JPH09191087A - Thin film capacitor and its manufacture - Google Patents

Thin film capacitor and its manufacture

Info

Publication number
JPH09191087A
JPH09191087A JP8003633A JP363396A JPH09191087A JP H09191087 A JPH09191087 A JP H09191087A JP 8003633 A JP8003633 A JP 8003633A JP 363396 A JP363396 A JP 363396A JP H09191087 A JPH09191087 A JP H09191087A
Authority
JP
Japan
Prior art keywords
thin film
film
type oxide
dielectric
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8003633A
Other languages
Japanese (ja)
Other versions
JP2924753B2 (en
Inventor
Shuji Sone
修次 曽祢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8003633A priority Critical patent/JP2924753B2/en
Publication of JPH09191087A publication Critical patent/JPH09191087A/en
Application granted granted Critical
Publication of JP2924753B2 publication Critical patent/JP2924753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a Perovskite-type oxide dielectric film having excellent crystallinity by a method wherein a Perovskite-type oxide layer which is made of material different from the material of a dielectric thin film and contains Ru is provided in a boundary between a lower electrode and the dielectric thin film. SOLUTION: A barrier layer 4 which blocks the reaction between RuO2 and Si and has a thickness of 50nm and a lower electrode 2 with a thickness of 200nm are built up on an Si substrate 5. Then an SrRuO3 layer which is a Perovskite-type oxide layer 1 containing Ru is formed by a sputtering method while a wafer is heated to 600 deg.C. After a wafer temperature is lowered to 450 deg.C, Sr(DPM)2 which is raw material of Sr, Ti(i-OC3 H7 )4 (TIP) which is raw material of Ti and O2 plasma are supplied to form an SrTiO3 film 3 which is a Perovskite-type oxide dielectric film 3 with a thickness of 50nm. After the SrTiO3 film 3 is formed, the wafer is taken out of a CVD film forming chamber and an Au film which is an upper electrode 6 with a thickness of 300nm is deposited on the SrTiO3 film 3. The thin film capacitor shows a dielectric constant of 160 and a leakage current density of 1×10<-7> A/cm<2> (1V is applied) which are satisfactory.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、薄膜キャパシタの
構造と、その製造方法に関するものである。 【0002】 【従来の技術】1Gビット以上の次世代高密度DRAM
用容量膜に適用するために、誘電特性、絶縁性、化学的
安定性に優れたSrTiO3 、(Ba,Sr)Ti
3 、(Pb,Zr)TiO3 等のペロブスカイト型酸
化物誘電体薄膜の研究開発が行われている。同時に、容
量部の面積を拡大するために、立体的な加工が容易な下
部電極材料の検討も重要な課題となっている。RuO2
は室温で40μΩcmの低抵抗率を有し、加えてO2
CF4 プラズマによるドライエッチングが可能であるこ
とから(ジャパニーズ・ジャーナル・オブ・アプライド
・フィジクス、31巻、135頁、1992年(S.S
aito et al.,Jpn.J.Appl.Ph
ys.31,135,(1992))を参照)、高密度
DRAM用下部電極として期待されている。 【0003】以下、このRuO2 等の導電性酸化物を薄
膜キャパシタの下部電極等に適用した従来例を示す。 【0004】第1の従来例として、電極と、Pbを組成
に含むペロブスカイト型強誘電体膜とで構成されるキャ
パシタにおいて、電極として導電性を有するペロブスカ
イト型酸化物(例えば、BaPbO3 またはBaPb
1-x Bix 3 )またはRuO2 を用いることを特徴と
する発明(特開平5−234809号公報)がある。 【0005】第2の従来例として下部電極としてRuO
2 を用い、この上に(Ba,Sr)TiO3 をスパッタ
法により成膜した報告がある(アプライド・フィジクス
・レターズ、64巻、2967頁、1994年(K.T
akemura et al.,Appl.Phys.
Lett.64,2967,(1994))。 【0006】第3の従来例として、基板上に形成された
第1の電極と、前記第1の電極上に形成された第2の電
極とを少なくとも有する半導体装置において、前記第1
もしくは第2の電極と強誘電体膜との間の少なくとも一
つの間に、酸化物層を介在させたことを特徴とする半導
体装置という発明がある(特開平4−206870号公
報)。この発明の実施例では、電極と強誘電体膜の間の
酸化物層としてSrTiO3 、BaTiO3 、PbLa
TiO3 が用いられている。酸化物層の膜厚は10nm
以下としている。この技術では、SiとSrTiO3
の緩衝層としてSrRuO3 、CaRuO3 用いる検討
も行われている(平谷ら、「酸化物薄膜の結晶工学」
(応用物理学会結晶工学分科会第11回結晶工学シンポ
ジウム)、23頁、1995年)。 【0007】 【発明が解決しようとする課題】第1、2の従来例にお
けるRuO2 を下部電極に用いた場合についての課題を
説明する。一般に、CVD、スパッタ法等でペロブスカ
イト型酸化物誘電体薄膜を成膜するためには、600℃
以上の高温が必要である。しかしながら、RuO2 電極
上にこのような高温でペロブスカイト型酸化物誘電体を
成膜または熱処理すると、誘電体膜中へのRuの拡散が
起こる(特にCVD法による成膜において顕著に生じ
る)。Ruが酸化物誘電体薄膜中に混入すると誘電体薄
膜の誘電率、リーク電流が著しく悪化するという問題が
生じる。 【0008】第3の従来例は電極と強誘電体膜の間にS
rTiO3 、BaTiO3 、PbLaTiO3 等の酸化
物を設けるというものであるが、これらは低誘電率層と
なりキャパシタ全体の誘電率を下げる原因となる。誘電
率低下を緩和するために、この酸化物層の厚さを10n
m以下に厳密に制御する工程が加わり、キャパシタの量
産性が低下する。 【0009】本発明の目的は、RuO2 を下部電極に用
いて、誘電率、リーク電流特性、及び量産性に優れたペ
ロブスカイト型酸化物誘電体薄膜キャパシタを提供する
ことにある。 【0010】 【課題を解決するための手段】本発明は、少なくとも下
部電極と、上部電極と、両電極に挟持された誘電体薄膜
とからなる薄膜キャパシタにおいて、前記下部電極がR
uO2 からなり、前記誘電体薄膜がペロブスカイト型酸
化物からなり、かつ該下部電極と該誘電体薄膜との界面
に該誘電体薄膜とは異なる材料よりなりRuを含むペロ
ブスカイト型酸化物層を有することを特徴とする薄膜キ
ャパシタである。また、該ペロブスカイト型酸化物を構
成するRu以外の金属原料を下部電極であるRuO2
に供給することによってRuを含むペロブスカイト型酸
化物層を形成する工程を含むことを特徴とする薄膜キャ
パシタの製造方法である。 【0011】SrRuO3 等のRuを含むペロブスカイ
ト型酸化物とSrTiO3 等のペロブスカイト型酸化物
誘電体は同じ結晶構造を有する。さらに、SrRuO3
とSrTiO3 の格子定数は非常に近い(SrRu
3 :0.393nm、SrTiO3 :0.3905n
m)。したがって、SrRuO3 等のペロブスカイト型
酸化物層を介して成膜されたペロブスカイト型酸化物誘
電体の結晶性は、ルチル構造であるRuO2 上に直接成
膜するよりもはるかに向上する。さらに、両者は格子整
合することから、酸化物誘電体と酸化物層との界面にお
ける反応も抑制され、酸化物誘電体薄膜中へのRuの混
入が抑制される。また、Ruを含むペロブスカイト型酸
化物は非常に低抵抗な導電性を示すことから、低誘電率
層にはならない。したがって、この酸化物の厚さに制限
はない。さらに、本発明の製造方法を用いれば、Ruを
含むペロブスカイト型酸化物をスタック状に微細加工さ
れたRuO2 上に選択的に形成することができるため、
Ruを含むペロブスカイト型酸化物を形成後に各下部電
極間を電気的に分離するための微細加工を行う必要がな
い。 【0012】以上のことから、RuO2 を下部電極に用
いて、誘電率、リーク電流特性、及び量産性に優れたペ
ロブスカイト型酸化物誘電体薄膜キャパシタを提供する
ことができる。 【0013】 【発明の実施の形態】 (実施例1)以下、本発明の実施例1について、図1を
参照しながら説明する。図1は本発明の実施例1に関わ
る薄膜キャパシタの断面図である。 【0014】スパッタ法によりSi基板5上にRuO2
とSiの反応を防ぐバリア層(TiN)4を50nm、
下部電極(RuO2 )2を200nm積層した。 【0015】次に、Ruを含むペロブスカイト型酸化物
層1としてSrRuO3 を、ウエハを600℃に加熱し
た状態で、スパッタ法により形成した。膜厚は特に制限
はないがこの例においては50nmとした。 【0016】このウエハをElectron Cycl
otron Resonance(ECR)−CVD装
置成膜室に導入した。ウエハ温度を450℃とし、Sr
原料であるSr(DPM)2 、Ti原料であるTi(i
−OC3 7 4 (TIP)、O2 プラズマを供給し、
SrRuO3 層1上にペロブスカイト型酸化物誘電体3
としてSrTiO3 2を50nm成膜した。Sr(DP
M)2 の原料温度は190℃、流量は70sccm、T
IP温度は36℃、流量は70sccm(キャリアガス
はAr)、プラズマ励起マイクロ波パワーは600W、
成膜室圧力は1Pa、堆積速度は1.0nm/minで
あった。ECR−CVD法によれば、450℃という低
温においてもペロブスカイト構造を有するSrTiO3
を成膜可能である(山口ら、第41回応用物理学関係連
合講演会予稿集、410頁、1994年を参照)。 【0017】SrTiO3 膜3を成膜後、ウエハをCV
D成膜室から取り出し、スパッタ法により上部電極6と
してAuをSrTiO3 薄膜3上に300nm堆積し
た。 【0018】以上のような工程により作製された薄膜キ
ャパシタは、誘電率160、リーク電流密度1×10-7
(A/cm2 )(1V印加時)という良好な値を示し
た。これは下部電極としてPtを用いた場合と同等の特
性である。 【0019】本実施例では、SrRuO3 を600℃の
高温で形成しているが、450℃程度の低温においても
形成可能であった。この上に成膜したSrTiO3 の電
気特性はSrRuO3 を600℃で形成した場合と同等
であった。 【0020】(実施例2)この例においては、実施例1
におけるSrRuO3 のかわりに、BaRuO3を形成
した。つまり、ウエハを600℃に加熱した状態で、B
a原料であるBa(DPM)2 、Ru原料であるRu
(DPM)3 及びO2 プラズマを供給するという方法で
成膜した。膜厚に制限はないが、10nmとした。Ba
(DPM)2原料温度は200℃、流量は70scc
m、Ru(DPM)3 は180℃、流量は70sccm
(それぞれ、キャリアガスはAr)、O2 流量は210
sccm、プラズマ励起マイクロ波パワーは600W、
成膜室圧力は1Pa、堆積速度は0.6nm/minで
あった。 【0021】次に、ウエハ温度を500℃とし、Ba
(DPM)2 、O2 プラズマに加え、Sr原料であるS
r(DPM)2 、Ti原料であるTIPを供給し、Ba
RuO3 層上にペロブスカイト型酸化物誘電体である
(Ba,Sr)TiO3 9をECR−CVD法により5
0nm成膜した。Sr(DPM)2 温度は190℃、流
量は70sccm、TIP温度は36℃、流量は140
sccm(それぞれ、キャリアガスはAr)、プラズマ
励起マイクロ波パワーは800W、成膜室圧力は1.3
Pa、堆積速度は2.0nm/minであった。他の原
料温度、流量はBaRuO3 成膜の場合と同じであっ
た。 【0022】(Ba,Sr)TiO3 を成膜後、ウエハ
をCVD成膜室から取り出し、スパッタ法により上部電
極6としてAuを(Ba,Sr)TiO3 薄膜上に30
0nm堆積した。 【0023】以上のような工程により作製された薄膜キ
ャパシタは、誘電率300、リーク電流密度3×10-7
(A/cm2 )(1V印加時)という良好な値を示し
た。これは下部電極としてPtを用いた場合と同等の特
性である。 【0024】本実施例における(Ba,Sr)TiO3
の成膜温度は500℃という低温であったが、成膜温度
600℃においても(Ba,Sr)TiO3 膜中へのR
uの拡散は生じなかった。結果として、電気特性は50
0℃成膜の場合よりも向上し、誘電率は500(BST
膜厚50nm)を示した。 【0025】(実施例3)以下、本発明の実施例3につ
いて、図2を参照にしながら説明する。図2は本発明の
実施例3に関わるスタック状に微細加工されたRuO2
を含む薄膜キャパシタの断面図である。 【0026】Si基板5上に設けた、熱酸化したSiO
2 層(600nm)9中にpoly−Siプラグ8を形
成し、その上にスパッタ法によりバリア層(TiN)4
を50nm、下部電極(RuO2 )2を500nm積層
した。RuO2 /TiN構造はフォトリソグラフィによ
りパターニングし(パターン幅は0.4μm)、プラズ
マエッチングによりスタック型に加工した。 【0027】このウエハをECR−CVD装置成膜室に
導入した。Ruを含むペロブスカイト型酸化物層1とし
てSrRuO3 を、ウエハを500℃に加熱した状態
で、Sr原料であるSr(DPM)2 とO2 プラズマを
供給するという方法で成膜した(膜厚10nm程度)。 【0028】SrRuO3 膜1成膜の流れは、まずRu
2 膜2上にSrOx層7が形成され、その後RuO2
膜2からRuがSrOx層7に拡散し、RuO2 に接し
た部分のSrOx層7のみがSrRuO3 になる、とい
うものである。Sr(DPM)2 原料温度は190℃、
流量は70sccm(キャリアガスはAr)、O2 流量
は210sccm、プラズマ励起マイクロ波パワーは6
00W、成膜室圧力は1Pa、堆積速度は0.6nm/
minであった。なお、SrOx層7は絶縁体であり、
RuO2 と接していない部分はSrOxのまま残ること
より、RuO2電極相互の絶縁は維持される。 【0029】次に、Sr(DPM)2 、O2 プラズマに
加え、Ba原料であるBa(DPM)2 、Ti原料であ
るTIPを供給し、SrRuO3 層上にペロブスカイト
型酸化物誘電体3である(Ba,Sr)TiO3 を30
nm成膜した。Ba(DPM)2 温度は200℃、流量
は70sccm、TIP温度は36℃、流量は140s
ccm(それぞれ、キャリアガスはAr)、プラズマ励
起マイクロ波パワーは800W、成膜室圧力は1.3P
a、堆積速度は1.0nm/minであった。他の原料
温度、流量はSrRuO3 成膜の場合と同じであった。 【0030】(Ba,Sr)TiO3 を成膜後、ウエハ
をCVD成膜室から取り出し、スパッタ法により上部電
極6であるAl(700nm)/TiN(50nm)を
堆積した。 【0031】以上の方法により作製した薄膜キャパシタ
の誘電率は250、リーク電流密度1×10-7(A/c
2 )(1V印加時)という良好な値を示した。 【0032】また、断面TEM観察から、SiO2 表面
((Ba,Sr)TiO3 層との間)にSrOx層7の
存在が確認された。 【0033】 【発明の効果】本発明の薄膜キャパシタによれば、下部
電極であるRuO2 上にSrRuO3等のRuを含むペ
ロブスカイト型酸化物層を設けることにより、結晶性の
良好なペロブスカイト型酸化物誘電体が成膜され、酸化
物誘電体薄膜中へのRuの拡散が抑制される。したがっ
て、RuO2 を下部電極に用いて、誘電特性、リーク特
性、及び量産性に優れたペロブスカイト型酸化物誘電体
薄膜キャパシタを提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a thin film capacitor and a manufacturing method thereof. [0002] Next-generation high-density DRAM of 1 Gbit or more
SrTiO 3 , (Ba, Sr) Ti, which has excellent dielectric properties, insulating properties, and chemical stability for use as a capacitor film
Research and development of perovskite type oxide dielectric thin films such as O 3 and (Pb, Zr) TiO 3 have been conducted. At the same time, in order to expand the area of the capacitor portion, it is also an important subject to consider a lower electrode material that can be easily processed three-dimensionally. RuO 2
Has a low resistivity of 40 μΩcm at room temperature, in addition to O 2 +
Since dry etching with CF 4 plasma is possible (Japanese Journal of Applied Physics, Vol. 31, p. 135, 1992 (SS
aito et al. , Jpn. J. Appl. Ph
ys. 31, 135, (1992)), and is expected as a lower electrode for high density DRAM. A conventional example in which a conductive oxide such as RuO 2 is applied to a lower electrode of a thin film capacitor will be shown below. As a first conventional example, in a capacitor composed of an electrode and a perovskite type ferroelectric film containing Pb in its composition, a perovskite type oxide (for example, BaPbO 3 or BaPb) having conductivity as an electrode is used.
It is the invention (JP-A-5-234809), characterized in using 1-x Bi x O 3) or RuO 2. As a second conventional example, RuO is used as the lower electrode.
With 2, on the (Ba, Sr) there is a report that was deposited TiO 3 by sputtering (Applied Physics Letters, Vol. 64, pp. 2967, 1994 (K.T
akemura et al. , Appl. Phys.
Lett. 64, 2967, (1994)). As a third conventional example, in a semiconductor device having at least a first electrode formed on a substrate and a second electrode formed on the first electrode, the first device
Alternatively, there is an invention called a semiconductor device characterized in that an oxide layer is interposed between at least one of the second electrode and the ferroelectric film (JP-A-4-206870). In the embodiment of the present invention, SrTiO 3 , BaTiO 3 , PbLa are used as the oxide layer between the electrode and the ferroelectric film.
TiO 3 is used. The thickness of the oxide layer is 10 nm
It is as follows. In this technique, the use of SrRuO 3 and CaRuO 3 as a buffer layer between Si and SrTiO 3 is also being studied (Hiraya et al., “Crystal Engineering of Oxide Thin Films”).
(11th Crystal Engineering Symposium, Crystal Engineering Subcommittee of the Japan Society of Applied Physics), p. 23, 1995). Problems to be solved when RuO 2 is used for the lower electrode in the first and second conventional examples will be described. Generally, in order to form a perovskite type oxide dielectric thin film by CVD, sputtering, etc., 600 ° C.
The above high temperature is required. However, when the perovskite type oxide dielectric is formed or heat-treated on the RuO 2 electrode at such a high temperature, the diffusion of Ru into the dielectric film occurs (especially when the film is formed by the CVD method). When Ru is mixed in the oxide dielectric thin film, there arises a problem that the dielectric constant and the leak current of the dielectric thin film are significantly deteriorated. In the third conventional example, S is provided between the electrode and the ferroelectric film.
An oxide such as rTiO 3 , BaTiO 3 , PbLaTiO 3 or the like is provided, but these are low dielectric constant layers and cause a decrease in the dielectric constant of the entire capacitor. In order to reduce the decrease in the dielectric constant, the thickness of this oxide layer is set to 10n.
The step of strictly controlling the value of m or less is added, and the mass productivity of the capacitor is deteriorated. An object of the present invention is to provide a perovskite type oxide dielectric thin film capacitor excellent in permittivity, leak current characteristics and mass productivity by using RuO 2 for a lower electrode. The present invention is a thin film capacitor comprising at least a lower electrode, an upper electrode, and a dielectric thin film sandwiched by both electrodes, wherein the lower electrode is R.
uO 2 , the dielectric thin film is made of a perovskite type oxide, and a perovskite type oxide layer made of a material different from the dielectric thin film and containing Ru is provided at the interface between the lower electrode and the dielectric thin film. It is a thin film capacitor characterized in that. A thin film capacitor comprising a step of forming a perovskite type oxide layer containing Ru by supplying a metal raw material other than Ru constituting the perovskite type oxide onto RuO 2 which is a lower electrode. It is a manufacturing method. The perovskite type oxide containing Ru such as SrRuO 3 and the perovskite type oxide dielectric such as SrTiO 3 have the same crystal structure. In addition, SrRuO 3
And SrTiO 3 have very close lattice constants (SrRu
O 3: 0.393nm, SrTiO 3: 0.3905n
m). Therefore, the crystallinity of the perovskite type oxide dielectric formed through the perovskite type oxide layer such as SrRuO 3 is much improved as compared with the case where the film is directly formed on RuO 2 having the rutile structure. Furthermore, since the two are lattice-matched, the reaction at the interface between the oxide dielectric and the oxide layer is also suppressed, and the mixing of Ru into the oxide dielectric thin film is suppressed. Further, since the perovskite type oxide containing Ru has a very low resistance conductivity, it cannot be a low dielectric constant layer. Therefore, there is no limit to the thickness of this oxide. Furthermore, by using the manufacturing method of the present invention, a perovskite oxide containing Ru can be selectively formed on RuO 2 finely processed in a stack,
It is not necessary to perform fine processing for electrically separating the lower electrodes after forming the perovskite type oxide containing Ru. From the above, by using RuO 2 for the lower electrode, it is possible to provide a perovskite type oxide dielectric thin film capacitor excellent in permittivity, leak current characteristics and mass productivity. First Embodiment A first embodiment of the present invention will be described below with reference to FIG. First Embodiment FIG. 1 is a sectional view of a thin film capacitor according to a first embodiment of the present invention. RuO 2 was deposited on the Si substrate 5 by the sputtering method.
A barrier layer (TiN) 4 of 50 nm, which prevents the reaction between Si and Si,
The lower electrode (RuO 2 ) 2 was laminated to a thickness of 200 nm. Next, SrRuO 3 was formed as a perovskite type oxide layer 1 containing Ru by a sputtering method while the wafer was heated to 600 ° C. Although the film thickness is not particularly limited, it is 50 nm in this example. This wafer was replaced with an Electron Cycle.
Otron Resonance (ECR) -CVD apparatus It was introduced into the film forming chamber. Wafer temperature is set to 450 ° C and Sr
Raw material Sr (DPM) 2 , Ti raw material Ti (i
-OC 3 H 7 ) 4 (TIP), O 2 plasma is supplied,
Perovskite oxide dielectric 3 on SrRuO 3 layer 1
The SrTiO 3 2 was 50nm formed as. Sr (DP
The raw material temperature of M) 2 is 190 ° C., the flow rate is 70 sccm, and T
IP temperature is 36 ° C., flow rate is 70 sccm (carrier gas is Ar), plasma excitation microwave power is 600 W,
The film forming chamber pressure was 1 Pa, and the deposition rate was 1.0 nm / min. According to the ECR-CVD method, SrTiO 3 having a perovskite structure even at a low temperature of 450 ° C.
Can be formed into a film (see Yamaguchi et al., Proceedings of the 41st Joint Lecture on Applied Physics, page 410, 1994). After forming the SrTiO 3 film 3, the wafer is subjected to CV
The film was taken out of the D film forming chamber, and Au was deposited as the upper electrode 6 on the SrTiO 3 thin film 3 by sputtering to a thickness of 300 nm. The thin film capacitor manufactured by the above steps has a dielectric constant of 160 and a leakage current density of 1 × 10 −7.
A good value of (A / cm 2 ) (when 1 V was applied) was shown. This is the same characteristic as when Pt is used as the lower electrode. In this embodiment, SrRuO 3 was formed at a high temperature of 600 ° C., but it could be formed at a low temperature of about 450 ° C. The electrical characteristics of the SrTiO 3 film formed on this were similar to those when SrRuO 3 was formed at 600 ° C. (Embodiment 2) In this embodiment, Embodiment 1
BaRuO 3 was formed in place of SrRuO 3 in. In other words, with the wafer heated to 600 ° C., B
a Raw material Ba (DPM) 2 , Ru raw material Ru
A film was formed by supplying (DPM) 3 and O 2 plasma. The film thickness is not limited, but it is set to 10 nm. Ba
(DPM) 2 Raw material temperature is 200 ° C., Flow rate is 70 scc
m, Ru (DPM) 3 is 180 ° C., flow rate is 70 sccm
(The carrier gas is Ar) and the O 2 flow rate is 210.
sccm, plasma excitation microwave power 600W,
The film forming chamber pressure was 1 Pa, and the deposition rate was 0.6 nm / min. Next, the wafer temperature is set to 500 ° C. and Ba is set.
In addition to (DPM) 2 and O 2 plasma, S that is a Sr raw material
r (DPM) 2 and Ti raw material TIP are supplied, and Ba
On the RuO 3 layer, (Ba, Sr) TiO 3 9 which is a perovskite type oxide dielectric is formed by ECR-CVD method.
0 nm was formed. Sr (DPM) 2 temperature is 190 ° C., flow rate is 70 sccm, TIP temperature is 36 ° C., flow rate is 140
sccm (respectively, the carrier gas is Ar), the plasma excitation microwave power is 800 W, and the film forming chamber pressure is 1.3.
Pa and the deposition rate were 2.0 nm / min. The other raw material temperatures and flow rates were the same as in the case of BaRuO 3 film formation. After forming the (Ba, Sr) TiO 3 film, the wafer is taken out from the CVD film forming chamber, and Au is used as the upper electrode 6 on the (Ba, Sr) TiO 3 thin film by a sputtering method.
0 nm was deposited. The thin film capacitor manufactured by the above steps has a dielectric constant of 300 and a leakage current density of 3 × 10 −7.
A good value of (A / cm 2 ) (when 1 V was applied) was shown. This is the same characteristic as when Pt is used as the lower electrode. (Ba, Sr) TiO 3 in this embodiment
Although the film forming temperature of was as low as 500 ° C., even when the film forming temperature was 600 ° C., R in the (Ba, Sr) TiO 3 film was
No u diffusion occurred. As a result, the electrical characteristics are 50
The dielectric constant is 500 (BST
The film thickness was 50 nm). (Third Embodiment) A third embodiment of the present invention will be described below with reference to FIG. FIG. 2 shows RuO 2 finely processed into a stack according to Example 3 of the present invention.
3 is a cross-sectional view of a thin film capacitor including Thermally oxidized SiO provided on the Si substrate 5.
A poly-Si plug 8 is formed in two layers (600 nm) 9, and a barrier layer (TiN) 4 is formed on the poly-Si plug 8 by a sputtering method.
Of 50 nm and a lower electrode (RuO 2 ) 2 of 500 nm. The RuO 2 / TiN structure was patterned by photolithography (pattern width: 0.4 μm) and processed into a stack type by plasma etching. This wafer was introduced into the ECR-CVD apparatus film forming chamber. SrRuO 3 was formed as a perovskite type oxide layer 1 containing Ru by a method of supplying Sr (DPM) 2 as an Sr raw material and O 2 plasma in a state where the wafer was heated to 500 ° C. (film thickness 10 nm degree). The flow of forming the SrRuO 3 film 1 is as follows.
A SrOx layer 7 is formed on the O 2 film 2 and then RuO 2 is formed.
Ru diffuses from the film 2 into the SrOx layer 7, and only the portion of the SrOx layer 7 in contact with RuO 2 becomes SrRuO 3 . Sr (DPM) 2 raw material temperature is 190 ° C.,
The flow rate is 70 sccm (carrier gas is Ar), the O 2 flow rate is 210 sccm, and the plasma excitation microwave power is 6
00W, deposition chamber pressure 1 Pa, deposition rate 0.6 nm /
min. The SrOx layer 7 is an insulator,
Since the portion not in contact with RuO 2 remains as SrOx, the insulation between the RuO 2 electrodes is maintained. Next, in addition to Sr (DPM) 2 and O 2 plasma, Ba (DPM) 2 which is a Ba raw material and TIP which is a Ti raw material are supplied to form a perovskite type oxide dielectric 3 on the SrRuO 3 layer. 30% of (Ba, Sr) TiO 3
nm. Ba (DPM) 2 temperature is 200 ° C., flow rate is 70 sccm, TIP temperature is 36 ° C., flow rate is 140 s
ccm (respectively, the carrier gas is Ar), the plasma excitation microwave power is 800 W, and the film forming chamber pressure is 1.3 P.
a, the deposition rate was 1.0 nm / min. The other raw material temperatures and flow rates were the same as those for the SrRuO 3 film formation. After forming the (Ba, Sr) TiO 3 film, the wafer was taken out from the CVD film forming chamber, and Al (700 nm) / TiN (50 nm) as the upper electrode 6 was deposited by the sputtering method. The thin film capacitor manufactured by the above method has a dielectric constant of 250 and a leak current density of 1 × 10 −7 (A / c).
m 2 ) (at the time of applying 1 V) was a good value. The presence of the SrOx layer 7 was confirmed on the SiO 2 surface (between the (Ba, Sr) TiO 3 layer) by TEM observation of the cross section. According to the thin film capacitor of the present invention, by providing a perovskite type oxide layer containing Ru such as SrRuO 3 on RuO 2 which is a lower electrode, a perovskite type oxide having good crystallinity is obtained. A physical dielectric film is formed, and diffusion of Ru into the oxide dielectric thin film is suppressed. Therefore, by using RuO 2 for the lower electrode, it is possible to provide a perovskite type oxide dielectric thin film capacitor having excellent dielectric characteristics, leak characteristics and mass productivity.

【図面の簡単な説明】 【図1】本発明の一実施例を示す薄膜キャパシタの断面
図である。 【図2】本発明の一実施例を示す薄膜キャパシタの断面
図である。 【符号の説明】 1 Ruを含むペロブスカイト型酸化物層 2 下部電極(RuO2 ) 3 ペロブスカイト型酸化物誘電体薄膜 4 バリア層(TiN) 5 Si基板 6 上部電極(Au) 7 SrOx層 8 poly−Siプラグ 9 SiO2
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a thin film capacitor showing an embodiment of the present invention. FIG. 2 is a sectional view of a thin film capacitor showing an embodiment of the present invention. [Description of Reference Signs] 1 Perovskite type oxide layer containing Ru 2 Lower electrode (RuO 2 ) 3 Perovskite type oxide dielectric thin film 4 Barrier layer (TiN) 5 Si substrate 6 Upper electrode (Au) 7 SrOx layer 8 poly- Si plug 9 SiO 2 layer

Claims (1)

【特許請求の範囲】 【請求項1 】 少なくとも下部電極と、上部電極と、両
電極に挟持された誘電体薄膜とからなる薄膜キャパシタ
において、前記下部電極がRuO2 からなり、前記誘電
体薄膜がペロブスカイト型酸化物からなり、かつ該下部
電極と該誘電体薄膜との界面に該誘電体薄膜とは異なる
材料よりなりRuを含むペロブスカイト型酸化物層を有
することを特徴とする薄膜キャパシタ。 【請求項2】下部電極と誘電体薄膜との界面に該誘電体
薄膜とは異なる材料よりなりRuを含むペロブスカイト
型酸化物層を有する薄膜キャパシタの製造方法であっ
て、該ペロブスカイト型酸化物を構成するRu以外の金
属原料を下部電極であるRuO2 上に供給することによ
ってRuを含むペロブスカイト型酸化物層を形成する工
程を含むことを特徴とする薄膜キャパシタの製造方法。
Claim: What is claimed is: 1. A thin film capacitor comprising at least a lower electrode, an upper electrode, and a dielectric thin film sandwiched by both electrodes, wherein the lower electrode is made of RuO 2 , and the dielectric thin film is A thin film capacitor comprising a perovskite type oxide, and having a perovskite type oxide layer made of a material different from that of the dielectric thin film and containing Ru at the interface between the lower electrode and the dielectric thin film. 2. A method for manufacturing a thin film capacitor having a perovskite oxide layer made of a material different from that of the dielectric thin film and containing Ru at the interface between the lower electrode and the dielectric thin film, wherein the perovskite oxide is formed. A method of manufacturing a thin film capacitor, comprising the step of forming a perovskite type oxide layer containing Ru by supplying a constituent metal material other than Ru to RuO 2 which is a lower electrode.
JP8003633A 1996-01-12 1996-01-12 Method for manufacturing thin film capacitor Expired - Fee Related JP2924753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8003633A JP2924753B2 (en) 1996-01-12 1996-01-12 Method for manufacturing thin film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8003633A JP2924753B2 (en) 1996-01-12 1996-01-12 Method for manufacturing thin film capacitor

Publications (2)

Publication Number Publication Date
JPH09191087A true JPH09191087A (en) 1997-07-22
JP2924753B2 JP2924753B2 (en) 1999-07-26

Family

ID=11562899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8003633A Expired - Fee Related JP2924753B2 (en) 1996-01-12 1996-01-12 Method for manufacturing thin film capacitor

Country Status (1)

Country Link
JP (1) JP2924753B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025014A1 (en) * 1997-11-10 1999-05-20 Hitachi, Ltd. Dielectric element and manufacturing method therefor
KR20000014388A (en) * 1998-08-20 2000-03-15 윤종용 Ferroelectric memory capacitor and forming method thereof
US6335551B2 (en) 1997-11-04 2002-01-01 Nec Corporation Thin film capacitor having an improved bottom electrode and method of forming the same
US6392265B2 (en) 2000-01-12 2002-05-21 Fujitsu Limited Semiconductor device
JP2002521846A (en) * 1998-07-28 2002-07-16 アプライド マテリアルズ インコーポレイテッド Method and apparatus for enhancing step coverage and boundary control of high K dielectric capacitors and associated electrodes
US6573584B1 (en) * 1999-10-29 2003-06-03 Kyocera Corporation Thin film electronic device and circuit board mounting the same
KR100438769B1 (en) * 1997-12-09 2004-12-17 삼성전자주식회사 Method for forming metal oxide thin film of semiconductor device by cvd method and capacitor forming method using the same to embody high capacitance
KR100483359B1 (en) * 2003-04-01 2005-04-15 학교법인 성균관대학 Method for manufacturing semiconductor element
KR100898974B1 (en) * 2007-06-18 2009-05-25 삼성전기주식회사 Thin capacitor, laminated structure and methods of manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335551B2 (en) 1997-11-04 2002-01-01 Nec Corporation Thin film capacitor having an improved bottom electrode and method of forming the same
KR100359756B1 (en) * 1997-11-04 2003-03-28 닛본 덴기 가부시끼가이샤 Manufacturing method of thin film capacitor
WO1999025014A1 (en) * 1997-11-10 1999-05-20 Hitachi, Ltd. Dielectric element and manufacturing method therefor
KR100438769B1 (en) * 1997-12-09 2004-12-17 삼성전자주식회사 Method for forming metal oxide thin film of semiconductor device by cvd method and capacitor forming method using the same to embody high capacitance
JP2002521846A (en) * 1998-07-28 2002-07-16 アプライド マテリアルズ インコーポレイテッド Method and apparatus for enhancing step coverage and boundary control of high K dielectric capacitors and associated electrodes
KR20000014388A (en) * 1998-08-20 2000-03-15 윤종용 Ferroelectric memory capacitor and forming method thereof
US6573584B1 (en) * 1999-10-29 2003-06-03 Kyocera Corporation Thin film electronic device and circuit board mounting the same
US6392265B2 (en) 2000-01-12 2002-05-21 Fujitsu Limited Semiconductor device
KR100483359B1 (en) * 2003-04-01 2005-04-15 학교법인 성균관대학 Method for manufacturing semiconductor element
KR100898974B1 (en) * 2007-06-18 2009-05-25 삼성전기주식회사 Thin capacitor, laminated structure and methods of manufacturing the same

Also Published As

Publication number Publication date
JP2924753B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
JP3570472B2 (en) Capacitor with high-temperature electrode barrier, method of manufacturing the same, FeRAM and DRAM
JP3171170B2 (en) Thin film capacitor and method of manufacturing the same
KR100386539B1 (en) Composite iridium barrier structure with oxidized refractory metal companion barrier and method for same
EP0747937A2 (en) Ferroelectric thin film coated substrate, producing method thereof and capacitor structure element using thereof
US6440591B1 (en) Ferroelectric thin film coated substrate, producing method thereof and capacitor structure element using thereof
US6420740B1 (en) Lead germanate ferroelectric structure with multi-layered electrode
JP2000091539A (en) Semiconductor device and manufacture thereof
US6392265B2 (en) Semiconductor device
JP2000040800A (en) Ferroelectric storage element and manufacture thereof
JP2924753B2 (en) Method for manufacturing thin film capacitor
JP3419665B2 (en) Method for manufacturing semiconductor device
US6670668B2 (en) Microelectronic structure, method for fabricating it and its use in a memory cell
JP3087672B2 (en) Thin film capacitors
JP2008135642A (en) Ferroelectric capacitor
JP3299909B2 (en) Multilayer structure electrode using oxide conductor
JP2000223666A (en) Fabrication of semiconductor memory element
KR20010029911A (en) Semiconductor device and method for manufacturing the same
JPH11233734A (en) Semiconductor memory element and its manufacture
JP2000091531A (en) Thin-film capacitor and manufacture therefor
KR20010030161A (en) Capacitor and a meothod for fabricating the same
JP3277097B2 (en) Manufacturing method of ferroelectric thin film
JP3767675B2 (en) Semiconductor device and manufacturing method thereof
JP2735094B2 (en) Thin film capacitor and method of manufacturing the same
JP5030349B2 (en) Dielectric film fabrication method
KR100498608B1 (en) Method for forming ferroelectric capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110507

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110507

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120507

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120507

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130507

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140507

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees