JPH09107697A - Charging system for ac generator for vehicle - Google Patents
Charging system for ac generator for vehicleInfo
- Publication number
- JPH09107697A JPH09107697A JP7261201A JP26120195A JPH09107697A JP H09107697 A JPH09107697 A JP H09107697A JP 7261201 A JP7261201 A JP 7261201A JP 26120195 A JP26120195 A JP 26120195A JP H09107697 A JPH09107697 A JP H09107697A
- Authority
- JP
- Japan
- Prior art keywords
- field winding
- voltage
- permanent magnet
- generator
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Control Of Charge By Means Of Generators (AREA)
- Control Of Eletrric Generators (AREA)
- Synchronous Machinery (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
Description
【発明の属する技術分野】本発明は車両用交流発電機の
充電システムに関する。TECHNICAL FIELD The present invention relates to a charging system for a vehicle alternator.
【従来の技術】従来の装置は、特開平4−222438 号公報
に記載されているように、界磁巻線電流をトランジスタ
のH型ブリッジにより正負の両方向に通電制御する通電
制御器を内蔵したものがある。そして、バッテリが満充
電の時にはバッテリを充電しないように逆励磁(減磁電
流を流す)している。2. Description of the Related Art As described in Japanese Patent Laid-Open No. 4-222438, a conventional device has a built-in conduction controller for controlling conduction of a field winding current in both positive and negative directions by an H-shaped bridge of transistors. There is something. Then, when the battery is fully charged, it is reverse-excited (flows a demagnetizing current) so as not to charge the battery.
【発明が解決しようとする課題】上記従来技術は、バッ
テリが満充電の時には発電機が発電しないように逆方向
の電流を流すように制御するために、バッテリの充電状
況を検出する手段が必要である。検出手段の一つにバッ
テリ電圧を検出する手段があるが、バッテリ電圧だけで
は負荷状況により正確な充電状況を把握することはでき
ない。よって、比重等を測定する必要があり測定器が複
雑となる。また、バッテリが満充電以外の時には充電す
るように界磁巻線電流を制御しなければならないために
逆方向に電流を流すモードは通常の運転モードではほと
んど無い。よって、常に界磁巻線電流を流すために界磁
巻線電流による銅損が発生してしまう。本発明の目的は
自動車用交流発電機の出力向上と界磁巻線電流を低減し
て界磁巻線で発生する銅損を低減できる自動車用交流発
電機の制御方法を提供することにある。The above-mentioned prior art requires means for detecting the charging status of the battery in order to control so that a current flows in the opposite direction so that the generator does not generate power when the battery is fully charged. Is. One of the detection means is a means for detecting the battery voltage, but the battery voltage alone cannot accurately grasp the charging status due to the load status. Therefore, it is necessary to measure specific gravity and the like, and the measuring device becomes complicated. In addition, since the field winding current must be controlled so that the battery is charged when the battery is not fully charged, there is almost no mode in which the current flows in the reverse direction in the normal operation mode. Therefore, since the field winding current always flows, copper loss due to the field winding current occurs. An object of the present invention is to provide a method of controlling an automotive alternator that can improve the output of the automotive alternator and reduce the field winding current to reduce the copper loss generated in the field winding.
【課題を解決するための手段】上記目的を達成するため
に、本発明は発電機の爪形磁極ロータの磁極間に比較的
強い永久磁石を配置し、最も使用する回転時で一定負荷
電流時(平均使用電流時)に界磁巻線電流が零の状態
で、その永久磁石のみで発生する直流発電電圧がバッテ
リの充電電圧とほぼ同じ大きさになるように使用する永
久磁石の数と種類を選択したものである。そして、負荷
電流の増減及び車速の変化に応じて発電電流を制御する
ために界磁巻線電流を増減磁制御するようにした。交流
発電機のロータ内部に配置した補助励磁用の永久磁石が
作る磁束の方向は、界磁巻線が作る磁束に対して並列に
配置されるために、界磁巻線に電流を流さなくても固定
子巻線に磁束を差交させることができる。よって、ロー
タの速度に応じた誘起電圧を固定子巻線に得ることがで
きる。そして、この3相交流電圧を全波整流して直流電
圧に変換しこの電圧でバッテリを充電するように作用す
る。そして、直流の発電電圧が低いときには界磁巻線電
流を増磁側に流し、発電電圧を上昇させる。また、逆の
場合には界磁巻線電流を減磁側に流し直流発電電圧がバ
ッテリの充電電圧と同じになるように界磁巻線電流を制
御するものである。In order to achieve the above object, the present invention has a relatively strong permanent magnet disposed between the magnetic poles of a claw pole rotor of a generator so that the rotor is used most at a constant load current. The number and types of permanent magnets used so that the DC power generation voltage generated only by the permanent magnets is almost the same as the battery charging voltage when the field winding current is zero (at the average operating current). Is selected. Then, the field winding current is controlled to be increased or decreased in order to control the generated current according to the increase or decrease of the load current and the change of the vehicle speed. The direction of the magnetic flux created by the auxiliary permanent magnets placed inside the rotor of the alternator is parallel to the magnetic flux created by the field winding, so there is no need to apply current to the field winding. Can also cross the magnetic flux in the stator windings. Therefore, the induced voltage according to the speed of the rotor can be obtained in the stator winding. Then, this three-phase AC voltage is full-wave rectified and converted into a DC voltage, and this voltage acts to charge the battery. Then, when the DC generated voltage is low, the field winding current is passed to the magnetizing side to raise the generated voltage. In the opposite case, the field winding current is passed to the demagnetization side and the field winding current is controlled so that the DC power generation voltage becomes the same as the battery charging voltage.
【発明の実施の形態】以下、本発明の一実施例を図1な
いし図4により説明する。図1は、本発明の自動車用交
流発電機の全体構成を示したものである。まず、構成に
ついて説明する。シャフトには、一端にプーリ、他端に
スリップリング10が配置される。スリップリング10
にはブラシ11が摺動可能に取り付けられ、ロータ2の
内部に配置されるヨークに巻かれた界磁巻線4に電力を
供給できる構造である。また、ロータ2の速度に比例し
た風量が得られるような内蔵ファンがロータの左右に設
けられる。ロータ2の外周部には爪状の爪形磁極3が配
置されており、この外周部と僅かな空隙を隔てて固定子
7が配置され、固定子7には固定子鉄心8が設けられて
おり、固定子鉄心8に固定子巻線9が巻かれている。固
定子7はプーリ側に配置されるエンドブラケット1Fと
反プーリ側に配置されるエンドブラケット1Bの中間に
固定されており、シャフトとはベアリングで支持され
る。反プーリ側のエンドブラケット1Bの内部には固定
子巻線9で発生した交流の誘起電圧を整流するための整
流回路12と整流した直流電圧の大きさを調整するため
の電圧調整器13とが配置される。また、ロータ2の爪
形磁極の間には補助励磁用の永久磁石5と保護カバー6
が配置される。整流回路12からはバッテリのプラス電
極に接続されるB端子14とバッテリのマイナス電極に
接続されるアース端子15から構成される。電圧調整器
13には永久磁石の磁束を増減磁できるような界磁巻線
電流制御手段が設けられる。次に動作について説明す
る。一般に自動車用交流発電機では界磁巻線4に電流を
流すことによって、ロータ2の爪形磁極にN極とS極の
磁極を交互に構成することができる。そして、この磁化
された爪形磁極3がエンジンの回転によって回されるこ
とで固定子巻線9に三相の誘起電圧を発生させることが
できる。整流回路12はこの交流電圧を整流して直流電
圧に変換するものである。また、電圧調整器13はこの
直流電圧をバッテリを充電するために約14.3 Vの一
定電圧に保つために界磁巻線電流を制御するものであ
る。図1に示すように永久磁石5をロータ2の爪形磁極
間に配置することで、界磁巻線電流が零の状態でも固定
子巻線9に磁束が差交し誘起電圧が発生する。発生する
誘起電圧の大きさは、磁石の強さと発電機の回転数に比
例する。よって、同じ誘起電圧を得るためには強い磁石
を配置すれば個数を低減することが可能である。次に、
図2を用いて発電機の制御回路構成について説明する。
バッテリ16は自動車用交流発電機20のB端子14及
びアース端子15に接続され、内部に配置される整流回
路12にそれぞれ接続されている。また、アース端子1
5はエンドブラケット1F,1B及び固定子鉄心8に電
気的に接続されている。また、自動車用交流発電機20
の内部に配置される固定子巻線9の3相出力端子はダイ
オードによって構成される整流回路12に接続される。
また、電圧調整器13には自動車用交流発電機の直流発
電電圧を検出できるようにバッテリ端子のB端子14と
アース端子15の電圧が発電電圧検出信号17として接
続される。また、この検出電圧と基準電圧とを比較する
比較器と、H型に構成されるスイッチング素子を制御す
るためのロジック回路が配置されている。界磁巻線4は
H型に構成されるトランジスタ等のスイッチング素子に
接続され界磁巻線電流をどちらの方向にも流せるように
構成されている。よって、界磁巻線4に流す電流方向を
永久磁石5に対して増磁又は減磁のどちらの方向にも起
磁力を発生させることができるようにした。次に動作に
ついて説明する。電圧調整器13はB端子14とアース
端子15間に発生する直流発電電圧がバッテリ16を充
電するための充電電圧になるように界磁巻線4に流れる
界磁巻線電流を調整する役割を持っている。そのために
実際の発電電圧を発電電圧検出信号17としてフィード
バックして基準電圧と比べて発電電圧が高い場合には界
磁巻線電流を減少させるように制御する。しかし、永久
磁石5を爪形磁極間に配置した場合、永久磁石5の漏れ
磁束によって界磁巻線電流を零にしても発電電圧が発生
してしまう。よって、従来のように一方向にのみ電流を
流す構成では高速回転時や低負荷時に発電電圧が上昇し
整流ダイオードやバッテリ16を壊す危険がある。そこ
で、高速回転時や低負荷時には永久磁石5の磁束を打ち
消すように界磁巻線4に電流を流す必要がある。つま
り、永久磁石5をロータ2に設けたことで自動車用交流
発電機20の回転数が高速になったときにもバッテリの
充電電圧以上に直流発電電圧がならないように逆方向に
界磁巻線電流を流すように制御し保護できるようにした
ものである。次に他の回路構成による実施例を図3を用
いて説明する。図2では界磁巻線4に流す電流をH型に
構成したスイッチング素子により切り換えて制御する方
法について説明したが、他の方法は界磁巻線を別々に2
巻線設けて、それぞれの界磁巻線に流す電流方向を逆に
した構造に於いても同様の機能を実現することができ
る。ただし、この場合には、スイッチング素子は2個で
済むが、界磁巻線4に給電するためのスリップリングは
3個になってしまう。しかし、ブラシレスタイプの交流
発電機ではスリップリングは不要なためスイッチング素
子は低減できる効果がある。また、各々の界磁巻線4
a,4bの巻数を個別に決定できるために増磁用と減磁
用で発生する起磁力を単独で決定できる。よって、界磁
巻線電流と巻数で最適な起磁力を調整することができ
る。また、図示しないが他の実施例としてそれぞれの界
磁巻線4a及び4bに接続されるトランジスタを図2で
示したように独立したH型ブリッジで構成することで、
界磁巻線4a,4bのどちらかが断線した場合にも制御
不能になることはない。よって、信頼性向上の効果があ
る。ただし、電圧調整器13に内蔵されるトランジスタ
の数は8個になるが、両方の界磁巻線を増磁又は減磁の
同じモードにすることができ幅広い制御が可能になる。
このように、永久磁石を内蔵した交流発電機に於いて、
永久磁石の発生する磁束を、増磁または減磁制御できる
構成を持つものを用いて、以下本発明の増磁と減磁の制
御方法について図4を用いて説明する。図4(a)は、
発電機の回転数と発電電圧の関係について示したもので
ある。まず車速と、エンジン回転数と発電機回転数の関
係について説明する。一般的にはエンジン回転数と発電
機回転数は一定のプーリ比で連結され、発電機回転数は
エンジン回転数の2〜3倍で使用されているものが多く
ある。そして、エンジン回転数と車速とは変速機を介す
ために減速比によって変化する。そして、定常時には車
速が50km/hではエンジン回転数が約1600rpm
程度となり発電機回転数がプーリ比3なら5000rpm
程度となる。一般的な車両用交流発電機(永久磁石を搭
載せず界磁巻線電流のみで制御している交流発電機)で
は、この図4(a)のT曲線に示すように発電機の回転
数に係わらず常にバッテリを充電する必要があるために
発電電圧を、一定の電圧に保つ制御を電圧調整器は行っ
ている。よって、斜線で示したようにバッテリ充電電圧
以上の発電電圧ではバッテリの耐圧や負荷に用いられて
いるランプ類の寿命を短くしてしまう。よって、従来の
交流発電機に永久磁石を配置した場合には、一点鎖線及
び二点鎖線に示すB曲線のように使用される交流発電機
の最高回転数で界磁巻線電流が零の状態で発電する直流
発電電圧がバッテリを充電するための充電電圧以下にす
る必要がある。よって、A曲線の様な傾きを持つもので
は、発電機の回転数が高くなったときには発電電圧を低
下させるような逆励磁の手段を持っていないために先に
述べたようにバッテリを壊す危険やランプ類のランプ切
れを発生する危険がある。図4(b)は本発明を説明す
る制御方法について示した。(a)の図と同様に横軸に
発電機の回転数を、縦軸に発電電圧をとった場合、
(a)の図のA曲線では先に述べたような不具合を発生
してしまうが、本発明では逆方向に(減磁電流)界磁巻
線電流を流すことができるために、図に示すように発電
機の回転数が通常走行回転数の時に(エンジン回転数で
1600rpm 程度、車速では50km/h程度)では通
常負荷電流時において、発電電圧がバッテリ充電電圧に
なるように爪磁極間に配置する永久磁石を選択した。そ
して、これ以下の回転数では界磁巻線電流を増磁するよ
うに制御し、この回転数以上になった場合には界磁巻線
電流を逆方向に流し減磁制御し、発電電圧を一定値に制
御するようにした。よって、最も使用頻度の高い車速で
40km/hから60km/h程度の中速領域に、通常
負荷時でバッテリ充電電圧になるように設定すること
で、通常はこの範囲で多く使用されることになり界磁巻
線電流をほとんど流さなくても発電制御できるようにし
た。C曲線もA曲線と同じ意味を持つもので、用途によ
って傾きを変えた。このC曲線は高速走行を常にしてい
る高速トラックや高速バス等に対応できるように高速領
域で発電電圧がバッテリの充電電圧になるようにした。
効果等は同様なので省略する。よって、本発明の自動車
用交流発電機の搭載された車両では最も使用頻度の高い
中速領域で界磁巻線電流を流さないために界磁巻線で発
生する銅損を低減することができ効率が向上する。ま
た、銅損を発生しないために温度上昇を低減できる。以
上の説明では車速についてのみ本発明の増磁制御から減
磁制御の切り替えを説明したが、先にも述べたように車
速とエンジン回転数,発電機回転数は一定の関係がある
ためにあえて説明はしないが車速が時速40km/h〜
60km/hの中速領域ではエンジン回転数は、1300rp
m〜2000rpm程度の中速回転数に対応し、このとき発電機
回転数は最終ギアでは4000rpm 〜6000rpm 程度
の中速回転数に対応する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows the overall configuration of an automotive alternator of the present invention. First, the configuration will be described. A pulley is arranged at one end and a slip ring 10 is arranged at the other end of the shaft. Slip ring 10
A brush 11 is slidably attached to the rotor 2, so that electric power can be supplied to the field winding 4 wound around a yoke arranged inside the rotor 2. Further, built-in fans are provided on the left and right of the rotor so that an air volume proportional to the speed of the rotor 2 can be obtained. A claw-shaped magnetic pole 3 having a claw shape is arranged on the outer peripheral portion of the rotor 2, a stator 7 is arranged with a slight gap from the outer peripheral portion, and a stator iron core 8 is provided on the stator 7. A stator winding 9 is wound around the stator core 8. The stator 7 is fixed in the middle of the end bracket 1F arranged on the pulley side and the end bracket 1B arranged on the side opposite to the pulley, and is supported by the shaft with a bearing. A rectifier circuit 12 for rectifying an AC induced voltage generated in the stator winding 9 and a voltage regulator 13 for adjusting the magnitude of the rectified DC voltage are provided inside the end bracket 1B on the side opposite to the pulley. Be placed. Further, between the claw-shaped magnetic poles of the rotor 2, a permanent magnet 5 for auxiliary excitation and a protective cover 6 are provided.
Is arranged. The rectifier circuit 12 comprises a B terminal 14 connected to the positive electrode of the battery and a ground terminal 15 connected to the negative electrode of the battery. The voltage regulator 13 is provided with field winding current control means capable of increasing or decreasing the magnetic flux of the permanent magnet. Next, the operation will be described. Generally, in an automotive alternator, a claw-shaped magnetic pole of the rotor 2 can be alternately configured with N poles and S poles by passing a current through the field winding 4. Then, the magnetized claw-shaped magnetic pole 3 is rotated by the rotation of the engine, so that three-phase induced voltages can be generated in the stator winding 9. The rectifier circuit 12 rectifies this AC voltage and converts it into a DC voltage. Further, the voltage regulator 13 controls the field winding current in order to maintain this DC voltage at a constant voltage of about 14.3 V for charging the battery. By arranging the permanent magnets 5 between the claw-shaped magnetic poles of the rotor 2 as shown in FIG. 1, magnetic fluxes are crossed to the stator winding 9 to generate an induced voltage even when the field winding current is zero. The magnitude of the induced voltage generated is proportional to the strength of the magnet and the number of revolutions of the generator. Therefore, in order to obtain the same induced voltage, it is possible to reduce the number by disposing strong magnets. next,
The control circuit configuration of the generator will be described with reference to FIG.
The battery 16 is connected to the B terminal 14 and the ground terminal 15 of the automotive alternator 20, and is connected to the rectifying circuit 12 arranged inside. Also, ground terminal 1
Reference numeral 5 is electrically connected to the end brackets 1F and 1B and the stator core 8. In addition, the AC generator 20 for automobiles
The three-phase output terminal of the stator winding 9 arranged inside is connected to the rectifier circuit 12 formed by a diode.
Further, the voltage of the B terminal 14 of the battery terminal and the voltage of the ground terminal 15 are connected to the voltage regulator 13 as a generated voltage detection signal 17 so that the DC generated voltage of the automotive AC generator can be detected. Further, a comparator for comparing the detected voltage with the reference voltage and a logic circuit for controlling the H-type switching element are arranged. The field winding 4 is connected to a switching element such as an H-shaped transistor so that the field winding current can flow in either direction. Therefore, the magnetomotive force can be generated in the direction of the current flowing through the field winding 4 with respect to the permanent magnet 5 in either the magnetizing direction or the demagnetizing direction. Next, the operation will be described. The voltage regulator 13 plays a role of adjusting the field winding current flowing through the field winding 4 so that the DC power generation voltage generated between the B terminal 14 and the ground terminal 15 becomes a charging voltage for charging the battery 16. have. Therefore, the actual generated voltage is fed back as the generated voltage detection signal 17, and when the generated voltage is higher than the reference voltage, the field winding current is controlled to decrease. However, when the permanent magnet 5 is arranged between the claw-shaped magnetic poles, the leakage magnetic flux of the permanent magnet 5 causes a generated voltage even if the field winding current is zero. Therefore, in the conventional configuration in which the current is supplied only in one direction, there is a risk that the generated voltage rises at the time of high speed rotation or low load and the rectifying diode or the battery 16 is destroyed. Therefore, it is necessary to pass a current through the field winding 4 so as to cancel the magnetic flux of the permanent magnet 5 at the time of high speed rotation or low load. That is, by providing the permanent magnet 5 on the rotor 2, the field winding is reversed in the opposite direction so that the DC generated voltage does not exceed the charging voltage of the battery even when the rotation speed of the automotive AC generator 20 becomes high. It is designed so that it can be protected by controlling it so that an electric current flows. Next, an embodiment having another circuit configuration will be described with reference to FIG. In FIG. 2, the method of controlling the current flowing through the field winding 4 by switching it with the H-type switching element has been described, but the other method is to control the field winding separately.
The same function can be realized in a structure in which windings are provided and the directions of currents flowing in the respective field windings are reversed. However, in this case, although only two switching elements are required, the number of slip rings for feeding the field winding 4 becomes three. However, since a brushless type AC generator does not require a slip ring, it has an effect of reducing the number of switching elements. Also, each field winding 4
Since the numbers of turns of a and 4b can be individually determined, the magnetomotive forces generated for magnetizing and demagnetizing can be independently determined. Therefore, the optimum magnetomotive force can be adjusted by the field winding current and the number of turns. Further, although not shown, as another embodiment, by forming the transistors connected to the field windings 4a and 4b by independent H-shaped bridges as shown in FIG.
Even if either of the field windings 4a and 4b is broken, the control is not lost. Therefore, there is an effect of improving reliability. However, although the number of transistors built in the voltage regulator 13 is eight, both field windings can be set to the same mode of magnetizing or demagnetizing, and wide control is possible.
In this way, in an AC generator with a built-in permanent magnet,
A method for controlling the magnetization and demagnetization of the present invention will be described below with reference to FIG. 4 by using a magnetic flux generated by a permanent magnet that has a configuration capable of controlling the magnetization or demagnetization. FIG. 4 (a)
It shows the relationship between the number of revolutions of the generator and the generated voltage. First, the relationship between the vehicle speed, the engine speed and the generator speed will be described. Generally, the engine speed and the generator speed are connected at a constant pulley ratio, and the generator speed is often 2 to 3 times the engine speed. The engine speed and the vehicle speed change depending on the reduction ratio because the transmission is used. When the vehicle speed is 50 km / h in a steady state, the engine speed is about 1600 rpm.
It becomes about 5000 rpm if the generator rotation speed is 3 pulley ratio.
About. In a general vehicle alternator (an alternator that does not have a permanent magnet and is controlled only by the field winding current), the number of revolutions of the generator is as shown by the T curve in FIG. 4 (a). Regardless of this, the voltage regulator performs control to keep the generated voltage at a constant voltage because it is necessary to constantly charge the battery. Therefore, as indicated by the hatched lines, if the generated voltage is equal to or higher than the battery charging voltage, the withstand voltage of the battery and the life of the lamps used for the load will be shortened. Therefore, when a permanent magnet is arranged in the conventional AC generator, the field winding current is zero at the maximum rotation speed of the AC generator used as indicated by the B curve shown by the one-dot chain line and the two-dot chain line. It is necessary that the DC power generation voltage that is generated in step 1 be less than or equal to the charging voltage for charging the battery. Therefore, in the case of the one having the inclination like the A curve, there is no means of reverse excitation for lowering the generated voltage when the number of revolutions of the generator becomes high, and therefore there is a danger of damaging the battery as described above. There is a risk that the lamp will burn out. FIG. 4B shows a control method for explaining the present invention. As in the case of (a), when the horizontal axis represents the rotational speed of the generator and the vertical axis represents the generated voltage,
In the curve A of the diagram (a), the problems as described above occur, but in the present invention, the field winding current (demagnetization current) can be passed in the opposite direction, so that it is shown in the diagram. As described above, when the generator rotation speed is the normal traveling rotation speed (engine rotation speed is about 1600 rpm, vehicle speed is about 50 km / h), the generated voltage becomes the battery charging voltage at the time of the normal load current. The permanent magnet to be placed was selected. When the rotation speed is lower than this value, the field winding current is controlled so as to be increased.When the rotation speed is higher than this value, the field winding current is passed in the reverse direction to perform demagnetization control to reduce the generated voltage. Controlled to a constant value. Therefore, by setting the battery charging voltage at a normal load in the medium speed range of 40 km / h to 60 km / h at the most frequently used vehicle speed, it is normally used in this range. The power generation can be controlled even if the field winding current hardly flows. The C curve has the same meaning as the A curve, and the slope was changed depending on the application. This C curve is designed so that the generated voltage becomes the charging voltage of the battery in the high speed region so that it can be applied to high speed trucks and high speed buses that are constantly traveling at high speed.
The effect and the like are the same, so will be omitted. Therefore, in the vehicle equipped with the automotive alternator of the present invention, since the field winding current does not flow in the medium speed region that is most frequently used, the copper loss generated in the field winding can be reduced. Efficiency is improved. Further, since the copper loss does not occur, the temperature rise can be reduced. In the above description, the switching from the demagnetization control to the demagnetization control of the present invention has been described only for the vehicle speed. However, since the vehicle speed and the engine speed and the generator speed have a constant relationship as described above, Although not explained, the vehicle speed is 40 km / h ~
In the medium speed range of 60 km / h, the engine speed is 1300 rp
It corresponds to a medium speed of about m to 2000 rpm, and the generator speed at this time corresponds to a medium speed of about 4000 rpm to 6000 rpm in the final gear.
【発明の効果】本発明によれば最も使用頻度の高い発電
機回転数に於いて、界磁巻線電流が零の状態でも補助励
磁用に設けた永久磁石の磁束により直流発電電圧がバッ
テリの充電電圧(公称電圧より少し高い電圧)になるよ
うに永久磁石の種類と個数を設定することで、通常走行
で界磁巻線電流を余り流さなくて良いことから効率向上
の効果がある。また、比較的強力な永久磁石を用いるこ
とから発電電流の増加の効果もある。そして、比較的強
い永久磁石を内蔵することで、特に低速領域での発電電
流の増加が望め、低速で大電流を必要とするEHC(Ele
ctrically HeatedCatalysts )システム等において非常
に有効である。According to the present invention, at the most frequently used generator rotation speed, even if the field winding current is zero, the direct-current generation voltage of the battery is reduced by the magnetic flux of the permanent magnet provided for auxiliary excitation. By setting the type and number of permanent magnets so that the charging voltage (a voltage slightly higher than the nominal voltage) is set, the field winding current does not have to flow excessively during normal running, which has the effect of improving efficiency. Further, since a relatively strong permanent magnet is used, the generated current can be increased. By incorporating a relatively strong permanent magnet, it is possible to expect an increase in the generated current especially in the low speed region, and EHC (Ele
ctrically HeatedCatalysts) It is very effective in systems.
【図1】本発明の自動車用交流発電機の説明図。FIG. 1 is an explanatory diagram of an automotive alternator according to the present invention.
【図2】電圧調整器の動作を説明する回路図。FIG. 2 is a circuit diagram illustrating the operation of a voltage regulator.
【図3】電圧調整器の他の動作の様子を説明する回路
図。FIG. 3 is a circuit diagram illustrating another mode of operation of the voltage regulator.
【図4】電圧調整器の制御の特性図。FIG. 4 is a characteristic diagram of control of a voltage regulator.
1F,1B…エンドブラケット、2…ロータ、3…爪形
磁極、4…界磁巻線、5…永久磁石、6…保護カバー、
7…固定子、8…固定子鉄心、9…固定子巻線、10…
スリップリング、11…ブラシ、12…整流回路、13
…電圧調整器、14…B端子、15…アース端子。1F, 1B ... End bracket, 2 ... Rotor, 3 ... Claw pole, 4 ... Field winding, 5 ... Permanent magnet, 6 ... Protective cover,
7 ... Stator, 8 ... Stator core, 9 ... Stator winding, 10 ...
Slip ring, 11 ... Brush, 12 ... Rectifier circuit, 13
... voltage regulator, 14 ... B terminal, 15 ... ground terminal.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 増野 敬一 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keiichi Masuno 2520 Takaba, Hitachinaka City, Ibaraki Prefecture Hitachi Ltd. Automotive Equipment Division
Claims (6)
タの爪形磁極間に、補助励磁用の永久磁石を配置したロ
ータと、発電用の固定子巻線と、発電電圧を界磁巻線電
流の大きさによって調整するための電圧調整器とからな
る車両用交流発電機に於いて、前記ロータの使用回転数
範囲内で、界磁巻線電流が零の状態で回転させた場合に
前記補助励磁用に設けた永久磁石の磁束によって発生す
る直流発電電圧が、交流発電機の接続されているバッテ
リの充電電圧以上になるように永久磁石を配置したこと
を特徴とする車両用交流発電機の充電システム。1. A rotor having a permanent magnet for auxiliary excitation arranged between claw-shaped magnetic poles of a claw-shaped magnetic pole rotor having a plurality of claw-shaped magnetic poles, a stator winding for power generation, and a generated voltage field. In a vehicle alternator consisting of a voltage regulator for adjusting according to the magnitude of the magnetic winding current, the field winding current was rotated in a state of zero within the range of rotational speed of use of the rotor. In this case, the permanent magnet is arranged so that the DC power generation voltage generated by the magnetic flux of the permanent magnet provided for the auxiliary excitation is equal to or higher than the charging voltage of the battery connected to the AC generator. AC generator charging system.
タの爪形磁極間に、補助励磁用の永久磁石を配置したロ
ータと、発電用の固定子巻線と、発電電圧を界磁巻線電
流の大きさによって調整するための電圧調整器とからな
る車両用交流発電機に於いて、前記補助励磁用永久磁石
の磁束を増減磁できるように界磁巻線電流を調整できる
手段を前記電圧調整器の内部に設け、前記補助励磁用の
永久磁石の磁束を界磁巻線電流により増磁から減磁する
ためのモード切り替えを交流発電機が取り付けられた自
動車の速度の中速領域で切り替えることを特徴とする車
両用交流発電機の充電システム。2. A rotor having a permanent magnet for auxiliary excitation arranged between the claw-shaped magnetic poles of a claw-shaped magnetic pole rotor having a plurality of claw-shaped magnetic poles, a stator winding for power generation, and a generated voltage field. In a vehicular AC generator comprising a voltage regulator for adjusting the magnitude of the magnetic winding current, a means for adjusting the field winding current so that the magnetic flux of the permanent magnet for auxiliary excitation can be increased or decreased. Is provided inside the voltage regulator, and mode switching for demagnetizing the magnetic flux of the permanent magnet for auxiliary excitation from demagnetization by field winding current is performed at a medium speed of an automobile to which an AC generator is attached. Charging system for vehicle alternators characterized by switching between areas.
磁石の磁束を界磁巻線電流により増磁から減磁するため
のモード切り替えを交流発電機が取り付けられた自動車
のエンジン回転数の中速回転数で切り替える車両用交流
発電機の充電システム。3. The engine rotation of an automobile equipped with an alternator for mode switching for demagnetizing the magnetic flux of the permanent magnet for auxiliary excitation from field magnetizing current by field winding current according to claim 2. Charging system for vehicle alternators switching at a certain number of medium speeds.
磁石の磁束を界磁巻線電流により増磁から減磁するため
のモード切り替えを交流発電機の使用される回転数の中
速回転数で切り替える車両用交流発電機の充電システ
ム。4. The mode switching for demagnetizing the magnetic flux of the permanent magnet for auxiliary excitation from demagnetization by field winding current according to claim 3, within the number of revolutions used by the alternator. Charging system for vehicle alternator switching at high speed.
界磁巻線は増磁用の界磁巻線と減磁用の界磁巻線がそれ
ぞれ独立して配置された車両用交流発電機の充電システ
ム。5. The vehicle according to claim 1, 2, 3 or 4, wherein the field winding has a field winding for increasing magnetism and a field winding for demagnetizing, which are arranged independently of each other. AC generator charging system.
磁巻線の駆動回路を独立した2組のH型のスイッチング
素子で構成した車両用交流発電機の充電システム。6. The charging system for a vehicle alternator according to claim 5, wherein the drive circuit for the independently arranged field winding is composed of two sets of independent H-type switching elements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7261201A JPH09107697A (en) | 1995-10-09 | 1995-10-09 | Charging system for ac generator for vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7261201A JPH09107697A (en) | 1995-10-09 | 1995-10-09 | Charging system for ac generator for vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09107697A true JPH09107697A (en) | 1997-04-22 |
Family
ID=17358554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7261201A Pending JPH09107697A (en) | 1995-10-09 | 1995-10-09 | Charging system for ac generator for vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09107697A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6281613B1 (en) | 1998-09-16 | 2001-08-28 | Denso Corporation | AC generator having speed limit means |
JP2010178541A (en) * | 2009-01-30 | 2010-08-12 | Toshiba Mitsubishi-Electric Industrial System Corp | Rotary electric machine system |
EP2139099A3 (en) * | 2008-06-27 | 2013-02-20 | Hamilton Sundstrand Corporation | Regulated hybrid permanent magnet generator |
CN109716618A (en) * | 2016-09-15 | 2019-05-03 | 株式会社电装 | Rotating electric machine |
CN114206653A (en) * | 2019-07-19 | 2022-03-18 | 翰昂汽车零部件加拿大有限公司 | Belt wheel assisted electromagnetic water pump |
-
1995
- 1995-10-09 JP JP7261201A patent/JPH09107697A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6281613B1 (en) | 1998-09-16 | 2001-08-28 | Denso Corporation | AC generator having speed limit means |
EP2139099A3 (en) * | 2008-06-27 | 2013-02-20 | Hamilton Sundstrand Corporation | Regulated hybrid permanent magnet generator |
JP2010178541A (en) * | 2009-01-30 | 2010-08-12 | Toshiba Mitsubishi-Electric Industrial System Corp | Rotary electric machine system |
CN109716618A (en) * | 2016-09-15 | 2019-05-03 | 株式会社电装 | Rotating electric machine |
CN114206653A (en) * | 2019-07-19 | 2022-03-18 | 翰昂汽车零部件加拿大有限公司 | Belt wheel assisted electromagnetic water pump |
CN114206653B (en) * | 2019-07-19 | 2024-05-24 | 翰昂汽车零部件加拿大有限公司 | Belt wheel auxiliary electromagnetic water pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7230399B2 (en) | Vehicular generator-motor system | |
CN102470812B (en) | Vehicular power supply system | |
US5656922A (en) | Vehicle based AC power system | |
JP4083071B2 (en) | Rotating electric machine for vehicle and control device thereof | |
US4959577A (en) | Alternating current generator | |
JP3709590B2 (en) | Vehicle alternator | |
US6724115B2 (en) | High electrical and mechanical response structure of motor-generator | |
US7589449B2 (en) | Electric rotating machine | |
JP2768162B2 (en) | Inductor type alternator | |
JP2006025488A (en) | Starting generator for vehicle | |
JPH05304752A (en) | Ac motor for driving electric automobile | |
JP4425006B2 (en) | Rotating electric machine for vehicles | |
US7671508B2 (en) | Automotive alternator having improved structure for effectively cooling field coil | |
JP3724416B2 (en) | Axial division hybrid magnetic pole type brushless rotating electrical machine | |
JP4449591B2 (en) | Vehicle power generation system | |
JPH09107697A (en) | Charging system for ac generator for vehicle | |
JP3252808B2 (en) | Power generator | |
JP3480295B2 (en) | Power supply using magnet type alternator | |
JPH10210722A (en) | Ac generator for vehicle | |
JPH08140214A (en) | Hybrid drive system | |
JP2001178198A (en) | Generator | |
JPH0678408A (en) | Electric circuit equipment for electric vehicle | |
JP2008092785A (en) | Alternating current generator for vehicle | |
JP3351108B2 (en) | Drive mechanism using hybrid excitation type permanent magnet rotating machine | |
JP3873290B2 (en) | AC power generation system for vehicles |