JPH0891802A - Modifying device of methanol - Google Patents

Modifying device of methanol

Info

Publication number
JPH0891802A
JPH0891802A JP6257673A JP25767394A JPH0891802A JP H0891802 A JPH0891802 A JP H0891802A JP 6257673 A JP6257673 A JP 6257673A JP 25767394 A JP25767394 A JP 25767394A JP H0891802 A JPH0891802 A JP H0891802A
Authority
JP
Japan
Prior art keywords
methanol
porous body
reaction
reaction vessel
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6257673A
Other languages
Japanese (ja)
Inventor
Mitsuru Akama
充 赤間
Hideo Kawamura
英男 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP6257673A priority Critical patent/JPH0891802A/en
Publication of JPH0891802A publication Critical patent/JPH0891802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To efficiently execute heat transfer from a high temp. fluid to a catalyst layer by joining a porous body being a reaction tank in which a chemical reaction of methanol occurs directly to a means in which the high temp. fluid flows. CONSTITUTION: Exhaust pipes 200 and 300 are joined to flanges 12 and 14 provided at an upper part and a lower part of a cylindrical reaction vessel 10 by using nuts 16, 17, 18 and 19. A cylindrical porous body 20 joined to an inside wall of the reaction vessel 10 is housed in this reaction vessel 10 as the reaction tank, and a vaporizing layer 30 as a space is provided between the porous body 20 and an upper flange of the reaction vessel 10. Then, a methanol supply port 40 is provided at an outside wall of the vaporizing layer 30 of the reaction vessel 10. Plural pipes 50 in which exhaust gas flows is provided while penetrating the reaction vessel 10 containing the porous body 20, and the outside wall of each pipe 50 is joined with the porous body 20. A discharge port 42 of H2 and gaseous CO generated by a reduction reaction of methanol is provided at the lower part of the reaction vessel 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一般にはメタノ−ルを
還元反応により一酸化炭素および水素に変えるための改
質装置に関し、特にデイ−ゼルエンジンの燃料として使
用されるメタノ−ルの改質装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to a reformer for converting methanol into carbon monoxide and hydrogen by a reduction reaction, and more particularly to a reformer of methanol used as a fuel for diesel engines. Regarding quality equipment.

【0002】[0002]

【従来の技術】メタノ−ルは窒素酸化物等の有毒な排気
ガスを出さないクリ−ンな燃料としてデイ−ゼルエンジ
ン等への利用が研究されている。メタノ−ルをデイ−ゼ
ルエンジン用の燃料として使用する場合、(1)式で表
される還元反応によりメタノ−ル(CH3 OH)を一酸
化炭素(CO)および水素ガス(H2 )に分解した後
に、エンジンの燃焼室に供給して燃焼させる。 CH3 OH = CO + 2H2 (1) この還元反応を進行させるためには、例えば白金または
パラジウムのような活性金属を触媒として用いる必要が
あり、さらにこの触媒による還元反応を効率的に進行さ
せるためには、触媒自体を約400℃以上の高温に維持
することが望ましい。
2. Description of the Related Art The use of methanol as a clean fuel that does not emit toxic exhaust gas such as nitrogen oxides has been studied for use in diesel engines. When methanol is used as a fuel for a diesel engine, methanol (CH 3 OH) is converted into carbon monoxide (CO) and hydrogen gas (H 2 ) by a reduction reaction represented by the formula (1). After the decomposition, it is supplied to the combustion chamber of the engine for combustion. CH 3 OH = CO + 2H 2 (1) In order to promote this reduction reaction, it is necessary to use an active metal such as platinum or palladium as a catalyst, and further the reduction reaction by this catalyst is allowed to proceed efficiently. Therefore, it is desirable to maintain the catalyst itself at a high temperature of about 400 ° C. or higher.

【0003】触媒自体の加熱は、何らかの熱源に直接的
または間接的に触媒を接触させて行なえばよいが、この
加熱を効率的に行なうためには触媒の熱源への接触面積
をできるだけ大きくしてやる必要がある。また、同時に
触媒と反応物質であるメタノ−ルとの接触面積も大きく
なければ還元反応が充分には進行しない。従って、メタ
ノ−ルの改質、すなわち(1)式で表される還元反応を
効率的に進行させるためには、使用される触媒が熱源お
よびメタノ−ルの両者に充分な接触面積を持っているこ
とが必要である。
The heating of the catalyst itself may be carried out by directly or indirectly bringing the catalyst into contact with some heat source, but in order to perform this heating efficiently, it is necessary to make the contact area of the catalyst with the heat source as large as possible. There is. At the same time, the reduction reaction does not proceed sufficiently unless the contact area between the catalyst and methanol as a reactant is large. Therefore, in order to efficiently progress the reforming of methanol, that is, the reduction reaction represented by the formula (1), the catalyst used has a sufficient contact area with both the heat source and the methanol. Need to be present.

【0004】[0004]

【発明が解決しようとする課題】従来使用されている触
媒は、反応物質であるメタノ−ルとの接触面積を大きく
するために比表面積が大きい球状またはペレット状の形
状をしたものが多い。しかしながら、この場合、触媒と
熱源との接触面積が小さく効率よく触媒を加熱すること
ができないという欠点があった。また、球状またはペレ
ット状の場合、メタノ−ルの流れに対して圧力損失が大
きいという欠点もあった。
Most of the conventionally used catalysts have a spherical or pellet-like shape with a large specific surface area in order to increase the contact area with the reactant methanol. However, in this case, there is a drawback that the contact area between the catalyst and the heat source is small and the catalyst cannot be efficiently heated. Further, in the case of a spherical shape or a pellet shape, there is a drawback that the pressure loss is large with respect to the flow of methanol.

【0005】この欠点を解決するために、特開昭63−
7843号公報には、メタノ−ルの改質用触媒層とし
て、アルミナにチタニアをコ−テイングしたものを焼成
した担体に白金またはパラジウムのような活性金属を担
持させたものが開示されている。この場合、触媒層がア
ルミナ上に一様に形成されているので、アルミナを加熱
することにより触媒層を充分に加熱することができる。
しかしながら、この触媒層を用いた場合においても、触
媒層表面からの距離が離れるにつれてメタノ−ルの還元
反応が進行しにくくなるので、ある程度空間的に広がっ
た領域に渡るメタノ−ル流に対して還元反応を進行させ
るためには、触媒層が設けられたアルミナ基体を一定間
隔ごとに空間的に多数配置しなければならず、メタノ−
ルの改質装置としては構造が複雑かつ大がかりなものに
ならざるを得ないという欠点がある。
In order to solve this drawback, Japanese Patent Laid-Open No. 63-
Japanese Patent No. 7843 discloses a catalyst layer for reforming methanol, in which an active metal such as platinum or palladium is carried on a carrier obtained by firing a product obtained by coating titania on alumina. In this case, since the catalyst layer is uniformly formed on the alumina, the catalyst layer can be sufficiently heated by heating the alumina.
However, even when this catalyst layer is used, the reduction reaction of methanol becomes difficult to proceed as the distance from the surface of the catalyst layer increases, so that the methanol flow over a spatially spread region to some extent In order to proceed the reduction reaction, a large number of alumina substrates provided with a catalyst layer must be spatially arranged at regular intervals.
However, there is a drawback in that the structure of the reformer for hydrogen is complicated and large-scale.

【0006】本発明は、上記した欠点を解決するために
なされたもので、その目的とするところは、メタノ−ル
の改質に使用される触媒を効率的に所定の高温に維持す
ることができ、かつメタノ−ルと触媒との接触面積が大
きく、またメタノ−ルの流れに対して圧力損失の小さく
できる、反応効率の高いメタノ−ルの改質装置を提供す
ることである。
The present invention has been made to solve the above-mentioned drawbacks, and an object thereof is to efficiently maintain a catalyst used for reforming methanol at a predetermined high temperature. It is an object of the present invention to provide a reformer for methanol which has a high reaction efficiency and which has a large contact area between the methanol and the catalyst and can reduce the pressure loss with respect to the flow of the methanol.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明によれば、高温流体が流れる流路を形成する
第1の手段と、前記第1の手段を取り囲んで配設され
た、メタノ−ルが流れる流路を形成する第2の手段と、
を有するメタノ−ルの改質装置において、前記第2の手
段が前記第1の手段に接合された多孔質体を含み、前記
多孔質体の開口部表面にメタノ−ルの化学反応を進行さ
せるために必要な触媒層を設け、前記高温流体から前記
触媒層への熱伝達率を高めて前記多孔質体中を流れるメ
タノ−ルの化学反応効率を向上させるようにしたことを
特徴とするメタノ−ルの改質装置が提供される。
In order to achieve the above object, according to the present invention, there are provided a first means for forming a flow path through which a high temperature fluid flows, and a first means arranged to surround the first means. , Second means for forming a flow path through which the methanol flows,
In the reforming apparatus of methanol, the second means includes a porous body joined to the first means, and a chemical reaction of methanol proceeds on the surface of the opening of the porous body. In order to improve the chemical reaction efficiency of methanol flowing through the porous body by providing a catalyst layer necessary for increasing the heat transfer coefficient from the high temperature fluid to the catalyst layer. A reformer of the reactor is provided.

【0008】また、本発明によれば、メタノ−ルの供給
口と、メタノ−ルの反応後に発生するガスを排出するた
めの排出口とを有する反応容器と、前記反応容器内に収
められたメタノ−ルの反応槽と、前記反応容器を貫通し
て配設された高温ガスが流れる1つまたは2つ以上の管
と、を有するメタノ−ルの改質装置において、前記反応
槽が前記反応容器内壁および前記管の外壁に接合された
多孔質体からなり、前記多孔質体の開口部表面にメタノ
−ルの還元反応を進行させるために必要な触媒層を設
け、前記高温ガスから前記触媒層への熱伝達率を高めて
前記多孔質体中を流れるメタノ−ルの還元反応効率を向
上させるようにしたことを特徴とするメタノ−ルの改質
装置が提供される。
Further, according to the present invention, a reaction container having a supply port for methanol and a discharge port for discharging a gas generated after the reaction of methanol, and the reaction container are housed in the reaction container. In a methanol reforming device having a methanol reaction tank and one or more pipes through which the high temperature gas flows, which is arranged so as to penetrate through the reaction container, the reaction tank is used for the reaction. It is composed of a porous body bonded to the inner wall of the container and the outer wall of the tube, and a catalyst layer necessary for advancing the reduction reaction of methanol is provided on the surface of the opening of the porous body, and the catalyst is formed from the high temperature gas. A reforming device for methanol is provided, which is characterized in that the heat transfer coefficient to the layer is increased to improve the reduction reaction efficiency of the methanol flowing in the porous body.

【0009】さらに、本発明によれば、デイ−ゼルエン
ジンからの排気ガスの入り口と、前記排気ガスの排出口
と、メタノ−ルの供給口と、メタノ−ルの反応後に発生
するガスを排出するための排出口とを有する反応容器
と、前記反応容器内に収められたメタノ−ルの反応槽
と、前記反応槽を貫通して配設された前記排気ガスが流
れる1つまたは2つ以上の管と、を有するデイ−ゼルエ
ンジンの排気管に接合されたデイ−ゼルエンジン用メタ
ノ−ルの改質装置において、前記反応槽が前記反応容器
内壁および前記管の外壁に接合された、前記管を構成す
る材質の熱膨脹係数とほぼ等しい熱膨脹係数を有する多
孔質体からなり、前記多孔質体の開口部表面に触媒層が
設けられ、前記排気ガスから前記触媒層への熱伝達率を
高めて前記多孔質体中を流れるメタノ−ルの還元反応効
率を向上させるようにしたことを特徴とするデイ−ゼル
エンジン用メタノ−ルの改質装置が提供される。
Further, according to the present invention, the exhaust gas inlet from the diesel engine, the exhaust gas exhaust port, the methanol supply port, and the gas generated after the reaction of the methanol are exhausted. A reaction vessel having a discharge port for discharging the reaction gas, a reaction vessel for methanol contained in the reaction vessel, and one or more of the exhaust gas flowing through the reaction vessel through which the exhaust gas flows. A reformer of a methanol for a diesel engine joined to an exhaust pipe of a diesel engine, the reaction tank being joined to an inner wall of the reaction vessel and an outer wall of the pipe. It is made of a porous body having a thermal expansion coefficient substantially equal to the thermal expansion coefficient of the material forming the tube, and a catalyst layer is provided on the surface of the opening of the porous body to enhance the heat transfer coefficient from the exhaust gas to the catalyst layer. In the porous body For diesel engines methanol - - Le reformer is provided Day characterized in that so as to improve the reduction reaction efficiency of Le - methanol flow.

【0010】[0010]

【作用】本発明のメタノ−ルの改質装置においては、メ
タノ−ルの化学反応が起こる反応槽である多孔質体が熱
源である高温流体が流れる手段に直接接合されており、
さらに多孔質体開口部表面に触媒層が設けられている。
したがって、触媒層の熱源への接触面積が大きいので高
温流体から触媒層への熱伝達が効率よく行われ、触媒層
全体が高温に維持されやすく、かつ多孔質体の開口部を
流れるメタノ−ルと触媒層との接触面積が大きいので、
メタノ−ルの還元反応が効率的に行なわれる。
In the methanol reforming apparatus of the present invention, the porous body, which is the reaction tank in which the chemical reaction of methanol occurs, is directly joined to the means through which the high-temperature fluid, which is the heat source, flows.
Further, a catalyst layer is provided on the surface of the opening of the porous body.
Therefore, since the contact area of the catalyst layer with the heat source is large, heat is efficiently transferred from the high temperature fluid to the catalyst layer, the entire catalyst layer is easily maintained at high temperature, and the methanol flowing through the opening of the porous body is Since the contact area between the and the catalyst layer is large,
The reduction reaction of methanol is efficiently performed.

【0011】また、本発明のメタノ−ルの改質装置は、
反応槽を構成する多孔質体が高温流体が流れる管の材質
の熱膨脹係数とほぼ等しい熱膨脹係数を有するので、高
温下においても管と多孔質体との接合状態は安定してい
る。
The methanol reforming apparatus of the present invention is
Since the porous body constituting the reaction tank has a coefficient of thermal expansion substantially equal to that of the material of the tube through which the high-temperature fluid flows, the bonded state of the tube and the porous body is stable even at high temperature.

【0012】[0012]

【実施例】次に、本発明の実施例について図面を参照し
ながら説明する。図1は、本発明の一実施例のメタノ−
ルの改質装置の断面図である。同図の実施例は、デイ−
ゼルエンジンの排気管に接合されたデイ−ゼルエンジン
用メタノ−ルの改質装置100を示したものである。本
実施例のメタノ−ルの改質装置100において、円筒型
の反応容器10の上部および下部にはフランジ12、1
4が設けられている。そして、このフランジ部分におい
てメタノ−ルの改質装置100と排気管200、300
とがボルトおよびナット16、17、18、19によっ
て接合されている。201、301は、排気管200、
300のフランジを示している。また、反応容器10は
排気管200、300と同じSUSで作られている。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows a methano of an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a reforming device for a le. The embodiment shown in FIG.
1 shows a reformer 100 of a diesel engine methanol joined to an exhaust pipe of a diesel engine. In the methanol reforming apparatus 100 of this embodiment, flanges 12 and 1 are provided on the upper and lower portions of the cylindrical reaction vessel 10.
4 are provided. Then, in this flange portion, the reforming device 100 for the methanol and the exhaust pipes 200, 300
And are joined by bolts and nuts 16, 17, 18, 19. 201 and 301 are exhaust pipes 200,
A flange of 300 is shown. The reaction container 10 is made of the same SUS as the exhaust pipes 200 and 300.

【0013】反応容器10内には、反応槽として、反応
容器内壁と接合された円筒型の多孔質体20が収められ
ている。多孔質体20と反応容器10の上部フランジ1
2との間には、スペ−スである気化層30が設けられて
いる。そして、反応容器10の気化層30の外壁にあた
る部分にメタノ−ルの供給口40が設けられている。ま
た、排気ガスが流れる複数の管50が多孔質体20を含
む反応容器10を貫通して設けられており、各々の管の
外壁は多孔質体20と接合されている。さらに、反応容
器10の下部には、メタノ−ルの還元反応によって発生
する水素及び一酸化炭素ガスを排出するための排出口4
2が設けられている。
A cylindrical porous body 20 joined to the inner wall of the reaction container is contained in the reaction container 10 as a reaction tank. Porous body 20 and upper flange 1 of reaction vessel 10
A vaporization layer 30 as a space is provided between the two. Further, a methanol supply port 40 is provided at a portion corresponding to the outer wall of the vaporization layer 30 of the reaction container 10. Further, a plurality of tubes 50 through which exhaust gas flows are provided so as to penetrate the reaction container 10 including the porous body 20, and the outer wall of each tube is joined to the porous body 20. Further, at the lower part of the reaction vessel 10, an exhaust port 4 for exhausting hydrogen and carbon monoxide gas generated by the reduction reaction of methanol.
2 are provided.

【0014】排気管200から入ってくる400℃以上
の高温の排気ガスが、反応容器10を貫通して設けられ
た複数の管50内を流れて排気管300へ排出される。
この高温の排気ガスが複数の管50内を流れる過程にお
いて、排気ガスの熱が管外壁に接合された多孔質体20
へ熱伝達される。そして、詳細が後述される多孔質体2
0の開口部表面に設けられた触媒層が400℃程度の高
温に維持される。供給口40から供給された液状のメタ
ノ−ルは、多孔質体20がないスペ−スである気化層3
0で、高温の排気ガスが流れる管50からの熱によって
気化された後、ガス状となって高温に維持された触媒層
が含れている多孔質体20中を通過していく。この通過
の過程において、メタノ−ルは(1)式で表される還元
反応により水素及び一酸化炭素に分解されて排出口32
から排出される。
Exhaust gas having a high temperature of 400 ° C. or higher that enters from the exhaust pipe 200 flows through a plurality of pipes 50 penetrating the reaction vessel 10 and is discharged to the exhaust pipe 300.
In the process in which this high-temperature exhaust gas flows through the plurality of pipes 50, the heat of the exhaust gas is bonded to the outer wall of the pipe 20.
Heat is transferred to. And the porous body 2 whose details will be described later
The catalyst layer provided on the surface of the opening of No. 0 is maintained at a high temperature of about 400 ° C. The liquid methanol supplied from the supply port 40 is a space without the porous body 20 and is a vaporization layer 3
At 0, the high-temperature exhaust gas is vaporized by the heat from the pipe 50 and then passes through the porous body 20 containing the catalyst layer which has become gaseous and is maintained at a high temperature. In the course of this passage, methanol is decomposed into hydrogen and carbon monoxide by the reduction reaction represented by the formula (1), and the exhaust port 32
Emitted from.

【0015】図2は、排気ガスを流すための複数の管5
0と一体となった円柱型の多孔質体20の斜視図であ
る。複数の管50は多孔質体10を貫通して設けられて
いる。次に、この円筒型の多孔質体20の製造方法につ
いて説明する。まず、円柱形に加工された金属多孔質体
からなるメタル・フォ−ムを用意し、これに管50が通
る穴をあけ、管を通してメタル・フォ−ムと管を銀ろう
付け等により接合する。そして、メタル・フォ−ム全体
をアルミナAl23 が含まれた溶液中に浸す。その
際、管の中に溶液が入らないように予め管の入り口をふ
さいでおく。次に、溶液から取り出したメタル・フォ−
ムの乾燥および焼成を行なう。焼成は例えば700℃で
行なう。この浸漬から焼成までの工程を、多孔質体の開
口部表面に100ミクロン程度の厚さのアルミナAl2
3 のコ−テイング層が形成されるまで繰り返す。最後
に、このアルミナのコ−テイング層に白金またはパラジ
ウム等の触媒となる金属を担持させて触媒層を完成させ
る。以上の工程により、円柱型の多孔質体20が出来上
がる。
FIG. 2 shows a plurality of pipes 5 for flowing exhaust gas.
FIG. 3 is a perspective view of a cylindrical porous body 20 integrated with 0. The plurality of tubes 50 are provided so as to penetrate the porous body 10. Next, a method for manufacturing the cylindrical porous body 20 will be described. First, a metal foam made of a porous metal body processed into a cylindrical shape is prepared, a hole through which the pipe 50 passes is made in this, and the metal form and the pipe are joined by silver brazing or the like through the pipe. . Then, the entire metal foam is dipped in a solution containing alumina Al 2 O 3 . At that time, the inlet of the tube is previously closed so that the solution does not enter the tube. Next, the metal foil removed from the solution
Dry and bake the steam. The firing is performed at 700 ° C., for example. The process from the dipping to the firing is performed on the surface of the opening of the porous body by using alumina Al 2 having a thickness of about 100 μm.
O 3 co - repeated until Teingu layer is formed. Finally, a metal serving as a catalyst such as platinum or palladium is supported on the coating layer of alumina to complete the catalyst layer. Through the above steps, the cylindrical porous body 20 is completed.

【0016】図3は、上記した製造工程により作られる
多孔質体20の管50との接合部近傍の様子を示した図
である。管の外壁と多孔質体とは銀ろう52によって接
合され、多孔質体20中には開口22が一様に形成され
ている。この開口22中を気化されたメタノ−ル・ガス
等が流れる。開口22の平均的な大きさおよび開口22
の数は、流れるガスの流量および圧力に応じて、必要な
ガスの流速および所定の圧力損失等が生ずるように決め
られる。多孔質体20全体に対する開口22の割合を表
す開口率をある程度大きく取った場合、流れるガスの圧
力損失が小さくできるので、球状またはペレット状の触
媒を用いた場合に比べて、メタノ−ルを供給するための
駆動圧力および駆動ポンプの容量を小さくすることが可
能である。また、管50と多孔質体20とは、同じ材質
たとえばSUSでできている。従って、熱膨脹係数が等
しいので高温下においても熱膨脹係数の違いにより管5
0の外壁と多孔質体20との接合状態が不安定になるこ
とはない。また熱伝達係数も等しいことから高温の排気
ガスからの熱が充分に多孔質20体全体に熱伝達され
る。
FIG. 3 is a view showing a state in the vicinity of a joint portion of the porous body 20 produced by the above-mentioned manufacturing process with the tube 50. The outer wall of the tube and the porous body are joined by silver brazing 52, and openings 22 are uniformly formed in the porous body 20. Vaporized methanol gas or the like flows through the opening 22. Average size of opening 22 and opening 22
Is determined so that a required gas flow rate, a predetermined pressure loss, and the like occur depending on the flow rate and pressure of the flowing gas. When the opening ratio, which represents the ratio of the openings 22 to the entire porous body 20, is set to be large to some extent, the pressure loss of the flowing gas can be reduced, so that the methanol is supplied as compared with the case where a spherical or pellet catalyst is used. It is possible to reduce the drive pressure and the capacity of the drive pump for controlling. The tube 50 and the porous body 20 are made of the same material, for example, SUS. Therefore, since the coefficients of thermal expansion are the same, even if the temperature of the tubes is high
The joint state between the outer wall of No. 0 and the porous body 20 does not become unstable. Further, since the heat transfer coefficients are the same, the heat from the hot exhaust gas is sufficiently transferred to the entire porous body 20.

【0017】図4は、図3中の円A部分の多孔質体20
の表面に設けられた触媒層24の様子を示した拡大図で
ある。触媒層24は多孔質体20の開口部表面に一様に
100ミクロン程度の厚さで形成されている。このよう
に、触媒層24は多孔質体20の開口部表面に一様に形
成されているので、例えば排気ガス管表面にのみ形成さ
れた場合に比べて、実質上熱源に接触している表面積が
増加し効率よく触媒層を高温にすることができる。
FIG. 4 shows the porous body 20 in the circle A portion in FIG.
FIG. 4 is an enlarged view showing a state of a catalyst layer 24 provided on the surface of the. The catalyst layer 24 is formed uniformly on the surface of the opening of the porous body 20 with a thickness of about 100 μm. As described above, since the catalyst layer 24 is uniformly formed on the surface of the opening of the porous body 20, compared with the case where it is formed only on the surface of the exhaust gas pipe, the surface area substantially in contact with the heat source. And the catalyst layer can be efficiently heated to a high temperature.

【0018】以上好ましい実施例について説明したが、
本発明は上記実施例に限定されるものではなく、本発明
の要旨を変更しない範囲内において各種の変更が可能で
ある。
The preferred embodiment has been described above.
The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.

【0019】[0019]

【発明の効果】以上説明したように、本発明のメタノ−
ルの改質装置は、メタノ−ルの化学反応が起こる反応槽
である多孔質体が熱源である高温流体が流れる手段に直
接接合されており、さらに多孔質体開口部表面に触媒層
が設けられている。したがって、触媒層の熱源への接触
面積が大きいので高温流体から触媒層への熱伝達が効率
よく行われ、触媒層全体が高温に維持されやすく、かつ
多孔質体の開口部を流れるメタノ−ルと触媒層との接触
面積が大きいので、メタノ−ルの還元反応が効率的に行
なわれる。また、本発明のメタノ−ルの改質装置は、反
応槽を構成する多孔質体が高温流体が流れる管の材質の
熱膨脹係数とほぼ等しい熱膨脹係数を有するので、高温
下においても管と多孔質体との接合状態は安定してい
る。さらに、多孔質体の開口部をメタノ−ルが流れるの
で、球状またはペレット状の触媒を用いた場合に比べ
て、圧力損失が小さいのでメタノ−ルを供給するための
駆動ポンプの容量を小さくすることが可能である。
As described above, the methanol of the present invention is used.
In the reformer of the reactor, the porous body, which is the reaction tank in which the chemical reaction of methanol occurs, is directly joined to the means through which the high-temperature fluid, which is the heat source, flows, and a catalyst layer is provided on the surface of the opening of the porous body. Has been. Therefore, since the contact area of the catalyst layer with the heat source is large, heat is efficiently transferred from the high temperature fluid to the catalyst layer, the entire catalyst layer is easily maintained at high temperature, and the methanol flowing through the opening of the porous body is Since the contact area between the catalyst layer and the catalyst layer is large, the reduction reaction of methanol is efficiently performed. Further, in the methanol reforming apparatus of the present invention, since the porous body forming the reaction tank has a thermal expansion coefficient substantially equal to the thermal expansion coefficient of the material of the tube through which the high temperature fluid flows, the tube and the porous material are porous even at high temperatures. The state of joint with the body is stable. Further, since the methanol flows through the opening of the porous body, the pressure loss is smaller than that in the case of using a spherical or pellet-shaped catalyst, so that the capacity of the drive pump for supplying the methanol is reduced. It is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のメタノ−ルの改質装置の構
造を示す断面図である。
FIG. 1 is a cross-sectional view showing the structure of a methanol reforming apparatus according to an embodiment of the present invention.

【図2】図1のメタノ−ルの改質装置内の反応槽である
円柱型の多孔質体の斜視図である。
2 is a perspective view of a cylindrical porous body which is a reaction tank in the methanol reforming apparatus of FIG. 1. FIG.

【図3】図2の多孔質体の管との接合部近傍の様子を示
した拡大図である。
FIG. 3 is an enlarged view showing a state in the vicinity of a joint portion of the porous body of FIG. 2 with a tube.

【図4】図3の多孔質体の円A部分の多孔質体表面に設
けられた触媒層の様子を示した拡大図である。
FIG. 4 is an enlarged view showing a state of a catalyst layer provided on a surface of a porous body in a circle A portion of the porous body of FIG.

【符号の説明】[Explanation of symbols]

10 反応容器 12、14 フランジ 16、17、18、19 ボルトおよびナット 20 多孔質体 22 開口 24 触媒層 30 気化層 40 メタノ−ルの供給口 42 メタノ−ルの排出口 50 管 52 銀ろう 100 メタノ−ルの改質装置 200、300 排気管 10 Reaction Vessel 12, 14 Flange 16, 17, 18, 19 Bolt and Nut 20 Porous Body 22 Opening 24 Catalyst Layer 30 Vaporization Layer 40 Methanol Supply Port 42 Methanol Discharge Port 50 Tube 52 Silver Wax 100 Methano -Reformer 200,300 Exhaust pipe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】高温流体が流れる流路を形成する第1の手
段と、前記第1の手段を取り囲んで配設された、メタノ
−ルが流れる流路を形成する第2の手段と、を有するメ
タノ−ルの改質装置において、 前記第2の手段が前記第1の手段に接合された多孔質体
を含み、前記多孔質体の開口部表面にメタノ−ルの化学
反応を進行させるために必要な触媒層を設け、前記高温
流体から前記触媒層への熱伝達率を高めて前記多孔質体
中を流れるメタノ−ルの化学反応効率を向上させるよう
にしたことを特徴とするメタノ−ルの改質装置。
1. A first means for forming a flow path through which a high-temperature fluid flows and a second means for forming a flow path through which a methanol flows, which is arranged so as to surround the first means. In the reforming device of methanol, the second means includes a porous body joined to the first means, and a chemical reaction of methanol proceeds on the surface of the opening of the porous body. And a catalyst layer necessary for improving the chemical reaction efficiency of the methanol flowing through the porous body by increasing the heat transfer coefficient from the high temperature fluid to the catalyst layer. Le reformer.
【請求項2】前記第1の手段が1つまたは2つ以上の管
からなり、前記多孔質体が前記管の外壁に接合され、か
つ前記管を構成する材質の熱膨脹係数とほぼ等しい熱膨
脹係数を有する材質からなることを特徴とする請求項1
記載のメタノ−ルの改質装置。
2. The coefficient of thermal expansion, wherein the first means comprises one or two or more tubes, the porous body is bonded to an outer wall of the tube, and the coefficient of thermal expansion is substantially equal to the coefficient of thermal expansion of the material forming the tube. 2. A material having
A reforming device for the described methanol.
【請求項3】メタノ−ルの供給口と、メタノ−ルの反応
後に発生するガスを排出するための排出口とを有する反
応容器と、前記反応容器内に収められたメタノ−ルの反
応槽と、前記反応容器を貫通して配設された高温ガスが
流れる1つまたは2つ以上の管と、を有するメタノ−ル
の改質装置において、 前記反応槽が前記反応容器内壁および前記管の外壁に接
合された多孔質体からなり、前記多孔質体の開口部表面
にメタノ−ルの還元反応を進行させるために必要な触媒
層を設け、前記高温ガスから前記触媒層への熱伝達率を
高めて前記多孔質体中を流れるメタノ−ルの還元反応効
率を向上させるようにしたことを特徴とするメタノ−ル
の改質装置。
3. A reaction container having a supply port for methanol and a discharge port for discharging gas generated after the reaction of methanol, and a reaction tank for methanol contained in the reaction container. And one or more pipes through which the high-temperature gas flows, which penetrates through the reaction vessel, and wherein the reaction tank has an inner wall of the reaction vessel and a tube. The porous body is joined to the outer wall, and a catalyst layer necessary for advancing the reduction reaction of methanol is provided on the opening surface of the porous body, and the heat transfer coefficient from the high temperature gas to the catalyst layer is provided. To improve the reduction reaction efficiency of the methanol flowing in the porous body.
【請求項4】前記多孔質体が前記管を構成する材質の熱
膨脹係数とほぼ等しい熱膨脹係数を有する材質からなる
ことを特徴とする請求項3記載のメタノ−ルの改質装
置。
4. The reforming apparatus for methanol according to claim 3, wherein the porous body is made of a material having a coefficient of thermal expansion substantially equal to that of the material forming the tube.
【請求項5】デイ−ゼルエンジンからの排気ガスの入り
口と、前記排気ガスの排出口と、メタノ−ルの供給口
と、メタノ−ルの反応後に発生するガスを排出するため
の排出口とを有する反応容器と、前記反応容器内に収め
られたメタノ−ルの反応槽と、前記反応槽を貫通して配
設された、前記排気ガスが流れる1つまたは2つ以上の
管と、を有するデイ−ゼルエンジンの排気管に接合され
たデイ−ゼルエンジン用メタノ−ルの改質装置におい
て、 前記反応槽が前記反応容器内壁および前記管の外壁に接
合された、前記管を構成する材質の熱膨脹係数とほぼ等
しい熱膨脹係数を有する多孔質体からなり、前記多孔質
体の開口部表面に触媒層が設けられ、前記排気ガスから
前記触媒層への熱伝達率を高めて前記多孔質体中を流れ
るメタノ−ルの還元反応効率を向上させるようにしたこ
とを特徴とするデイ−ゼルエンジン用メタノ−ルの改質
装置。
5. An inlet for exhaust gas from a diesel engine, an exhaust outlet for the exhaust gas, a supply inlet for methanol, and an exhaust outlet for exhausting gas generated after the reaction of methanol. A reaction vessel having a methanol, a reaction vessel for methanol contained in the reaction vessel, and one or more pipes through which the exhaust gas flows, the tube being disposed so as to penetrate the reaction vessel. In a reformer for a diesel engine methanol joined to an exhaust pipe of a diesel engine, the reaction vessel is joined to an inner wall of the reaction vessel and an outer wall of the pipe, and a material forming the pipe. Of a porous body having a coefficient of thermal expansion substantially equal to that of the porous body, a catalyst layer is provided on the surface of the opening of the porous body, and the heat transfer coefficient from the exhaust gas to the catalyst layer is increased to enhance the porous body. Return of methanol flowing inside A reformer for methanol for diesel engines, which is characterized by improving the original reaction efficiency.
JP6257673A 1994-09-27 1994-09-27 Modifying device of methanol Pending JPH0891802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6257673A JPH0891802A (en) 1994-09-27 1994-09-27 Modifying device of methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6257673A JPH0891802A (en) 1994-09-27 1994-09-27 Modifying device of methanol

Publications (1)

Publication Number Publication Date
JPH0891802A true JPH0891802A (en) 1996-04-09

Family

ID=17309520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6257673A Pending JPH0891802A (en) 1994-09-27 1994-09-27 Modifying device of methanol

Country Status (1)

Country Link
JP (1) JPH0891802A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206105A (en) * 2002-01-11 2003-07-22 Honda Motor Co Ltd Catalyst reactor
JP2003238111A (en) * 2002-02-13 2003-08-27 Fuji Seratekku Kk Apparatus for reforming fuels
JP2010105855A (en) * 2008-10-30 2010-05-13 Rinnai Corp Reformer and power generation plant
US7753971B2 (en) 2005-03-22 2010-07-13 Toyota Jidosha Kabushiki Kaisha Fuel reforming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206105A (en) * 2002-01-11 2003-07-22 Honda Motor Co Ltd Catalyst reactor
JP2003238111A (en) * 2002-02-13 2003-08-27 Fuji Seratekku Kk Apparatus for reforming fuels
US7753971B2 (en) 2005-03-22 2010-07-13 Toyota Jidosha Kabushiki Kaisha Fuel reforming apparatus
JP2010105855A (en) * 2008-10-30 2010-05-13 Rinnai Corp Reformer and power generation plant

Similar Documents

Publication Publication Date Title
JP4358914B2 (en) Active microchannel heat exchanger
RU2411075C2 (en) Compact reforming reactor
JP4718069B2 (en) Compact, lightweight methanol fuel gas autothermal reformer
US6274260B1 (en) Plant with high temperature fuel cells I
JP4643027B2 (en) Compact and lightweight self-heating reformer
WO2021221943A1 (en) Process for the thermal decomposition of ammonia and reactor for carrying out the process
CA2442781A1 (en) Single chamber compact fuel processor
WO2010087791A1 (en) Distributively cooled, integrated water-gas shift reactor and vaporizer
US4378336A (en) Monolith reactor
JP2008543720A (en) Reformer and reforming method for producing hydrogen from hydrocarbon fuel
US20090258259A1 (en) Catalytic heat exchangers and methods of operation
US20040005268A1 (en) Method and multi-stage shift reactor for reducing the carbon monoxide content in a hydrogen-containing gas stream, and reformer installation
US20100086477A1 (en) Reaction chamber promoting heat exchange between the reagents and the gases that are produced
US6303243B1 (en) Plant with high temperature fuel cells II
JPH0891802A (en) Modifying device of methanol
JP4562775B2 (en) Fine channel heater for uniform heating
US8474240B1 (en) Regenerative gas generator
JPH0891803A (en) Modifying device of methanol for engine
US7354465B2 (en) Device for cooling and humidifying reformate
CN115849302B (en) Hydrogen production apparatus and method
JP2001220106A (en) Reformer
JP2000237582A (en) Device for utilizing heat generated by catalytic reaction
JP2000072405A (en) Reaction furnace for generating water
JPH0794321B2 (en) Methanol reforming method using exhaust heat and exhaust heat recovery type methanol reformer
RU2801525C1 (en) Device for obtaining a hydrogen-containing mixture from ammonia