JPH09124348A - Composite pipe and window using the same - Google Patents
Composite pipe and window using the sameInfo
- Publication number
- JPH09124348A JPH09124348A JP7303368A JP30336895A JPH09124348A JP H09124348 A JPH09124348 A JP H09124348A JP 7303368 A JP7303368 A JP 7303368A JP 30336895 A JP30336895 A JP 30336895A JP H09124348 A JPH09124348 A JP H09124348A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- aqueous solution
- thermotropic
- hollow layer
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/6612—Evacuated glazing units
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/24—Structural elements or technologies for improving thermal insulation
- Y02A30/249—Glazing, e.g. vacuum glazing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B80/00—Architectural or constructional elements improving the thermal performance of buildings
- Y02B80/22—Glazing, e.g. vaccum glazing
Landscapes
- Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Securing Of Glass Panes Or The Like (AREA)
- Laminated Bodies (AREA)
- Joining Of Glass To Other Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、窓、屋根、壁等に
主に使用できるパネルに関するものである。熱作用によ
り透明状態と白濁状態を可逆変化する曇点現象を示す水
溶液組成物であるサーモトロピック水溶液を介して透明
で中空層をもつガラス管を透明基板に積層して中空層を
もたせてなる複合管パネルに関するものである。このパ
ネルを窓に利用すると高度な断熱機能と太陽の直射光線
をその直射光線エネルギーで遮光できる機能を共にもつ
窓を提供できる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a panel that can be mainly used for windows, roofs, walls and the like. A composite structure in which a glass tube having a transparent and hollow layer is laminated on a transparent substrate through an aqueous solution of a thermotropic solution which is an aqueous solution composition showing a cloud point phenomenon in which a transparent state and a cloudy state are reversibly changed by a heat action and a hollow layer is provided. It concerns a tube panel. When this panel is used as a window, it is possible to provide a window that has both a high heat insulation function and a function of blocking the direct rays of the sun with the energy of the direct rays.
【0002】[0002]
【従来の技術】本発明者は、開口部すなわち窓が従来の
屋根、壁に比較して断熱と遮光の機能が劣っていること
に注目してきた。しかし、窓は、太陽光線を透過できる
ために照明作用や外部情報との交換を可能とし、通常の
屋根、壁にはない特徴をもつ。当然、窓の断熱性を向上
させるための研究開発も広くされてきた。その結果、一
対の板ガラス間に気体層を設けてなる複層ガラスが開発
され広く使用されている。最近、その効果をさらに向上
させるために、気体層を真空にする研究も進められてい
る。例えば、R.E.CollinsらのSPIE/V
ol2255,Proceedings,648(19
94)の文献に詳説されている。この真空パネルの構造
を図2に示す。1は板ガラスであり、5は外周封止であ
り低融点ガラスを用いて真空を維持しており、7は大気
圧にたえる耐圧スペサーであり、8は空気抜きと真空維
持の耐圧弁である。従来の方法は、このように非常に複
雑な構造をもつために、以下のような大きな問題点があ
りいまだ実用化していない。 1)窓ガラスとして使用すると連続した真空部が大面積
となり、破損時に飛散の危険が増大する。 2)大面積の外周を低融点ガラスで封止する方法は、基
板との膨張係数の差により密着性を確実にとるのが非常
に困難であり、高価な超大型炉による均一加温と長時間
にわたる熱処理工程等を必要とする。 3)大気圧からギャップを維持するために耐圧スペサー
7を配置する必要がある。 4)真空にする排気・維持するための耐圧弁8を必要と
する。 このようにまだ問題点もあり、特に説明をするまでもな
く気体層より真空層が好ましいことは容易に理解される
点であるが、いまだ実用化されていない。The present inventor has noticed that openings or windows have inferior heat insulation and light shielding functions as compared to conventional roofs and walls. However, since the window can transmit sunlight, it can be exchanged with lighting and external information, and it has features that ordinary roofs and walls do not have. Naturally, research and development for improving the heat insulating property of windows have been widely performed. As a result, multi-layer glass in which a gas layer is provided between a pair of plate glasses has been developed and widely used. Recently, in order to further improve the effect, research on making a gas layer into a vacuum is also under way. For example, R. E. FIG. Collins et al. SPIE / V
ol2255, Proceedings, 648 (19
94). The structure of this vacuum panel is shown in FIG. Reference numeral 1 is a plate glass, 5 is an outer peripheral sealing, and a low melting point glass is used to maintain a vacuum, 7 is a pressure resistant spacer that withstands atmospheric pressure, and 8 is a pressure resistant valve for venting air and maintaining vacuum. Since the conventional method has such an extremely complicated structure, it has the following serious problems and has not been put into practical use yet. 1) When it is used as a window glass, the continuous vacuum portion has a large area, and the risk of scattering at the time of breakage increases. 2) In the method of sealing the outer periphery of a large area with a low melting glass, it is very difficult to ensure the adhesion due to the difference in the expansion coefficient with the substrate, and uniform heating and long heating by an expensive ultra-large furnace are required. It requires a heat treatment process and the like over time. 3) It is necessary to arrange the pressure resistant spacer 7 in order to maintain the gap from the atmospheric pressure. 4) A pressure resistant valve 8 for evacuation / maintaining a vacuum is required. As described above, there are still problems, and it is easily understood that a vacuum layer is preferable to a gas layer without any particular explanation, but it has not been put to practical use yet.
【0003】また、断熱において、従来12mm層の気
体層を設けた複層ガラスが実用化されているが、気体の
対流、気体の伝導がまだ大きく通常の屋根、壁のような
断熱効果を得ていない。また、遮光に関しては、金属薄
膜等による熱線反射膜をコートした板ガラスを組み込ん
だ複層ガラスもあるが、冬季、曇天日の室内入射光の減
少、反射公害、室内の人間に圧迫感を与える等の問題が
あった。For heat insulation, a double glazing having a gas layer of 12 mm has been put into practical use, but gas convection and gas conduction are still large, and a heat insulation effect such as that of a normal roof or wall is obtained. Not not. Regarding light shielding, there is also double glazing that incorporates sheet glass coated with a heat ray reflective film such as a metal thin film, but in the winter, on a cloudy day, the amount of incident light decreases, reflected pollution, giving a feeling of oppression to people inside the room. There was a problem.
【0004】そこで、本発明者は、エネルギー伝達の要
素は対流・伝導・輻射の3点にあるとの基本に立ちもど
り再検討した。この3要素を同時に満足させることがで
きると、太陽光線を透過する仕切体を窓と通常呼ばれる
が、さらに防音まで加えて屋根、壁の機能特性をも兼ね
る新規な省エネ窓をうることができ、従来の建築概念を
越える空間設計を可能にする。防音は、従来実用的に
は、鉛等の利用による質量作用法か共鳴減衰制御法によ
るが、本発明者は、真空を利用した。その結果、防雨、
断熱、遮光、防音の制御を安全性をもって同時に満たせ
ることことができれば、理想的な省エネ窓となると考え
た。Therefore, the present inventor reconsidered the basic idea that there are three elements of energy transmission: convection, conduction, and radiation. If these three elements can be satisfied at the same time, the partition that transmits sunlight is usually called a window, but it is possible to obtain a new energy-saving window that also has roof and wall functional characteristics in addition to soundproofing. Enables space design that goes beyond conventional architectural concepts. The soundproofing has hitherto been practically performed by a mass action method using lead or the like or a resonance damping control method, but the present inventor used a vacuum. As a result, rain protection,
We thought that it would be an ideal energy-saving window if it could simultaneously satisfy the control of heat insulation, light shielding, and sound insulation.
【0005】防雨は、連続体であり、特に説明するまで
もなく太陽光線を透過する各種の板ガラスの利用でよ
い。断熱は、本発明ではガラス管で分割された中空層で
あるため対流が防止される。遮光は、本発明者がこの3
年間開発を進めている熱作用により透明状態と白濁状態
を可逆変化する曇点現象を示す水溶液組成物(以下サー
モトロピック水溶液と記す)を持ち込むことで合理的に
解決できる。防音は、真空の使用により透明体の防音を
可能にした。安全性は、真空部はガラス管による分割状
態にあるため、破損してもいっきに全体の真空部が崩れ
て破裂を起こすことはない。また、気体層を介して一対
の板ガラス間に積層されるため飛び散りをほぼ押さえる
ことができ、通常の複層ガラスとほぼ同様の安全性を確
保できる。The rainproof is a continuous body, and it is possible to use various kinds of plate glass that transmits the sun's rays without needing to be particularly described. In the present invention, the heat insulation is a hollow layer divided by a glass tube, so that convection is prevented. The present inventor uses the 3
This can be reasonably solved by bringing in an aqueous solution composition (hereinafter referred to as a thermotropic aqueous solution) which exhibits a cloud point phenomenon in which a transparent state and a cloudy state are reversibly changed by a thermal action which is being developed every year. As for soundproofing, the use of a vacuum enabled soundproofing of a transparent body. As for safety, since the vacuum part is divided by the glass tube, the entire vacuum part will not collapse and burst even if it is broken. In addition, since it is laminated between the pair of plate glasses via the gas layer, scattering can be almost suppressed, and safety similar to that of a normal double-layer glass can be secured.
【0006】[0006]
【発明が解決しようとする課題】解決しようとする課題
は、断熱性と遮光性をともにもつ透明パネルを単純構造
にして経済的に製造でき、特に真空をもつ場合に安全な
構造を持たせることである。さらに、このパネルを用い
て、従来にない高機能な省エネ窓をうることである。The problem to be solved is to make it possible to economically manufacture a transparent panel having both a heat insulating property and a light shielding property with a simple structure, and especially to provide a safe structure in the case of having a vacuum. Is. Furthermore, using this panel, it is possible to obtain a highly functional energy-saving window that has never existed before.
【0007】[0007]
【課題を解決するための手段】本発明は、前述の問題点
を解決するためになされたものであり、サーモトロピッ
ク水溶液を介して中空層をもつガラス管を一対の透明基
板間に面状に積層して中空層をもたせてなる複合管パネ
ルであり、およびサーモトロピック水溶液を介して中空
層をもつガラス管を一対の透明基板間に面状に積層して
中空層をもたせてなる複合管パネルを使用した窓を提供
するものである。The present invention has been made to solve the above-mentioned problems, and a glass tube having a hollow layer is planarly formed between a pair of transparent substrates via a thermotropic aqueous solution. A composite pipe panel formed by laminating and providing a hollow layer, and a composite pipe panel formed by planarly laminating a glass pipe having a hollow layer through a thermotropic aqueous solution between a pair of transparent substrates to form a hollow layer. It is intended to provide a window using.
【0008】[0008]
【発明の実施の形態】つぎに、本発明を主に断面構造を
基にして説明をする。図1、図3は、本発明の実施例で
あり、1は透明基板であり、2は中空層であり、3はガ
ラス管であり、4はスペーサーであり、5は外周封止で
あり、6はサーモトロピック水溶液である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described mainly based on the sectional structure. 1 and 3 show an embodiment of the present invention, in which 1 is a transparent substrate, 2 is a hollow layer, 3 is a glass tube, 4 is a spacer, and 5 is a peripheral sealing. 6 is a thermotropic aqueous solution.
【0009】図1は、本発明の断面図であり、サーモト
ロピック水溶液6を介して中空層2をもつガラス管3が
透明基板1の間に面状に多数本積層されて外周封止5し
てなるパネルである。ガラス管3は、中空のガラス管3
の中空層2を気体または真空にして、両端部を封止した
ものである。FIG. 1 is a cross-sectional view of the present invention, in which a large number of glass tubes 3 each having a hollow layer 2 are laminated in a planar manner between transparent substrates 1 with a thermotropic aqueous solution 6 therebetween to seal an outer periphery 5. It is a panel that consists of. The glass tube 3 is a hollow glass tube 3.
The hollow layer 2 is made to be a gas or a vacuum and both ends thereof are sealed.
【0010】特に中空部2を真空にした場合、その封止
は、ガラス管自身の溶融封止または真空管を作成する方
法によるハーメチック封止等でよく真空状態を維持しえ
れば特に限定することなく使用できる。つぎに、真空
は、真空度が高いほど断熱効果をあげることができる。
その値は、約50Torrから約10のマイナス8乗T
orr程度でよく、さらには約1Torrから約10の
マイナス5乗程度が製造過程をも考慮すると好ましい。
また、ガラス管3の外径が大きいほど肉厚が薄いほど真
空率(内径を外径で割った値)は高くなるが、パネルの
厚みと重量の増加、ガラス管3の易破損性等の問題がで
てくる。そこで、通常は真空率が同じなら外形の細い方
が重量も軽くなり窓枠も軽構造のサッシでよくなり経済
的である。また、軽量化は施工のはめ込み作業も楽にす
る。このガラス管3は、例えば、岩城硝子社のCODE
7740に見られるように多種類のものがあり、さらに
加熱延伸法または加熱膨張法等の従来技術を加えること
で容易に肉厚の薄いものができ、要するに破損なく使用
できればよい。例えば、外形0.5mm、肉厚0.1m
m程度の超細管まで比較的容易に加工できる。また、図
3に示す異形断面をもつガラス管も円形管の2次成形加
工で製造できる。また、真空をもつガラス管3、すなわ
ち真空管を作成する方法は特に説明するまでもなく従来
の方法でよい。よって、円形のガラス管3を例にする
と、その外径は特に限定されるものではないが0.5m
mから50mm程度でよく、好ましくは1mmから25
mmでよい。また、肉厚も特に限定されるものではない
が、外形が大きくなるにつれて強度的に厚くする必要が
あが0.05mmから5mm程度でよく、好ましくは
0.1mmから3mm程度がよい。例えば、透明基板1
の間にサーモトロピック水溶液6を介して積層された円
形のガラス管3の外形10mm、肉厚1mmでの真空率
は約50%であり、外形6mm、肉厚0.2mmの真空
率は約68%となる。さらに、ガラス管3の長さはパネ
ルの横幅1辺の長さを通常使用するが、これも特に限定
されることなく視覚効果も考慮して短いガラス管3を連
続的に配置してもよい。この短いガラス管3の極端なも
のが、ガラス球であり、この球も含めて本願ではガラス
管3とする。また、ガラス管3は、特に図示しないが直
線でなく湾曲、直角、両端部を結合させた円形等でもよ
く特に形を限定することなく使用できる。Particularly when the hollow portion 2 is evacuated, the sealing is not particularly limited as long as the vacuum state can be maintained by fusion sealing of the glass tube itself or hermetic sealing by the method of producing a vacuum tube. Can be used. Next, with respect to the vacuum, the higher the degree of vacuum, the higher the heat insulating effect.
Its value is from about 50 Torr to about 10 minus 8 T
It may be about orr, more preferably about 1 Torr to about 10 to the power of −5 in consideration of the manufacturing process.
Further, as the outer diameter of the glass tube 3 is larger, the thinner the wall thickness is, the higher the vacuum rate (value obtained by dividing the inner diameter by the outer diameter) is, but the increase in the thickness and weight of the panel, the easy breakage of the glass tube 3, etc. The problem comes out. Therefore, usually, if the vacuum rate is the same, the thinner the outer shape, the lighter the weight and the lighter the sash of the window frame, which is economical. In addition, the lighter weight makes it easier to fit the work. The glass tube 3 is, for example, CODE manufactured by Iwaki Glass Co., Ltd.
7740, there are many kinds, and by adding a conventional technique such as a heat drawing method or a heat expansion method, it is possible to easily make a thin wall, that is, to use without damage. For example, outer shape 0.5 mm, wall thickness 0.1 m
It is possible to process ultra-fine tubes up to about m relatively easily. Further, the glass tube having the irregular cross section shown in FIG. 3 can also be manufactured by the secondary forming process of the circular tube. Further, the method of producing the glass tube 3 having a vacuum, that is, the vacuum tube, may be a conventional method without particular description. Therefore, taking the circular glass tube 3 as an example, its outer diameter is not particularly limited, but is 0.5 m.
m to 50 mm, preferably 1 mm to 25
mm. Further, the wall thickness is not particularly limited, but it is necessary to increase the strength in strength as the outer shape increases, but it may be about 0.05 mm to 5 mm, preferably about 0.1 mm to 3 mm. For example, the transparent substrate 1
The circular glass tube 3 laminated with the thermotropic aqueous solution 6 between them has a vacuum rate of about 50% at an outer diameter of 10 mm and a wall thickness of 1 mm, and a vacuum rate of about 68 mm at an outer diameter of 6 mm and a wall thickness of 0.2 mm is about 68. %. Further, the length of the glass tube 3 is usually one side width of the panel, but this is not particularly limited, and the short glass tubes 3 may be continuously arranged in consideration of the visual effect. . The extreme of this short glass tube 3 is a glass sphere, and the glass tube including this sphere is referred to as the glass tube 3 in the present application. Further, the glass tube 3 may be not limited to a straight line, but may be curved, right-angled, circular with both ends joined, or the like, and can be used without particular limitation in shape.
【0011】次に中空層2が気体の場合は、従来の複層
ガラスと同様に、空気、アルゴン、クリプトン等でよ
い。この気体は、ガラス管3で分割されているために、
従来の複層ガラスより対流は起き難く断熱に好ましい。
気体の熱抵抗から中空層2の直径は大きほど有利である
が、4mmから50mm程度でよく、好ましくは6mm
から25mm程度でよい。また、肉厚も特に限定される
ものではないが、外形が大きくなるにつれて強度的に厚
くする必要があが0.05mmから5mm程度でよく、
好ましくは0.1mmから3mm程度がよい。Next, when the hollow layer 2 is a gas, air, argon, krypton or the like may be used as in the conventional double-layer glass. Since this gas is divided by the glass tube 3,
Convection is less likely to occur than conventional double glazing and is preferable for heat insulation.
The larger the diameter of the hollow layer 2 is, the more advantageous it is from the thermal resistance of gas, but it may be about 4 mm to 50 mm, preferably 6 mm.
To about 25 mm. Further, the wall thickness is not particularly limited, but it is necessary to increase the strength in strength as the outer shape becomes larger, but it may be about 0.05 mm to 5 mm,
Preferably, it is about 0.1 mm to 3 mm.
【0012】外周封止5は、例えば、ポリイソブチレン
系シーラント、ポリサルファイド系シーラント、エポキ
シ樹脂、感光性樹脂等で封止をすればよい。また、ガラ
スにも接着する半田(例えば、旭硝子社のセラソルザ
等)等も有用である。透明基板1は、各種の市販されて
いる板ガラスでよい。特に、室内側の透明基板1に熱線
を選択反射するLow−Eガラス(例えば、ピルキント
ン社のKガラス等)を使用するとより省エネになる。ま
た、窓に設置する時にガラス管3を地面に対して水平に
する方が気体層の対流をより小さくでき断熱に効果的で
ある。サーモトロピック水溶液6は、夏季のように外気
温が高い日に直射光線により加熱されると、透明状態か
ら白濁散乱状態に相転移を起こして約80%程度の割合
で遮光された。当然、曇天日、外気温の低い冬季は、特
に温度が上昇しないため透明状態が維持され、従来のガ
ラスと同様に十分に昼光線を室内に入れることができ
た。この結果、高断熱と可変遮光をもつ従来にない窓シ
ステムを構築できた。さらに、透明基板1を強化ガラ
ス、厚いガラス、網入りガラス等を使用して破損をおさ
えることにより、従来の壁、屋根のもつ断熱性能、機械
的強度をもちながら、季節や天候によって太陽光線を自
律応答して調整しえる従来にない空間仕切パネル(本発
明では、光透過するので窓と呼ぶ)となった。また、サ
ーモトロピック水溶液6を長期間安定的に作動させるた
めに透明基板1が紫外線を吸収・カットする処置をして
おくと好ましい。この紫外線の吸収・カットは、室内の
物品の変退色の防止にもなり大切である。The outer peripheral seal 5 may be sealed with, for example, a polyisobutylene sealant, a polysulfide sealant, an epoxy resin, a photosensitive resin or the like. Also, solder that adheres to glass (for example, Cerasolzer manufactured by Asahi Glass Co., Ltd.) is also useful. The transparent substrate 1 may be various types of commercially available flat glass. In particular, the use of Low-E glass (for example, K glass manufactured by Pilkington Co., Ltd.) that selectively reflects heat rays on the transparent substrate 1 on the indoor side further saves energy. Further, when the glass tube 3 is installed on the window, it is effective to make the glass tube 3 horizontal with respect to the ground because the convection of the gas layer can be further reduced. When the thermotropic aqueous solution 6 was heated by direct rays on a day when the ambient temperature was high such as summer, the thermotropic aqueous solution 6 caused a phase transition from a transparent state to a cloudy scattering state and was shielded from light at a rate of about 80%. Naturally, in cloudy days and in the winter when the outside temperature is low, the temperature does not rise so that the transparent state is maintained, and the daylight can be sufficiently introduced into the room as in the case of conventional glass. As a result, we were able to construct an unprecedented window system with high heat insulation and variable shading. In addition, the transparent substrate 1 is made of tempered glass, thick glass, meshed glass, etc. to prevent damage, so that while maintaining the heat insulation performance and mechanical strength of conventional walls and roofs, the sun's rays can be changed depending on the season and weather. This is a space partition panel (which is called a window in the present invention because it transmits light in the present invention) which has not been available in the past and can be adjusted autonomously. In order to operate the thermotropic aqueous solution 6 stably for a long period of time, it is preferable that the transparent substrate 1 absorbs and cuts ultraviolet rays. This absorption / cutting of ultraviolet rays is important because it also prevents discoloration and fading of indoor items.
【0013】図3は、図1のガラス管3の断面形状を四
角にして透視性・視認性をもたせた実施例である。な
お、サーモトロピック水溶液6の層を確保するためにス
ペーサー4(例えば、ガラスビーズ、樹脂ビーズ等)を
設けるとよい。その層厚は、遮光の程度に合わせて選択
すればよく、0.01mm以上から2mm程度でよく、
約1mmを越えると十分な遮光を示した。また、真空率
も上がり省エネ効果も向上した。基本的にはガラス管3
の断面形状は、円形に限定されることなく三角、四角、
六角、楕円、扁平等の異形でもよい。特に四角、楕円、
扁平の断面形状は、外の景色を透視できるパネルには非
常に有用であり、一般の透明な板ガラスに周期的にライ
ン模様を設けたものとほぼ同様といえ、十分に外の景色
を視認できる快適なパネルも容易にえられた。また、三
角形は、三角形の型、三角形の配置角度を目的にあわせ
てセットしてやるとプリズム作用を有効利用でき太陽光
を照明用として室内奥に導光できる採光窓システムにも
なった。FIG. 3 shows an embodiment in which the glass tube 3 shown in FIG. 1 has a rectangular cross-sectional shape to provide transparency and visibility. Note that spacers 4 (for example, glass beads, resin beads, etc.) may be provided to secure the layer of the thermotropic aqueous solution 6. The layer thickness may be selected according to the degree of light shielding, and may be 0.01 mm or more to about 2 mm.
Sufficient light shielding was shown when it exceeded about 1 mm. In addition, the vacuum rate has increased and the energy saving effect has also improved. Basically glass tube 3
The cross-sectional shape of the is not limited to circular, triangular, square,
Hexagonal, elliptical, flat, and other irregular shapes may be used. Especially squares, ellipses,
The flat cross-sectional shape is very useful for a panel that allows the outside scenery to be seen through. It can be said that it is almost the same as a regular transparent glass plate with a periodic line pattern, and the outside scenery can be seen sufficiently. Comfortable panels were easily obtained. Moreover, if the triangle is set according to the purpose of the shape of the triangle and the arrangement angle of the triangle, the prism function can be effectively used and the sunlight can be guided to the interior of the room for illumination.
【0014】次に、サーモトロピック水溶液6の素材と
なる可逆的に曇点現象を示す水溶性高分子は、例えば、
ポリビニルアルコール系のポリビニルアルコール部分酢
化物、ポリビニルメチルエーテル等、ポリN−置換アク
リルアミド誘導体のポリN−イソプロピルアクリルアミ
ド、ポリN−エトキシエチルアクリルアミド等、ポリN
−置換メタクリルアミド誘導体のポリN−イソプロピル
メタクリルアミド、ポリN−3−エトキシプロピルメタ
クリルアミド等、ポリN,N−ジ置換アクリルアミド誘
導体のポリN−メチルN−エチルアクリルアミド等、セ
ルロース誘導体のヒドロキシプロピルセルロース、メチ
ルセルロース等がある。なかでも、特願平6−5442
7で本発明者が記してたようにセルロース骨格をもつセ
ルロース誘導体が均一な可逆安定性、室温に近い相転移
温度、耐候性、安全性、経済性の条件を満たし本目的に
も非常に有用であり、なかでもその代表としてヒドロキ
シプロピルセルロースが、耐久性も非常に強くかつ遮光
性も大きいので本発明に有用である。Next, the water-soluble polymer that reversibly exhibits the cloud point phenomenon, which is a material of the thermotropic aqueous solution 6, is, for example,
Polyvinyl alcohol-based partial polyvinyl alcohol, polyvinyl methyl ether, etc., poly N-substituted acrylamide derivative, poly N-isopropyl acrylamide, poly N-ethoxyethyl acrylamide, etc., poly N
-Substituted methacrylamide derivatives such as poly N-isopropyl methacrylamide and poly N-3-ethoxypropyl methacrylamide, poly N, N-disubstituted acrylamide derivatives such as poly N-methyl N-ethyl acrylamide, and cellulose derivatives such as hydroxypropyl cellulose , Methyl cellulose, etc. Among them, Japanese Patent Application No. 6-5442
As described in 7 by the present inventor, the cellulose derivative having a cellulose skeleton satisfies the conditions of uniform reversible stability, phase transition temperature close to room temperature, weather resistance, safety, and economical efficiency, and is very useful for this purpose as well. Of these, hydroxypropyl cellulose, which is a typical example, is very useful in the present invention because of its extremely strong durability and high light-shielding property.
【0015】もう少しセルロース誘導体に関して記す。
セルロースは、官能基が付加すると多くの溶媒に可溶と
なる。そのなかで水溶性であるセルロース誘導体の水溶
液が、温度の上昇により凝集して白濁状態になるために
は、官能基に疎水結合(結合水の破壊による疎水基間の
親和性の増大による結合力)が働く必要がある。そのた
めには、官能基は、イオン性基であればイオン斥力が働
き本目的に不適であり、親水性基(例えば、水酸基、エ
ーテル結合部、エステル結合部、アミド結合部等)と疎
水性基(例えば、メチル基、エチル基等)を併せもつと
非イオン性基であるのがよい。例えば、ヒドロキシエチ
ル基とヒドロキシプロピル基を比較すると、ヒドロキシ
エチルセルロースは、親水性基をもち、水溶性である
が、疎水性基をもたないので凝集できず、白濁状態を生
じない。これに対して、ヒドロキシプロピルセルロース
は、水溶性であり、かつ、凝集白濁状態を生じることが
できる。このように、ヒドロキシプロピル基に代表され
るように、非イオン性の親水性基と疎水性基を併せもつ
官能基が付加しており、室温で約25重量%ないし約5
0重量%の高濃度でも水に均一溶解する水溶性の多糖類
誘導体が有用である。なお、官能基の付加は、単一種で
も複数種でもよく特に限定されるものではない。例え
ば、付加したヒドロキシプロピル基の水酸基に追加官能
基を付加した誘導体、追加官能基としてヒドロキシプロ
ピル基を付加した誘導体(例えば、ヒドロキシエチルセ
ルロースに付加等)等があり、単一の官能基を付加した
誘導体に限定されるものではない。これらの官能基やそ
の付加方法は、朝倉書店の出版である大有機化学第19
巻に詳細に開示されており、これらの方法と一般の付加
反応を組み合わせることにより、水酸基、低級アルキル
基、ハロゲン基等を付加せしめることによって親水性疎
水性バランスを調製できる。The cellulose derivative will be described a little more.
Cellulose becomes soluble in many solvents when functional groups are added. Among them, in order that the aqueous solution of a water-soluble cellulose derivative aggregates into a white turbid state due to an increase in temperature, a hydrophobic bond to a functional group (bonding force due to an increase in affinity between hydrophobic groups due to destruction of bound water) ) Need to work. For that purpose, if the functional group is an ionic group, ionic repulsive force is exerted, which is unsuitable for this purpose, and a hydrophilic group (for example, a hydroxyl group, an ether bond, an ester bond, an amide bond, etc.) and a hydrophobic group are used. It is preferable that the nonionic group is combined with (for example, a methyl group, an ethyl group, etc.). For example, comparing a hydroxyethyl group and a hydroxypropyl group, hydroxyethyl cellulose has a hydrophilic group and is water-soluble, but since it does not have a hydrophobic group, it cannot be aggregated and a cloudy state does not occur. In contrast, hydroxypropyl cellulose is water-soluble and can give rise to an agglomerated cloudy state. Thus, as represented by a hydroxypropyl group, a functional group having both a nonionic hydrophilic group and a hydrophobic group is added, and about 25% by weight to about 5% by weight at room temperature.
A water-soluble polysaccharide derivative that can be uniformly dissolved in water even at a high concentration of 0% by weight is useful. The addition of the functional group may be a single type or a plurality of types and is not particularly limited. For example, there is a derivative in which an additional functional group is added to the hydroxyl group of the added hydroxypropyl group, a derivative in which a hydroxypropyl group is added as an additional functional group (eg, addition to hydroxyethyl cellulose, etc.), and a single functional group is added. It is not limited to the derivative. These functional groups and the method for adding them are described in Dai Organic Chemistry No. 19 published by Asakura Shoten.
It is disclosed in detail in the Volume, and the hydrophilic-hydrophobic balance can be prepared by adding a hydroxyl group, a lower alkyl group, a halogen group or the like by combining these methods with a general addition reaction.
【0016】さらに、サーモトロピック水溶液6のセル
ロース誘導体の水溶性高分子の凝集・分子分散を安定的
に可逆変化を維持させるためには可逆安定剤を添加する
と好ましい。可逆安定剤とは、本発明者が系統的に研究
開発してきたものである。例えば、ヒドロキシプロピル
セルロースの33%水溶液が加温されて、白濁凝集状態
と無色透明状態の相変化を繰り返し可逆的にうるために
は両親媒性分子の添加が好ましい。その詳細は特願平6
−54427に記してある。曇点現象を示すサーモトロ
ピック水溶液6が、特に本発明の主体ではないので詳細
な説明は省略するが、代表例として、ヒドロキシプロピ
ルセルロース用にはポリプロピレングリコール等があ
る。また、必要におうじて例えば、特願平6−5442
7に記載されている水溶性の添加剤(例えば、白濁開始
温度シフト剤、紫外線吸収剤、着色剤、熱線吸収剤等)
を加えてもよい。また、ヒドロキシプロピルセルロース
は、水を溶媒とすると曇点現象を示すと共に可視光線を
選択散乱して呈色するライオトロピック型の高分子コレ
ステリック液晶にもなり本発明に有用であが、50%以
上の高濃度であるため水分離はおきず可逆安定剤を添加
する必要はない。このように、サーモトロピック水溶液
6の水溶性高分子としてセルロース誘導体は非常に重要
である。ちなみに、遮光率はサーモトロピック水溶液6
の層厚0.5mmで約80%強である。Further, a reversible stabilizer is preferably added in order to stably maintain a reversible change in the aggregation / molecular dispersion of the water-soluble polymer of the cellulose derivative of the thermotropic aqueous solution 6. The reversible stabilizer has been systematically researched and developed by the present inventor. For example, addition of an amphipathic molecule is preferable in order to repeatedly and reversibly cause a phase change between a cloudy aggregated state and a colorless and transparent state by heating a 33% aqueous solution of hydroxypropyl cellulose. The details are Japanese Patent Application No. 6
-54427. The thermotropic aqueous solution 6 exhibiting the cloud point phenomenon is not particularly the subject of the present invention, so a detailed description thereof is omitted, but as a typical example, polypropylene glycol or the like is used for hydroxypropyl cellulose. If necessary, for example, Japanese Patent Application No. 6-5442.
Water-soluble additives described in 7 (for example, cloudiness initiation temperature shift agent, ultraviolet absorber, colorant, heat ray absorber, etc.)
May be added. Hydroxypropyl cellulose is a lyotropic polymer cholesteric liquid crystal that exhibits a cloud point phenomenon when water is used as a solvent and selectively scatters visible light to give a color, which is useful in the present invention, but 50% or more. Since it is a high concentration, water separation does not occur and it is not necessary to add a reversible stabilizer. As described above, the cellulose derivative is very important as the water-soluble polymer of the thermotropic aqueous solution 6. By the way, the shading rate is 6
The layer thickness of 0.5 mm is about 80% or more.
【0017】透明基板1は、ガラスではソーダライムガ
ラス、ホウ珪酸ガラス、熱線吸収・紫外線吸収ガラス等
があり特に限定されることなく広く使用できる。また、
強化ガラス、耐熱ガラス、合わせガラス、網入りガラス
等の板ガラスも特に限定することなく使用できる。特に
紫外線吸収ガラス(例えば、セントラル硝子社のグリー
ンラルSP、日本電気硝子社のファイアライト、紫外線
をハロゲン化銅の微粒子散乱でカットする五鈴精工硝子
社のITY等)は有用である。ただ、一般のソーダライ
ムガラスで厚みが約5mm以上であると350nm以下
の紫外線透過が急激に小さくなり耐候性の面で好まし
く、また当然、厚いほど熱線吸収も強まり選択遮光には
厚板が有利である。また、通常のソーダライムガラス
は、紫外線を吸収するが、薄くなると紫外線を透過しや
すくなるので、特に約4mm以下の薄板を用いる場合に
は紫外線吸収・カット層(例えば、日本ペイント社のス
ーパーフロンR240、岩城硝子社の紫外線カットガラ
ス、東燃社のポリシラザンベース無機タイプUVカット
コーティング材、多層蒸着膜等)を設けるのが好まし
い。しかし、5mm以上になると350nm以下の紫外
線吸収も強まり有利である。なお、プラスチックでは、
ポリカーボネイト樹脂、アクリル樹脂等があり、それに
紫外線吸収剤の添加、ラミネート等により370nm以
下の紫外線を吸収・カットでき有用である。ただ、ソー
ダライムガラスの厚みテストと前記したセントラル硝子
社のグリーンラルSP(3mm厚で330nm以下の紫
外線をほぼ吸収する)の結果、少なくとも330nm以
下の紫外線を吸収・カットしておくと耐光安定性に非常
に効果的であった。以上のように、内包されたサーモト
ロピック水溶液6に到達する紫外線を吸収・カットする
方法は、透明基板1のバルク吸収、表面処理等により可
能であり、紫外線の吸収・カット層を透明基板1の少な
くとも光照射される側に設けてあるパネルはより高耐光
性をもつ窓の設計に有用である。なお、ガラス管3の材
料は、ソーダライムガラス、ホウ珪酸ガラス、熱線吸収
・紫外線吸収できるガラス等があり特に限定されること
なく広く使用できる。The transparent substrate 1 is made of soda lime glass, borosilicate glass, heat ray absorbing / ultraviolet absorbing glass, or the like as glass, and can be widely used without particular limitation. Also,
Plate glass such as tempered glass, heat-resistant glass, laminated glass, and meshed glass can also be used without particular limitation. Particularly, ultraviolet absorbing glass (eg, Greenral SP manufactured by Central Glass Co., Firelight manufactured by Nippon Electric Glass Co., Ltd., ITS manufactured by Isuzu Seiko Glass Co., Ltd., which cuts ultraviolet light by scattering fine particles of copper halide) is useful. However, if the thickness of ordinary soda lime glass is about 5 mm or more, the UV transmission of 350 nm or less will be drastically reduced, which is preferable in terms of weather resistance. Naturally, the thicker it is, the stronger the heat ray absorption becomes, and the thicker plate is advantageous for selective light shielding. Is. Ordinary soda lime glass absorbs ultraviolet rays, but when it becomes thin, it easily transmits ultraviolet rays. Therefore, when using a thin plate of about 4 mm or less, an ultraviolet absorbing / cutting layer (for example, Super Freon from Nippon Paint Co., Ltd.) is used. R240, UV blocking glass manufactured by Iwaki Glass Co., Ltd., polysilazane-based inorganic type UV cutting coating material manufactured by Tonen Co., Ltd., multilayer vapor deposition film, etc.) are preferably provided. However, when it is 5 mm or more, ultraviolet absorption of 350 nm or less is also strengthened, which is advantageous. For plastic,
Polycarbonate resin, acrylic resin and the like are available, and ultraviolet rays of 370 nm or less can be absorbed and cut by adding an ultraviolet absorber, lamination, etc., which are useful. However, as a result of the soda lime glass thickness test and the above-mentioned Central Glass's Greenral SP (which almost absorbs UV rays of 330 nm or less at a thickness of 3 mm), light resistance stability is obtained when UV rays of at least 330 nm or less are absorbed / cut. Was very effective at. As described above, the method of absorbing / cutting ultraviolet rays reaching the encapsulated thermotropic aqueous solution 6 can be performed by bulk absorption of the transparent substrate 1, surface treatment, or the like. The panel provided at least on the side irradiated with light is useful for designing a window having higher light resistance. The material of the glass tube 3 includes soda lime glass, borosilicate glass, glass capable of absorbing heat rays and ultraviolet rays, and is not particularly limited and can be widely used.
【0018】[0018]
【発明の効果】以上説明したように本発明は、中空層2
をガラス管3で分割することにより、破損時の飛散によ
る危険増大が防止でき、特に高価な超大型炉による均一
加温と長時間にわたる熱処理工程等を必要とせず、また
大気圧からギャップを維持するための耐圧スペサー7を
配置する必要がなく、真空にする排気・維持するための
耐圧弁8も必要としない。よって、断熱性と遮光性をと
もにもつ透明なパネルを簡便に経済的に製造でき、特に
真空をもつ場合に安全な構造を持たせることができた。
さらに、このパネルを用いて画期的な高断熱と可変遮光
をもつ従来にない窓システムを構築できた。As described above, according to the present invention, the hollow layer 2
By dividing the glass tube 3 with the glass tube 3, it is possible to prevent the danger from increasing due to scattering at the time of breakage, and it is not necessary to perform uniform heating and a heat treatment process for a long time with a particularly expensive super-large furnace, and to maintain the gap from atmospheric pressure. It is not necessary to dispose a pressure-resistant spacer 7 for performing the operation, and a pressure-resistant valve 8 for exhausting / maintaining a vacuum is not required. Therefore, it was possible to easily and economically manufacture a transparent panel having both heat insulating properties and light shielding properties, and to provide a safe structure especially when it has a vacuum.
Furthermore, using this panel, we were able to construct an unprecedented window system with epoch-making high heat insulation and variable shading.
【図1】本発明の実施例であるパネルの断面図である。FIG. 1 is a cross-sectional view of a panel that is an embodiment of the present invention.
【図2】比較のために示した従来法によるパネルの平面
図である。FIG. 2 is a plan view of a conventional panel shown for comparison.
【図3】本発明の実施例であるパネルの断面図である。FIG. 3 is a cross-sectional view of a panel that is an embodiment of the present invention.
1 透明基板 2 中空層 3 ガラス管 4 スペサー 5 外周封止 6 サーモトロピック水溶液 7 耐圧スペサー 8 耐圧弁 1 Transparent Substrate 2 Hollow Layer 3 Glass Tube 4 Spesser 5 Peripheral Sealing 6 Thermotropic Aqueous Solution 7 Pressure Resistant Spesser 8 Pressure Resistant Valve
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 E06B 9/24 E06B 9/24 D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area E06B 9/24 E06B 9/24 D
Claims (5)
をもつガラス管を一対の透明基板間に面状に積層して中
空層をもたせてなる複合管パネル。1. A composite tube panel comprising a glass tube having a hollow layer laminated in a plane between a pair of transparent substrates via a thermotropic aqueous solution so as to have the hollow layer.
許請求の範囲第1項の複合管パネル。2. A composite tube panel according to claim 1, characterized in that the hollow layer is a vacuum.
角、楕円、扁平にして透視性をもたせたことを特徴とす
る特許請求の範囲第1項および第2項の複合管パネル。3. The composite tube panel according to claim 1 or 2, wherein the glass tube having a hollow layer has a cross-sectional shape of a square, an ellipse, or a flat shape to provide transparency.
をもつガラス管を一対の透明基板間に面状に積層して中
空層をもたせてなる複合管パネルを使用した窓。4. A window using a composite tube panel in which a glass tube having a hollow layer is planarly laminated between a pair of transparent substrates via a thermotropic aqueous solution to have a hollow layer.
許請求の範囲第4項の窓。5. A window according to claim 4, characterized in that the hollow layer is vacuum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7303368A JPH09124348A (en) | 1995-10-30 | 1995-10-30 | Composite pipe and window using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7303368A JPH09124348A (en) | 1995-10-30 | 1995-10-30 | Composite pipe and window using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09124348A true JPH09124348A (en) | 1997-05-13 |
Family
ID=17920160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7303368A Pending JPH09124348A (en) | 1995-10-30 | 1995-10-30 | Composite pipe and window using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09124348A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010533252A (en) * | 2007-07-11 | 2010-10-21 | レイブンブリック,エルエルシー | Reflective optical shutter with temperature response switching |
US8867132B2 (en) | 2009-10-30 | 2014-10-21 | Ravenbrick Llc | Thermochromic filters and stopband filters for use with same |
US8908267B2 (en) | 2007-09-19 | 2014-12-09 | Ravenbrick, Llc | Low-emissivity window films and coatings incorporating nanoscale wire grids |
US8947760B2 (en) | 2009-04-23 | 2015-02-03 | Ravenbrick Llc | Thermotropic optical shutter incorporating coatable polarizers |
US9116302B2 (en) | 2008-06-19 | 2015-08-25 | Ravenbrick Llc | Optical metapolarizer device |
US9188804B2 (en) | 2008-08-20 | 2015-11-17 | Ravenbrick Llc | Methods for fabricating thermochromic filters |
US9256085B2 (en) | 2010-06-01 | 2016-02-09 | Ravenbrick Llc | Multifunctional building component |
ES2679293A1 (en) * | 2017-02-15 | 2018-08-23 | María Jesús GONZÁLEZ DÍAZ | Light transmission element for its embedding in solid construction elements (Machine-translation by Google Translate, not legally binding) |
US10247936B2 (en) | 2009-04-10 | 2019-04-02 | Ravenbrick Llc | Thermally switched optical filter incorporating a guest-host architecture |
-
1995
- 1995-10-30 JP JP7303368A patent/JPH09124348A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010533252A (en) * | 2007-07-11 | 2010-10-21 | レイブンブリック,エルエルシー | Reflective optical shutter with temperature response switching |
US8908267B2 (en) | 2007-09-19 | 2014-12-09 | Ravenbrick, Llc | Low-emissivity window films and coatings incorporating nanoscale wire grids |
US9116302B2 (en) | 2008-06-19 | 2015-08-25 | Ravenbrick Llc | Optical metapolarizer device |
US9188804B2 (en) | 2008-08-20 | 2015-11-17 | Ravenbrick Llc | Methods for fabricating thermochromic filters |
US10247936B2 (en) | 2009-04-10 | 2019-04-02 | Ravenbrick Llc | Thermally switched optical filter incorporating a guest-host architecture |
US8947760B2 (en) | 2009-04-23 | 2015-02-03 | Ravenbrick Llc | Thermotropic optical shutter incorporating coatable polarizers |
US8867132B2 (en) | 2009-10-30 | 2014-10-21 | Ravenbrick Llc | Thermochromic filters and stopband filters for use with same |
US9256085B2 (en) | 2010-06-01 | 2016-02-09 | Ravenbrick Llc | Multifunctional building component |
ES2679293A1 (en) * | 2017-02-15 | 2018-08-23 | María Jesús GONZÁLEZ DÍAZ | Light transmission element for its embedding in solid construction elements (Machine-translation by Google Translate, not legally binding) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8652282B2 (en) | Glazing unit with transparent filler | |
US6020989A (en) | Laminated bodies and windows using them | |
WO2013181364A2 (en) | Asymmetrical insulating glass unit and spacer system | |
US20220220029A1 (en) | Multi-layer insulated glass unit comprising a low cte glass layer | |
JPH09124348A (en) | Composite pipe and window using the same | |
JP2002226237A (en) | Double-layered glass with heat screening film | |
CN108625744A (en) | Multilayer aerogel composite glass and preparation method thereof built in a kind of | |
JPH10311189A (en) | Dimming glass and window using the same | |
JPH09124347A (en) | Vacuum panel and window using the same | |
CN206796725U (en) | A kind of built-in multilayer aerogel composite glass | |
CN203640561U (en) | Energy-saving and heat-insulating ultraviolet-resisting hollow glass | |
KR20200130682A (en) | Asymmetric vacuum-insulated gauging unit | |
CN205117114U (en) | Insulation glass | |
CN212076858U (en) | Anti-ultraviolet and hydrophobic curved surface special-shaped composite fireproof glass | |
CN106968562A (en) | A kind of passive type absorbs the double glazing of luminous energy | |
WO2023184307A1 (en) | Switchable window and preparation method therefor | |
CN1521378A (en) | Transparent heat insulating board | |
EP3887151A1 (en) | Insulated glass units with low cte center panes | |
JPH09256752A (en) | Panel and window used therefor | |
Arasteh et al. | Detailed thermal performance data on conventional and highly insulating window systems | |
CN215895170U (en) | Light-adjusting glass | |
CN111662019B (en) | Intelligent automobile glass and preparation method thereof | |
CN205117112U (en) | Insulation glass | |
CN205259839U (en) | Insulation glass | |
CN205117124U (en) | Insulation glass |