JPH09118829A - Production of thermosetting resin composite material and thermosetting resin composite material produced thereby - Google Patents
Production of thermosetting resin composite material and thermosetting resin composite material produced therebyInfo
- Publication number
- JPH09118829A JPH09118829A JP27924495A JP27924495A JPH09118829A JP H09118829 A JPH09118829 A JP H09118829A JP 27924495 A JP27924495 A JP 27924495A JP 27924495 A JP27924495 A JP 27924495A JP H09118829 A JPH09118829 A JP H09118829A
- Authority
- JP
- Japan
- Prior art keywords
- thermosetting resin
- composite material
- resin composite
- component
- coupling agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、分散性、機械特性
が良好な熱硬化性樹脂複合材料の製造方法及び熱硬化性
樹脂複合材料に関するものである。更に詳しくは、水酸
基を有する微粒粉末と官能基を1個以上有するシランカ
ップリング剤を混合撹拌して微粒粉末表面をカップリン
グ剤で反応被覆した後、更に該官能基と反応可能な官能
基を2個以上有する熱硬化性樹脂を添加し、反応させる
ことにより得られる熱硬化性樹脂複合材料の製造方法及
び熱硬化性樹脂複合材料に関するものである。TECHNICAL FIELD The present invention relates to a method for producing a thermosetting resin composite material having good dispersibility and mechanical properties, and a thermosetting resin composite material. More specifically, a fine powder having a hydroxyl group and a silane coupling agent having one or more functional groups are mixed and stirred to reactively coat the surface of the fine powder with a coupling agent, and then a functional group capable of reacting with the functional group is further added. The present invention relates to a method for producing a thermosetting resin composite material obtained by adding and reacting two or more thermosetting resins, and a thermosetting resin composite material.
【0002】[0002]
【従来の技術】一般に、熱硬化性樹脂成形材料には、強
度、耐衝撃性、耐熱性、成形性等の向上及び低コスト化
等の理由から無機充填材が大量に配合されている。 し
かしながら、有機物である樹脂と無機物である無機充填
材とは親和性が少ないので分散しづらく、それぞれが独
立して存在しているため、熱応力などの外力が加わった
際には、最も力学的に弱い部分である樹脂と無機充填材
の界面部分から破壊が起き、充分な特性向上が計れない
という問題がある。従来この問題を解決する方法とし
て、カップリング剤を配合する方法が行われているが、
カップリング剤は、条件を選べば、水酸基を有する無機
充填材とは反応するが、カップリング剤が相手側の樹脂
と反応しうる官能基を有している場合でも、反応性が高
くないので必ずしも反応せず、又、反応程度についても
明確には把握されていないのが現状である。以上から、
熱硬化性樹脂成形材料では、無機充填材の分散性及び樹
脂と無機充填材との界面強度が良好なものは未だ開発さ
れていない。2. Description of the Related Art Generally, a large amount of inorganic filler is blended in a thermosetting resin molding material for the purpose of improving strength, impact resistance, heat resistance, moldability, etc. and reducing costs. However, since the resin that is an organic material and the inorganic filler that is an inorganic material have a low affinity, they are difficult to disperse, and since they exist independently of each other, they are the most mechanical when an external force such as thermal stress is applied. There is a problem that destruction occurs at the interface between the resin and the inorganic filler, which is a weak area, and sufficient improvement of characteristics cannot be achieved. Conventionally, as a method for solving this problem, a method of incorporating a coupling agent has been carried out,
The coupling agent reacts with the inorganic filler having a hydroxyl group if conditions are selected, but since the reactivity is not high even when the coupling agent has a functional group capable of reacting with the resin on the other side, The current situation is that they do not necessarily react and the degree of reaction is not clearly understood. From the above,
Among thermosetting resin molding materials, one having good dispersibility of the inorganic filler and good interfacial strength between the resin and the inorganic filler has not yet been developed.
【0003】[0003]
【発明が解決しようとする課題】本発明は、前記の事情
を考慮し、従来の熱硬化性樹脂成形材料では困難であっ
た問題を解決するためになされたものであり、無機充填
材の分散性及び樹脂と無機充填材との界面強度が良好な
熱硬化性樹脂複合材料の製造方法及び熱硬化性樹脂複合
材料を提供するものである。DISCLOSURE OF THE INVENTION The present invention has been made in consideration of the above circumstances and has been made to solve the problems which were difficult with the conventional thermosetting resin molding materials. The present invention provides a method for producing a thermosetting resin composite material having good properties and good interfacial strength between a resin and an inorganic filler, and a thermosetting resin composite material.
【0004】[0004]
【課題を解決するための手段】即ち本発明は、水酸基を
有する微粒粉末(a)と官能基を1個以上有するシラン
カップリング剤(b)を混合撹拌して微粒粉末表面を該
シランカップリング剤で反応被覆した後、更に該官能基
と反応可能な官能基を2個以上有する熱硬化性樹脂
(c)と触媒(d)を添加し、反応させることにより、
微粒粉末表面に熱硬化性樹脂を固定することを特徴とす
る熱硬化性樹脂複合材料の製造方法及び熱硬化性樹脂複
合材料に関するものである。That is, according to the present invention, a fine powder (a) having a hydroxyl group and a silane coupling agent (b) having at least one functional group are mixed and stirred to make the surface of the fine powder a silane coupling agent. After the reaction coating with the agent, the thermosetting resin (c) having two or more functional groups capable of reacting with the functional group and the catalyst (d) are further added and reacted.
The present invention relates to a method for producing a thermosetting resin composite material, which comprises fixing a thermosetting resin on the surface of fine powder, and a thermosetting resin composite material.
【0005】[0005]
【発明の実施の形態】本発明の(a)成分として用いら
れる微粒粉末は、その表面に水酸基を有することが必要
であり、具体例としては、カーボンブラック、結晶シリ
カ、溶融シリカ、シリカゲル、アルミナ等が例示でき
る。ここで、微粒粉末の平均粒子径が100μm以下で
あるとより高分散が達成できる。本発明の(b)成分と
して用いられる官能基を1個以上有するシランカップリ
ング剤としては公知のものが使用でき、具体例として
は、γ−アミノプロピルトリエトキシシラン、γ−グリ
シドキシプロピルトリメトキシシラン、トリメトキシシ
リルプロピリナジック酸無水物、γ−クロロプロピルト
リメトキシシラン等が上げられるが、中でも官能基の種
類としては、アミノ基又はエポキシ基が好ましい。BEST MODE FOR CARRYING OUT THE INVENTION The fine powder used as the component (a) of the present invention is required to have a hydroxyl group on the surface, and specific examples thereof include carbon black, crystalline silica, fused silica, silica gel, and alumina. Etc. can be illustrated. Here, if the average particle diameter of the fine particle powder is 100 μm or less, higher dispersion can be achieved. As the silane coupling agent having one or more functional groups used as the component (b) of the present invention, known silane coupling agents can be used, and specific examples thereof include γ-aminopropyltriethoxysilane and γ-glycidoxypropyltriene. Methoxysilane, trimethoxysilylpropyrinadic acid anhydride, γ-chloropropyltrimethoxysilane and the like can be mentioned, and among them, the functional group is preferably an amino group or an epoxy group.
【0006】また本発明の(c)成分として用いられる
熱硬化性樹脂は、シランカップリング剤の官能基と反応
しうる官能基を分子内に2個以上有するものであれば公
知のものが使用できる。 シランカップリング剤の官能
基と反応しうる官能基としては、水酸基、アミノ基、エ
ポキシ基等があるが、中でもエポキシ基、フェノール性
水酸基又はアミノ基を有するものが好ましい。具体例と
しては、エポキシ樹脂、フェノール樹脂、ユリア樹脂、
メラミン樹脂、又はウレタン樹脂等が上げられる。本発
明の(d)成分として用いられる触媒は、シランカップ
リング剤の官能基と熱硬化性樹脂との反応を促進するも
のであれば公知のものが使用でき、具体例としては、
2,4,6−トリス(ジアミノメチル)フェノール、
1,8−ジアザビシクロ(5,4,0)ウンデセン−
1、2−メチルイミダゾール、2−フェニルイミダゾー
ル、2−エチル−4−メチルイミダゾール等が上げられ
る。As the thermosetting resin used as the component (c) of the present invention, known ones may be used as long as they have two or more functional groups capable of reacting with the functional groups of the silane coupling agent in the molecule. it can. As the functional group capable of reacting with the functional group of the silane coupling agent, there are a hydroxyl group, an amino group, an epoxy group and the like. Among them, those having an epoxy group, a phenolic hydroxyl group or an amino group are preferable. Specific examples include epoxy resin, phenol resin, urea resin,
Melamine resin, urethane resin, etc. may be used. As the catalyst used as the component (d) of the present invention, known catalysts can be used as long as they promote the reaction between the functional group of the silane coupling agent and the thermosetting resin, and specific examples include:
2,4,6-tris (diaminomethyl) phenol,
1,8-diazabicyclo (5,4,0) undecene-
1,2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole and the like can be mentioned.
【0007】本発明の熱硬化性樹脂複合材料を得るに
は、まず、官能基を1個以上有するシランカップリング
剤と表面に水酸基を有する微粒粉末とを混合撹拌し、微
粒粉末の表面を該シランカップリング剤で反応被覆す
る。シランカップリング剤の配合量は、微粒粉末100
重量部に対して0.1〜20重量部、好ましくは0.5
〜10重量部である。被覆処理法としては、水、アルコ
ール、メチルエチルケトン、トルエン等の溶媒中で混合
撹拌を行う湿式法、あるいはヘンシェルミキサー等の高
速撹拌機を用いドライブレンドする乾式法等が上げられ
るが、湿式法がより好ましい。本発明の熱硬化性樹脂複
合材料は、このようにして得られた表面が官能基を1個
以上有するシランカップリング剤で反応被覆された微粒
粉末に該官能基と反応しうる官能基を2個以上有する熱
硬化性樹脂を溶解させた有機溶媒の溶液を添加し、同様
に湿式法又は乾式法で混合撹拌し、溶媒を減圧下で除去
した後、熱処理を行うことにより得られる。熱処理条件
としては、50℃〜120℃で1〜5時間処理が好まし
い。In order to obtain the thermosetting resin composite material of the present invention, first, a silane coupling agent having one or more functional groups and a fine powder having a hydroxyl group on the surface thereof are mixed and stirred, and the surface of the fine powder is treated. Reactive coating with silane coupling agent. The compounding amount of the silane coupling agent is 100
0.1 to 20 parts by weight, preferably 0.5 part by weight
To 10 parts by weight. Examples of the coating treatment method include a wet method in which mixing and stirring are performed in a solvent such as water, alcohol, methyl ethyl ketone, and toluene, or a dry method in which dry blending is performed using a high-speed stirrer such as a Henschel mixer. preferable. The thermosetting resin composite material of the present invention has a functional group capable of reacting with the functional group in the fine powder obtained by reaction coating the surface thus obtained with the silane coupling agent having one or more functional groups. It is obtained by adding a solution of an organic solvent in which one or more thermosetting resins are dissolved, mixing and stirring in the same manner by a wet method or a dry method, removing the solvent under reduced pressure, and then performing heat treatment. As heat treatment conditions, treatment at 50 ° C. to 120 ° C. for 1 to 5 hours is preferable.
【0008】該カップリング剤と熱硬化性樹脂とは、シ
ランカップリング剤の官能基と反応しうる熱硬化性樹脂
中の官能基当量(C)/シランカップリング剤の官能基
当量(B)が、0.1≦官能基当量(C)/官能基当量
(B)≦10、特に0.2≦官能基当量(C)/官能基
当量(B)≦7の範囲内とすることが好ましい。この官
能基当量比が0.1未満では、熱硬化性樹脂比率が低く
なるため、流動性、成形加工性が低下する傾向にあり、
10を越えると、微粒粉末との化学結合を有さない熱硬
化性樹脂が多くなるため、微粒粉末の分散性が低下する
傾向にあり、又、樹脂組成物を架橋させて得られる硬化
物の各種特性が低下する傾向にある。このようにして得
られた本発明の熱硬化性樹脂複合材料を従来公知のエポ
キシ樹脂、フェノール樹脂系成形材料用樹脂組成物等に
配合し、この組成物を硬化させた場合、強度、耐衝撃
性、耐熱性、成形性等の著しい改善が可能となる。この
理由として、以下のことが考えられる。The coupling agent and the thermosetting resin are the functional group equivalent (C) in the thermosetting resin capable of reacting with the functional group of the silane coupling agent / the functional group equivalent (B) of the silane coupling agent. Is preferably in the range of 0.1 ≦ functional group equivalent (C) / functional group equivalent (B) ≦ 10, particularly 0.2 ≦ functional group equivalent (C) / functional group equivalent (B) ≦ 7. . If this functional group equivalent ratio is less than 0.1, the thermosetting resin ratio will be low, so that the fluidity and molding processability will tend to decrease.
If it exceeds 10, the amount of thermosetting resin that does not have a chemical bond with the fine powder increases, so that the dispersibility of the fine powder tends to decrease, and a cured product obtained by crosslinking the resin composition is obtained. Various characteristics tend to deteriorate. When the thus obtained thermosetting resin composite material of the present invention is blended with a conventionally known epoxy resin, a resin composition for a phenolic resin-based molding material, and the like, and cured, the composition has strength and impact resistance. Significant improvements in heat resistance, heat resistance, moldability, etc. can be achieved. The following can be considered as a reason for this.
【0009】即ち、本発明の新規な熱硬化性樹脂複合材
料は、微粒粉末表面に熱硬化性樹脂自体が固定化されて
いる為、組成物に配合した際、従来の熱硬化性樹脂組成
物に比べ微粒粉末が予め均一に分散しているので、微粒
粉末の配合比率を大幅に増加させることが容易に行え
る。 又、従来の熱硬化性樹脂では、有機物である樹脂
と無機物である無機充填材とは親和性が少ないので分散
しづらく、それぞれが独立して存在しているため、熱応
力などの外力が加わった際には、最も力学的に弱い部分
である樹脂と無機充填材の界面部分から破壊が起き、充
分な特性向上が図れないが、本発明の新規な熱硬化性樹
脂複合材料は、微粒粉末表面に熱硬化性樹脂自体が固定
化されている為、微粒粉末と熱硬化性樹脂との間の界面
が強固であり、且つ両者の親和性も良好であるため、本
発明の熱硬化性樹脂複合材料を用いた熱硬化性樹脂組成
物の各種特性が向上したものと考えられる。That is, in the novel thermosetting resin composite material of the present invention, since the thermosetting resin itself is fixed on the surface of the fine powder, when it is blended into the composition, the conventional thermosetting resin composition is used. Since the fine powder is uniformly dispersed in advance as compared with the above, it is possible to easily greatly increase the compounding ratio of the fine powder. Further, in the conventional thermosetting resin, it is difficult to disperse the resin which is an organic substance and the inorganic filler which is an inorganic substance, and therefore it is difficult to disperse them, and since each of them exists independently, external force such as thermal stress is applied. When this happens, destruction occurs from the interface between the resin and the inorganic filler, which is the most mechanically weak part, and it is not possible to improve the characteristics sufficiently, but the novel thermosetting resin composite material of the present invention is a fine powder. Since the thermosetting resin itself is immobilized on the surface, the interface between the fine particle powder and the thermosetting resin is strong, and the affinity between the two is also good, so the thermosetting resin of the present invention It is considered that various characteristics of the thermosetting resin composition using the composite material are improved.
【0010】[0010]
【実施例】以下に示すエポキシ樹脂成形材料の実施例1
〜4及び比較例1〜2において配合した各成分は以下の
通りである。 <熱硬化性樹脂複合材料1>撹拌機付きのフラスコの中
に結晶シリカ(住友石炭鉱業(株)製 SQ−H14
G;平均粒子径 約14μm)450g、トルエン50
0gを添加し、撹拌機で撹拌しながら滴下ロートにてエ
ポキシ基含有シランカップリング剤(γ−グリシドキシ
プロピルトリメトキシシラン 日本ユニカー(株)製
A−187、エポキシ当量236)22.5gを添加
し、80℃で3時間撹拌後、フェノールノボラック樹脂
(住友デュレズ(株)製 PR−51470;OH当量
105)50g、触媒(2−フェニルイミダゾール、四
国化成(株)製)1gを配合した後、溶媒を減圧化で除
去し、次いで、小型のヘンシェルミキサーに投入し、5
00〜700rpmで撹拌しながら、更に温度80℃〜
120℃で1〜3時間反応させて本発明の熱硬化性樹脂
複合材料を得た。得られた熱硬化性樹脂複合材料を赤外
線吸収スペクトル、固体NMRでチェックした結果、シ
ランカップリング剤と結晶シリカ及びフェノール樹脂の
水酸基が反応していることが確認できた。EXAMPLE Example 1 of epoxy resin molding material shown below
4 and the respective components blended in Comparative Examples 1 and 2 are as follows. <Thermosetting resin composite material 1> Crystalline silica (SQ-H14 manufactured by Sumitomo Coal Mining Co., Ltd.) in a flask equipped with a stirrer.
G; average particle diameter of about 14 μm) 450 g, toluene 50
Add 0 g of epoxy group-containing silane coupling agent (γ-glycidoxypropyltrimethoxysilane manufactured by Nippon Unicar Co., Ltd.) with a dropping funnel while stirring with a stirrer.
A-187, 22.5 g of epoxy equivalent 236) were added, and after stirring at 80 ° C. for 3 hours, 50 g of phenol novolac resin (PR-51470 manufactured by Sumitomo Durez Co., Ltd .; OH equivalent 105), catalyst (2-phenylimidazole, After mixing 1 g of Shikoku Kasei Co., Ltd., the solvent was removed under reduced pressure, and then the mixture was put into a small Henschel mixer, and 5
While stirring at 00 to 700 rpm, a temperature of 80 ° C to
The thermosetting resin composite material of the present invention was obtained by reacting at 120 ° C for 1 to 3 hours. As a result of checking the obtained thermosetting resin composite material by infrared absorption spectrum and solid-state NMR, it was confirmed that the silane coupling agent reacted with the crystalline silica and the hydroxyl group of the phenol resin.
【0011】<熱硬化性樹脂複合材料2>撹拌機付きの
フラスコの中に結晶シリカ(住友石炭鉱業(株)製 S
Q−H14G;平均粒子径 約14μm)450g、ト
ルエン500gを添加し、撹拌機で撹拌しながら滴下ロ
ートにてアミノ基含有シランカップリング剤(γ−アミ
ノプロピルトリメトキシシラン 日本ユニカー(株)製
A−1100、アミン当量110.7)10.5gを
添加し、80℃で3時間撹拌後、クレゾールノボラック
エポキシ樹脂(日本化薬(株)製 EOCN−102;
エポキシ当量210)100g、触媒(2−フェニルイ
ミダゾール、四国化成(株)製)1gを配合した後、溶
媒を減圧下で除去し、次いで、小型のヘンシェルミキサ
ーに投入し、500〜700rpmで撹拌しながら、更
に温度80℃〜120℃で1〜3時間反応させて本発明
の熱硬化性樹脂複合材料を得た。得られた熱硬化性樹脂
複合材料を赤外線吸収スペクトル、固体NMRでチェッ
クした結果、シランカップリング剤と結晶シリカの水酸
基及びエポキシ樹脂のエポキシ基が反応していることが
確認できた。<Thermosetting resin composite material 2> Crystalline silica (S, manufactured by Sumitomo Coal Mining Co., Ltd.) was placed in a flask equipped with a stirrer.
Q-H14G; average particle size of about 14 μm) 450 g, and toluene 500 g were added, and an amino group-containing silane coupling agent (γ-aminopropyltrimethoxysilane manufactured by Nippon Unicar Co., Ltd. A was added with a dropping funnel while stirring with a stirrer. -1100, 10.5 g of amine equivalent 110.7) was added, and the mixture was stirred at 80 ° C. for 3 hours, and then cresol novolac epoxy resin (EOCN-102 manufactured by Nippon Kayaku Co., Ltd.);
After blending 100 g of epoxy equivalent 210) and 1 g of catalyst (2-phenylimidazole, manufactured by Shikoku Kasei Co., Ltd.), the solvent was removed under reduced pressure, and then the mixture was put into a small Henschel mixer and stirred at 500 to 700 rpm. While further reacting at a temperature of 80 ° C. to 120 ° C. for 1 to 3 hours, a thermosetting resin composite material of the present invention was obtained. As a result of checking the obtained thermosetting resin composite material by infrared absorption spectrum and solid-state NMR, it was confirmed that the silane coupling agent reacted with the hydroxyl group of crystalline silica and the epoxy group of the epoxy resin.
【0012】<熱硬化性樹脂複合材料3>撹拌機付きの
フラスコの中に溶融シリカ(住友石炭鉱業(株)製 S
S−F5;平均粒子径 約14μm)450g、トルエ
ン500gを添加し、撹拌機で撹拌しながら滴下ロート
にてアミノ基含有シランカップリング剤(γ−アミノプ
ロピルトリメトキシシラン 日本ユニカー(株)製 A
−1100、アミン当量110.7)10.5gを添加
し、80℃で3時間撹拌後、クレゾールノボラックエポ
キシ樹脂(日本化薬(株)製 EOCN−102;エポ
キシ当量210)100g、触媒(2−フェニルイミダ
ゾール、四国化成(株)製)1gを配合した後、溶媒を
減圧下で除去し、次いで、小型のヘンシェルミキサーに
投入し、500〜700rpmで撹拌しながら、更に温
度80℃〜120℃で1〜3時間反応させて本発明の熱
硬化性樹脂複合材料を得た。得られた熱硬化性樹脂複合
材料を赤外線吸収スペクトル、固体NMRでチェックし
た結果、シランカップリング剤と溶融シリカの水酸基及
びエポキシ樹脂のエポキシ基が反応していることが確認
できた。<Thermosetting resin composite material 3> In a flask with a stirrer, fused silica (S manufactured by Sumitomo Coal Mining Co., Ltd.)
S-F5: 450 g of average particle diameter (about 14 μm) and 500 g of toluene were added, and an amino group-containing silane coupling agent (γ-aminopropyltrimethoxysilane manufactured by Nippon Unicar Co., Ltd. A was added with a dropping funnel while stirring with a stirrer.
-1100, 10.5 g of amine equivalent 110.7) were added, and after stirring at 80 ° C. for 3 hours, 100 g of cresol novolac epoxy resin (EOCN-102 manufactured by Nippon Kayaku Co., Ltd .; epoxy equivalent 210) and catalyst (2- After mixing 1 g of phenylimidazole, manufactured by Shikoku Kasei Co., Ltd., the solvent was removed under reduced pressure, and then the mixture was put into a small Henschel mixer and further stirred at 500 to 700 rpm at a temperature of 80 to 120 ° C. The reaction was carried out for 1 to 3 hours to obtain a thermosetting resin composite material of the present invention. As a result of checking the obtained thermosetting resin composite material by infrared absorption spectrum and solid state NMR, it was confirmed that the silane coupling agent reacted with the hydroxyl group of the fused silica and the epoxy group of the epoxy resin.
【0013】<熱硬化性樹脂複合材料4>撹拌機付きの
フラスコの中に溶融シリカ(住友石炭鉱業(株)製 S
S−F5;平均粒子径 約14μm)450g、トルエ
ン500gを添加し、撹拌機で撹拌しながら滴下ロート
にてエポキシ基含有シランカップリング剤(γ−グリシ
ドキシプロピルトリメトキシシラン 日本ユニカー
(株)製 A−187、エポキシ当量236)22.5
gを添加し、80℃で3時間撹拌後、フェノールノボラ
ック樹脂(住友デュレズ(株)製 PR−51470;
OH当量105)50g、触媒(2−フェニルイミダゾ
ール、四国化成(株)製)1gを配合した後、溶媒を減
圧化で除去し、次いで、小型のヘンシェルミキサーに投
入し、500〜700rpmで撹拌しながら、更に温度
80℃〜120℃で1〜3時間反応させて本発明の熱硬
化性樹脂複合材料を得た。得られた熱硬化性樹脂複合材
料を赤外線吸収スペクトル、固体NMRでチェックした
結果、シランカップリング剤と溶融シリカ及びフェノー
ル樹脂の水酸基が反応していることが確認できた。<Thermosetting resin composite material 4> In a flask equipped with a stirrer, fused silica (S manufactured by Sumitomo Coal Mining Co., Ltd.)
S-F5: 450 g of average particle diameter (about 14 μm) and 500 g of toluene were added, and an epoxy group-containing silane coupling agent (γ-glycidoxypropyltrimethoxysilane Nippon Unicar Co., Ltd.) was added with a dropping funnel while stirring with a stirrer. A-187, epoxy equivalent 236) 22.5
g, and after stirring at 80 ° C. for 3 hours, a phenol novolac resin (PR-51470 manufactured by Sumitomo Dures Co., Ltd .;
After blending 50 g of OH equivalent 105) and 1 g of catalyst (2-phenylimidazole, manufactured by Shikoku Kasei Co., Ltd.), the solvent was removed under reduced pressure, and then the mixture was put into a small Henschel mixer and stirred at 500 to 700 rpm. While further reacting at a temperature of 80 ° C. to 120 ° C. for 1 to 3 hours, a thermosetting resin composite material of the present invention was obtained. As a result of checking the obtained thermosetting resin composite material by infrared absorption spectrum and solid-state NMR, it was confirmed that the silane coupling agent reacted with the fused silica and the hydroxyl group of the phenol resin.
【0014】《実施例1〜4及び比較例1〜2》第1〜
2表に示す配合原料を混合、混練、粉砕してエポキシ樹
脂成形材料を得、該成形材料をトランスファー成形して
成形品を得た。その成形品の評価結果も合わせて第1表
に示す。尚、得られた成形品の特性評価は下記の方法で
行った。 (1) ヒートサイクル:30×25×5mmの成形品の底
面に25×25×3mmの銅板を埋め込み、−40℃と
+200℃の恒温槽に各30分ずつ入れ、100サイク
ル繰り返した後の樹脂クラックを調べた。 (2) 曲げ強さ:JIS K6911に準じて測定した。 (3) スパイラルフロー:EMMI規格に準じた金型を使
用し、175℃,70Kg/cm2の条件で測定した。 (4)成形外観 (成形品表面を目視で判定した。 成形品
の表面が平滑な場合は○、 凹凸が生じたものは×と
した。)<< Examples 1 to 4 and Comparative Examples 1 to 2 >>
Compounding raw materials shown in Table 2 were mixed, kneaded and pulverized to obtain an epoxy resin molding material, and the molding material was transfer molded to obtain a molded product. The evaluation results of the molded products are also shown in Table 1. The characteristics of the obtained molded product were evaluated by the following methods. (1) Heat cycle: A copper plate of 25 × 25 × 3 mm was embedded in the bottom surface of a molded product of 30 × 25 × 5 mm, placed in a constant temperature bath at −40 ° C. and + 200 ° C. for 30 minutes each, and the resin after 100 cycles was repeated. I checked for cracks. (2) Bending strength: Measured according to JIS K6911. (3) Spiral flow: Measured under the conditions of 175 ° C. and 70 Kg / cm 2 using a mold conforming to the EMMI standard. (4) Molded appearance (The surface of the molded product was visually judged. When the surface of the molded product was smooth, it was marked with ○, and when unevenness was found, it was marked with ×.)
【0015】[0015]
【表1】 [Table 1]
【0016】[0016]
【表2】 [Table 2]
【0017】[0017]
【発明の効果】本発明の製造方法により、無機充填材の
分散性及び樹脂と無機充填材との界面強度が良好な熱硬
化性樹脂複合材料が得られ、該熱硬化性樹脂複合材料を
用いることにより、分散性、機械特性に優れる熱硬化性
樹脂組成物が得られる。According to the production method of the present invention, a thermosetting resin composite material having good dispersibility of the inorganic filler and good interfacial strength between the resin and the inorganic filler is obtained, and the thermosetting resin composite material is used. As a result, a thermosetting resin composition having excellent dispersibility and mechanical properties can be obtained.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 61/00 LMQ C08L 61/00 LMQ 63/00 NLD 63/00 NLD ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C08L 61/00 LMQ C08L 61/00 LMQ 63/00 NLD 63/00 NLD
Claims (8)
を1個以上有するシランカップリング剤(b)を混合撹
拌して微粒粉末表面を該シランカップリング剤で反応被
覆した後、更に該官能基と反応可能な官能基を2個以上
有する熱硬化性樹脂(c)と触媒(d)を添加し、反応
させることにより、微粒粉末表面に熱硬化性樹脂を固定
することを特徴とする熱硬化性樹脂複合材料の製造方
法。1. A fine particle powder (a) having a hydroxyl group and a silane coupling agent (b) having one or more functional groups are mixed and stirred to reactively coat the surface of the fine particle powder with the silane coupling agent, and then further A thermosetting resin (c) having two or more functional groups capable of reacting with a functional group and a catalyst (d) are added and reacted to fix the thermosetting resin on the surface of the fine powder. A method for producing a thermosetting resin composite material.
以下である請求項1記載の熱硬化性樹脂複合材料の製造
方法。2. The fine powder (a) has an average particle diameter of 100 μm.
The method for producing a thermosetting resin composite material according to claim 1, wherein:
結晶シリカ、溶融シリカ、シリカゲル、アルミナのなか
から選ばれた少なくとも1つ以上である請求項1又は2
記載の熱硬化性樹脂複合材料の製造方法。3. The fine powder (a) is carbon black,
3. At least one selected from crystalline silica, fused silica, silica gel and alumina.
A method for producing the thermosetting resin composite material described.
基又はエポキシ基である請求項1、2又は3記載の熱硬
化性樹脂複合材料の製造方法。4. The method for producing a thermosetting resin composite material according to claim 1, 2 or 3, wherein the functional group of the silane coupling agent is an amino group or an epoxy group.
シ基、水酸基又はアミノ基である請求項1、2、3又は
4記載の熱硬化性樹脂複合材料の製造方法。5. The method for producing a thermosetting resin composite material according to claim 1, wherein the functional group of the thermosetting resin (c) is an epoxy group, a hydroxyl group or an amino group.
はエポキシ樹脂である請求項1、2、3、4又は5記載
の熱硬化性樹脂複合材料の製造方法。6. The method for producing a thermosetting resin composite material according to claim 1, wherein the thermosetting resin (c) is a phenol resin or an epoxy resin.
ール類、アミン類の中から選ばれた少なくとも1種以上
である請求項1、2、3、4、5又は6記載の熱硬化性
樹脂複合材料の製造方法。7. The thermosetting resin according to claim 1, wherein the catalyst (d) is at least one selected from organic phosphorus compounds, imidazoles and amines. Composite material manufacturing method.
載の製造方法により得られる熱硬化性樹脂複合材料。8. A thermosetting resin composite material obtained by the manufacturing method according to claim 1, 2, 3, 4, 5, 6 or 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27924495A JPH09118829A (en) | 1995-10-26 | 1995-10-26 | Production of thermosetting resin composite material and thermosetting resin composite material produced thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27924495A JPH09118829A (en) | 1995-10-26 | 1995-10-26 | Production of thermosetting resin composite material and thermosetting resin composite material produced thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09118829A true JPH09118829A (en) | 1997-05-06 |
Family
ID=17608452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27924495A Pending JPH09118829A (en) | 1995-10-26 | 1995-10-26 | Production of thermosetting resin composite material and thermosetting resin composite material produced thereby |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09118829A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100353008B1 (en) * | 1999-08-27 | 2002-09-18 | 김기진 | epoxy material with low-specific weight and high-strength and thereof method for manufacturing |
KR100769251B1 (en) * | 2006-11-06 | 2007-10-22 | (주)썬테크 | Polymercomposite curing agent and preparing method thereof, epoxy resin composition using the same |
JP2007277538A (en) * | 2006-03-13 | 2007-10-25 | Sumitomo Bakelite Co Ltd | Phenolic resin containing coated inorganic fine particle dispersed therein and method for producing the same |
JP2008075042A (en) * | 2006-09-25 | 2008-04-03 | Sumitomo Bakelite Co Ltd | Coated inorganic micro particle-dispersed phenolic hardener and epoxy resin composition using the phenolic hardener |
JP2011178858A (en) * | 2010-02-26 | 2011-09-15 | Sekisui Chem Co Ltd | Resin composition and formed article |
KR20160019704A (en) * | 2014-08-12 | 2016-02-22 | 주식회사 엘지화학 | Binder Having Higher Performance and Lithium Secondary Battery Comprising the Same |
-
1995
- 1995-10-26 JP JP27924495A patent/JPH09118829A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100353008B1 (en) * | 1999-08-27 | 2002-09-18 | 김기진 | epoxy material with low-specific weight and high-strength and thereof method for manufacturing |
JP2007277538A (en) * | 2006-03-13 | 2007-10-25 | Sumitomo Bakelite Co Ltd | Phenolic resin containing coated inorganic fine particle dispersed therein and method for producing the same |
JP2008075042A (en) * | 2006-09-25 | 2008-04-03 | Sumitomo Bakelite Co Ltd | Coated inorganic micro particle-dispersed phenolic hardener and epoxy resin composition using the phenolic hardener |
KR100769251B1 (en) * | 2006-11-06 | 2007-10-22 | (주)썬테크 | Polymercomposite curing agent and preparing method thereof, epoxy resin composition using the same |
JP2011178858A (en) * | 2010-02-26 | 2011-09-15 | Sekisui Chem Co Ltd | Resin composition and formed article |
KR20160019704A (en) * | 2014-08-12 | 2016-02-22 | 주식회사 엘지화학 | Binder Having Higher Performance and Lithium Secondary Battery Comprising the Same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4972008A (en) | Process for preparing a low stress agent & an epoxy composition containing the agent | |
KR100575323B1 (en) | Solid silane coupling agent composition, method for manufacturing the same, resin composition, cured resin, powder paint and sealing material containing the same | |
JPH09118821A (en) | Production of composite material of thermosetting resin and composite material of thermosetting resin | |
JPH09118829A (en) | Production of thermosetting resin composite material and thermosetting resin composite material produced thereby | |
US6500564B1 (en) | Semiconductor encapsulating epoxy resin composition and semiconductor device | |
JPH09151316A (en) | Production of thermoplastic resin composite material and thermoplastic resin composite material | |
JPH0747622B2 (en) | Epoxy resin composition and cured product thereof | |
JP4171084B2 (en) | Thermosetting resin composition | |
JP3861953B2 (en) | Semiconductor encapsulating resin composition and resin encapsulated semiconductor device encapsulated with the composition | |
KR100565420B1 (en) | Epoxy molding compound for sealing of electronic component | |
JPH09151274A (en) | Production of thermoplastic resin composite material and thermoplastic resin composite material | |
US6342309B1 (en) | Epoxy resin composition and semiconductor device | |
JP3900317B2 (en) | Resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device | |
JPH0411573B2 (en) | ||
JPH09169871A (en) | Surface-treated filler and resin composition containing the same | |
JP3736603B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JPS63251452A (en) | Phenolic resin composition | |
JPH0977851A (en) | Production of immobilized catalyst, immobilized catalyst and new thermosetting resin composition | |
JPS614721A (en) | Epoxy resin composition | |
GB2265374A (en) | Improved curable resin systems | |
JP2874090B2 (en) | Epoxy resin composition and semiconductor device | |
JP2823636B2 (en) | High heat resistant epoxy resin composition | |
JPH0925395A (en) | Epoxy resin composition for sealing | |
JP2539482B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JPH09316304A (en) | Epoxy resin composition for semiconductor sealing |