of claim 10
A method of manufacturing a magnetoresistive effect film, characterized by performing a heat treatment at 00 to 300 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8006616A JPH09199326A (en) | 1996-01-18 | 1996-01-18 | Magnetoresistance effect film and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8006616A JPH09199326A (en) | 1996-01-18 | 1996-01-18 | Magnetoresistance effect film and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09199326A true JPH09199326A (en) | 1997-07-31 |
Family
ID=11643307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8006616A Withdrawn JPH09199326A (en) | 1996-01-18 | 1996-01-18 | Magnetoresistance effect film and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09199326A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2771511A1 (en) * | 1997-11-25 | 1999-05-28 | Thomson Csf | Magnetic field sensor having ferromagnetic particle layer within nonmagnetic insulating layer |
-
1996
- 1996-01-18 JP JP8006616A patent/JPH09199326A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2771511A1 (en) * | 1997-11-25 | 1999-05-28 | Thomson Csf | Magnetic field sensor having ferromagnetic particle layer within nonmagnetic insulating layer |
WO1999027379A1 (en) * | 1997-11-25 | 1999-06-03 | Thomson-Csf | Magnetic field sensor and method for making same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7532433B2 (en) | Thin film perpendicular magnetic recording head, their fabrication process and magnetic disk drive using it | |
US6340520B1 (en) | Giant magnetoresistive material film, method of producing the same magnetic head using the same | |
JP3255872B2 (en) | Spin valve type thin film element and method of manufacturing the same | |
JPH11134620A (en) | Ferromagnetic tunnel junction element sensor and its manufacture | |
JPH11296823A (en) | Magnetoresistance element and its production as well as magnetoresistance sensor and magnetic recording system | |
JPH0916920A (en) | Spin valve magnetoresistance sensor and magnetic recording system using said sensor | |
JP2002237628A (en) | Tunnel magnetoresistance effect element and manufacturing method therefor, and tunnel magnetoresistance effect head and manufacturing method therefor | |
US6603643B2 (en) | Magnetoresistive head containing oxide layer | |
JP2000215414A (en) | Magnetic sensor | |
JP2003162806A (en) | Perpendicular magnetic recording medium and magnetic storage device | |
JP2003031867A (en) | Magnetoresistive effect element constituted by laminating oxide magnetic layer and metallic magnetic layer upon another | |
JP2004146480A (en) | Magnetoresistance effect element for laminating heuslar magnetic layer and non-magnetic intermediate layer in body-centered cubic structure and magnetic head | |
US6686071B2 (en) | Magnetic recording medium and magnetic recording apparatus using the same | |
JP3817399B2 (en) | Magnetoresistive sensor | |
Tsunekawa et al. | Huge magnetoresistance and low junction resistance in magnetic tunnel junctions with crystalline MgO barrier | |
JP2008041163A (en) | Current perpendicular-to-plane magnetoresistance effect head | |
JP2961914B2 (en) | Magnetoresistive material and method of manufacturing the same | |
JP3175922B2 (en) | Method of manufacturing spin-valve thin film element | |
JP2007281087A (en) | Lamination, manufacturing method therefor, and magnetoresistance effect head | |
JP3127777B2 (en) | Magnetic transducer and magnetic recording device | |
JP3647306B2 (en) | Magnetoresistive element and magnetoresistive memory element | |
JP4033572B2 (en) | Magnetic sensor and manufacturing method thereof | |
JP3585028B2 (en) | Magnetoresistive film and method of manufacturing the same | |
JP3575672B2 (en) | Magnetoresistance effect film and magnetoresistance effect element | |
JPH09199326A (en) | Magnetoresistance effect film and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030401 |