JPH083699A - Nonoriented silicon steel sheet excellent in iron loss after stress relief annealing and its production - Google Patents
Nonoriented silicon steel sheet excellent in iron loss after stress relief annealing and its productionInfo
- Publication number
- JPH083699A JPH083699A JP7075194A JP7519495A JPH083699A JP H083699 A JPH083699 A JP H083699A JP 7075194 A JP7075194 A JP 7075194A JP 7519495 A JP7519495 A JP 7519495A JP H083699 A JPH083699 A JP H083699A
- Authority
- JP
- Japan
- Prior art keywords
- less
- annealing
- ppm
- iron loss
- stress relief
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は磁気特性に優れる低Si
無方向性電磁鋼板及びその製造方法を提案するものであ
る。無方向性電磁鋼板は、回転機や変圧機の鉄心等に使
用される。これらのエネルギー効率を高めるためには、
無方向性電磁鋼板の鉄損を下げる必要がある。近年、省
エネルギーを目的とする電気機器の高効率化が重要とな
ってきており、無方向性電磁鋼板においても、低鉄損化
の要求が高まっている。BACKGROUND OF THE INVENTION The present invention relates to low Si having excellent magnetic properties.
A non-oriented electrical steel sheet and a method for manufacturing the same are proposed. Non-oriented electrical steel sheets are used for iron cores of rotating machines and transformers. In order to increase these energy efficiency,
It is necessary to reduce the iron loss of non-oriented electrical steel sheets. In recent years, it has become important to improve the efficiency of electric devices for the purpose of energy saving, and there is an increasing demand for low iron loss even in non-oriented electrical steel sheets.
【0002】[0002]
【従来の技術】無方向性電磁鋼板の低鉄損化の手段とし
ては、結晶粒径の最適化、ならびに高Si化がある。結晶
粒径が150 〜200 μm で鉄損は最小となること、高Si化
により鉄損が低減することが知られている。一方、打抜
精度もまた、無方向性電磁鋼板に求められる重要な特性
である。無方向性電磁鋼板は、需要家で所定の形状に打
ち抜かれた後、歪取焼鈍が施されることが多い。その
際、複雑な形状に打ち抜かれるため特に優れる打抜精度
が要求されるが、Siが 1.0%を超えたり、製品板結晶粒
径が40μm を超えたりすると、打抜精度が著しく劣化す
る。2. Description of the Related Art As means for reducing iron loss in non-oriented electrical steel sheets, there is optimization of crystal grain size and high Si content. It is known that the iron loss is minimized when the crystal grain size is 150 to 200 μm, and that the iron loss is reduced by increasing the Si content. On the other hand, punching accuracy is also an important characteristic required for non-oriented electrical steel sheets. The non-oriented electrical steel sheet is often punched into a predetermined shape by a consumer and then subjected to strain relief annealing. At that time, a particularly excellent punching accuracy is required because it is punched into a complicated shape, but if Si exceeds 1.0% or the crystal grain size of the product plate exceeds 40 μm, the punching accuracy is significantly deteriorated.
【0003】従来、このような鉄損と打抜精度という相
反する性質を満足させるため、低Si組成で製品板粒径を
20μm 程度とし、需要家での打抜き後750 ℃・2時間の
歪取焼鈍により、結晶粒を粗大化させて低鉄損化をはか
っていた。ところが、近年、需要家での生産性の向上に
よる歪取焼鈍温度の低下、および歪取焼鈍時間の減少
(例えば、725 ℃・1時間)により、低温でも結晶粒成
長性に優れる無方向性電磁鋼板が必要となってきた。し
かしながら、この要求に応えることのできる無方向性電
磁鋼板はこれまで皆無であった。粒成長を阻害する原因
は基地鉄中に微細に分散した介在物や析出物であること
は良く知られている。無方向性電磁鋼板中の介在物や析
出物としては、各種の酸化物(例えば、SiO2、MnO 、Al
2O3 など) や各種の窒化物、硫化物(例えば、AlN, Ti
N, ZrN , MnS など)が挙げられる。以下、これらにつ
いて言及する。Conventionally, in order to satisfy such contradictory properties of iron loss and punching precision, the product sheet grain size is reduced with a low Si composition.
It was set to about 20 μm, and after punching by the customer, strain relief annealing was performed for 2 hours at 750 ° C. to coarsen the crystal grains and reduce iron loss. However, in recent years, due to the decrease in the stress relief annealing temperature and the reduction in the stress relief annealing time (for example, 725 ° C for 1 hour) due to the improvement in the productivity of consumers, a non-directional electromagnetic field that is excellent in grain growth even at low temperatures. Steel sheets are needed. However, there has been no non-oriented electrical steel sheet that can meet this demand. It is well known that the cause of grain growth inhibition is inclusions or precipitates finely dispersed in the base iron. Inclusions and precipitates in the non-oriented electrical steel sheet include various oxides (eg, SiO 2 , MnO, Al
2 O 3 etc.) and various nitrides and sulfides (eg AlN, Ti
N, ZrN, MnS, etc.). These are mentioned below.
【0004】 酸化物 Alを0.2 %以上添加すれば、十分に溶鋼段階で凝集、浮
上させることができるため、問題はなくなっている。If the oxide Al is added in an amount of 0.2% or more, it is possible to sufficiently agglomerate and float in the molten steel stage, so that there is no problem.
【0005】 硫化物 γ→α変態点の高いSi:1.0 %を超える無方向性電磁鋼
板では、希土類成分(REM:原子番号57〜71までの15
元素ならびにSc, Yの2元素を加えた17元素の総称)を
含む合金やCaを添加することにより、安定で、しかも粗
大な硫化物としてSを固定できることが知られていて、
その技術は、特開昭51−62115 号(鉄損の低い無方向性
珪素鋼板)、同52−2824号(希土類金属で処理された冷
間圧延非配向珪素鋼とその製法)、同55−34675 号(リ
ジングの少ない無方向性珪素鋼板の製造方法)、同56−
102550号(磁気特性の安定した無方向性珪素鋼板)、同
57−192219号(鉄損の低い無方向性けい素鋼板の製造方
法)、同58−164724号(磁気特性の優れた無方向性電磁
鋼板の製造方法)公報などに開示されている通りであ
る。さらに、製鋼における、REM の添加方法として、特
開昭59−43814 号公報(鉄損の低い無方向性電磁鋼板の
製造に供する溶鋼の取鍋精錬方法)にはREM を脱硫フラ
ックスとともに添加する方法が、同59−74212 号公報
(鉄損の少ない無方向性電磁鋼板の製造に供する溶鋼の
取鍋精錬方法)には難還元性フラックスをREM とともに
添加する方法が開示されている。一方、γ→α変態点の
低いSi:1.0 %以下の無方向性電磁鋼板では、スラブ加
熱時にγ単相となるため、α相よりγ相においてMnS の
溶解度が小さいことを利用して、Mnを0.1 %以上含有さ
せてMnS を粗大化させることができる。Si:1.0%未満
の無方向性電磁鋼板における、希土類成分の添加につい
ては特開昭60−145310号公報(鉄損の低い無方向性電磁
鋼板用溶鋼の溶製方法)には脱酸にAlを使わず、SiとRE
M を併用し、Al<10ppm とする手段が、特開平3−2156
27号(無方向性電磁鋼板の製造方法)にはAl<0.2 %、
REM/S=3〜8とし直送圧延する方法が開示されてい
る。しかしながら、これらの手段で得られる無方向性電
磁鋼板は低温短時間歪取焼鈍後の鉄損が全く不十分であ
った。Si having a high sulfide γ → α transformation point: In a non-oriented electrical steel sheet having a ratio of more than 1.0%, rare earth components (REM: atomic numbers 57 to 71 15
It is known that S can be fixed as a stable and coarse sulfide by adding an alloy or Ca containing 17 elements (general term of 17 elements including Sc, Y and 2 elements).
The technology is disclosed in JP-A-51-62115 (a non-oriented silicon steel sheet with low iron loss), JP-A-52-2824 (a cold-rolled non-oriented silicon steel treated with a rare earth metal and a manufacturing method thereof), and JP-A-55-55. No. 34675 (Manufacturing method of non-oriented silicon steel sheet with little ridging), 56-
No. 102550 (non-oriented silicon steel sheet with stable magnetic properties),
57-192219 (method for producing non-oriented silicon steel sheet with low iron loss) and 58-164724 (method for producing non-oriented electrical steel sheet with excellent magnetic properties), etc. . Further, as a method of adding REM in steelmaking, in JP-A-59-43814 (a ladle refining method for molten steel used for manufacturing non-oriented electrical steel sheets with low iron loss), REM is added together with desulfurization flux. However, JP-A-59-74212 (a ladle refining method for molten steel used for manufacturing non-oriented electrical steel sheets with low iron loss) discloses a method of adding a non-reducing flux together with REM. On the other hand, in a non-oriented electrical steel sheet with a low γ → α transformation point of Si: 1.0% or less, the γ single phase occurs when the slab is heated, so the fact that the solubility of MnS in the γ phase is smaller than that in the α phase is utilized. Of 0.1% or more can be added to coarsen MnS. Regarding the addition of a rare earth component in a non-oriented electrical steel sheet with Si: less than 1.0%, Japanese Patent Application Laid-Open No. 60-145310 (a method for producing molten steel for a non-oriented electrical steel sheet with low iron loss) uses Al for deoxidation Without using Si and RE
Means for making Al <10 ppm by using M together is disclosed in JP-A-3-2156.
No. 27 (method for producing non-oriented electrical steel sheet) has Al <0.2%,
A method of direct-feed rolling with REM / S = 3 to 8 is disclosed. However, in the non-oriented electrical steel sheet obtained by these means, the iron loss after low-temperature short-time stress relief annealing was completely insufficient.
【0006】) 窒化物 Siが1.0 %以下の低Si無方向性電磁鋼板では、窒化物固
定のため0.2 %以上のAl添加やB添加が行われている
が、低温短時間歪取焼鈍での粒成長はほとんどなく、そ
の鉄損特性は全く満足できるものではなかった。以上述
べてきたように、従来から知られている手段では、目的
とする低Si鋼の低温短時間歪取焼鈍での粒成長ならびに
鉄損の低減は全く不十分であった。[0006] In low Si non-oriented electrical steel sheets containing 1.0% or less of nitride Si, 0.2% or more of Al and B are added to fix the nitride. There was almost no grain growth, and the iron loss characteristics were not completely satisfactory. As described above, the conventionally known means has been completely inadequate in reduction of grain growth and iron loss in low-temperature short-time stress relief annealing of a target low-Si steel.
【0007】[0007]
【発明が解決しようとする課題】この発明は、低温短時
間の歪取焼鈍で良好な鉄損を得ることができる低Si無方
向性電磁鋼板ならびにその製造方法を提案することを目
的とする。SUMMARY OF THE INVENTION It is an object of the present invention to propose a low Si non-oriented electrical steel sheet which can obtain a good iron loss by low temperature and short time strain relief annealing, and a method for producing the same.
【0008】[0008]
【課題を解決するための手段】近年、分析精度の向上に
より、10ppm 以下の微量成分についてもppm オーダーで
定量的に分析が可能となってきた。そこで、発明者ら
は、鋼中の微量成分が低温短時間歪取焼鈍に及ぼす影響
について種々検討を行なった。その結果、低Si鋼におい
て、10ppm 程度の微量のTi, Zrが低温短時間歪取焼鈍後
の鉄損を劣化させることが明かとなった。さらに、発明
者らはAlを0.2 〜1.5 %、Tiを15ppm 以下およびZrを80
ppm 以下とするとともに、微量の希土類成分を共存させ
ることにより、歪取焼鈍時の結晶粒成長性を著しく改善
し、従来、不可能であった低温短時間歪取焼鈍後の鉄損
に優れる無方向性電磁鋼板を工業的に製造できることを
見いだしたものである。[Means for Solving the Problems] In recent years, it has become possible to quantitatively analyze even trace components of 10 ppm or less in the ppm order by improving the analysis accuracy. Therefore, the inventors conducted various studies on the effect of trace components in steel on low temperature short time stress relief annealing. As a result, it became clear that in low Si steel, trace amounts of Ti and Zr of about 10 ppm deteriorate iron loss after low temperature short time stress relief annealing. Furthermore, the inventors have found that Al is 0.2 to 1.5%, Ti is 15 ppm or less, and Zr is 80% or less.
By coexisting with a trace amount of rare earth component in addition to ppm or less, the crystal grain growth property during stress relief annealing is significantly improved, and iron loss after low temperature and short time stress relief annealing, which has been impossible in the past, is excellent. They have found that grain-oriented electrical steel sheets can be industrially manufactured.
【0009】すなわち、この発明の要旨は以下の通りで
ある。 C:0.01wt%以下、Si:1.0 wt%以下、Mn:0.1 wt%
以上、1.5 wt%以下、Al:0.2 wt%以上、1.5 wt%以下
およびREM :2wt ppm以上、80 wt ppm 以下を含み、残
部はFeおよび不可避的不純物の組成になることを特徴と
する歪取焼鈍後鉄損に優れる無方向性電磁鋼板(第1発
明)。That is, the gist of the present invention is as follows. C: 0.01 wt% or less, Si: 1.0 wt% or less, Mn: 0.1 wt%
Above, 1.5 wt% or less, Al: 0.2 wt% or more, 1.5 wt% or less and REM: 2 wt ppm or more, 80 wt ppm or less, and the balance is Fe and inevitable impurities A non-oriented electrical steel sheet excellent in iron loss after annealing (first invention).
【0010】C:0.01wt%以下、Si:1.0 wt%以下、
Mn:0.1 wt%以上、1.5 wt%以下、Al:0.2 wt%以上、
1.5 wt%以下およびREM :2wt ppm以上、80 wt ppm 以
下を含み、かつTiおよびZrの不可避混入をそれぞれTi:
15 wt ppm 以下およびZr:80 wt ppm 以下に抑制し、残
部は実質的にFeの組成になることを特徴とする低温短時
間での歪取焼鈍後鉄損に優れる無方向性電磁鋼板(第2
発明)。C: 0.01 wt% or less, Si: 1.0 wt% or less,
Mn: 0.1 wt% or more, 1.5 wt% or less, Al: 0.2 wt% or more,
1.5 wt% or less and REM: 2 wt ppm or more, 80 wt ppm or less, and Ti and Zr unavoidable contaminations are Ti:
Non-oriented electrical steel sheet with excellent iron loss after stress relief annealing at low temperature and short time characterized by suppressing to below 15 wt ppm and Zr: 80 wt ppm, and the balance is essentially Fe composition (No. Two
invention).
【0011】第2発明において、725 ℃・1時間の歪
取焼鈍後の鉄損(W15/50)が4.0W/kg 未満である無方向
性電磁鋼板(第3発明)。A non-oriented electrical steel sheet according to the second invention having a core loss (W 15/50 ) of less than 4.0 W / kg after strain relief annealing at 725 ° C. for 1 hour (third invention).
【0012】C:0.01wt%以下、Si:1.0 wt%以下、
Mn:0.1 wt%以上、1.5 wt%以下、Al:0.2 wt%以上、
1.5 wt%以下およびREM :5wt ppm以上、50 wt ppm 以
下を含み、かつTiおよびZrの不可避混入をそれぞれTi:
10wt ppm以下およびZr:80 wt ppm 以下に抑制し、残部
は実質的にFeの組成になることを特徴とする低温短時間
での歪取焼鈍後鉄損に優れる無方向性電磁鋼板(第4発
明)。C: 0.01 wt% or less, Si: 1.0 wt% or less,
Mn: 0.1 wt% or more, 1.5 wt% or less, Al: 0.2 wt% or more,
1.5 wt% or less and REM: 5 wt ppm or more, 50 wt ppm or less, and Ti and Zr unavoidable contaminations are contained in Ti:
Non-oriented electrical steel sheet with excellent iron loss after stress relief annealing at low temperature in a short time characterized by suppressing to 10 wt ppm or less and Zr: 80 wt ppm or less, and the balance being substantially Fe composition (4th invention).
【0013】 第4発明において、725 ℃・1時間の
歪取焼鈍後の鉄損(W15/50)が3.5W/kg 未満である無方
向性電磁鋼板(第5発明)。A non-oriented electrical steel sheet according to the fourth invention, which has an iron loss (W 15/50 ) of less than 3.5 W / kg after stress relief annealing at 725 ° C. for 1 hour (fifth invention).
【0014】C:0.01wt%以下、Si:1.0 wt%以下、
Mn:0.1 wt%以上、1.5 wt%以下、Al:0.2 wt%以上、
1.5 wt%以下およびREM :2wt ppm以上、80 wt ppm 以
下を含み、残部はFeおよび不可避的不純物の組成よりな
る鋼を鋳造後スラブとなし、直接あるいは冷却後再加熱
したのち熱間圧延し、そのまま、または熱延板焼鈍もし
くは自己焼鈍を施して、1回または中間焼鈍を挟む2回
以上の冷間圧延を行ったのち、仕上焼鈍を施すことを特
徴とする歪取焼鈍後鉄損に優れる無方向性電磁鋼板の製
造方法(第6発明)。C: 0.01 wt% or less, Si: 1.0 wt% or less,
Mn: 0.1 wt% or more, 1.5 wt% or less, Al: 0.2 wt% or more,
Steel containing 1.5 wt% or less and REM: 2 wt ppm or more, 80 wt ppm or less, and the balance of Fe and inevitable impurities is formed into a slab after casting, and is directly or after cooling, reheated, and then hot rolled, Excellent in core loss after stress relief annealing characterized by performing finish annealing after performing one time or two or more times of cold rolling with an intermediate annealing as it is, or after performing hot-rolled sheet annealing or self-annealing. Manufacturing method of non-oriented electrical steel sheet (sixth invention).
【0015】C:0.01wt%以下、Si:1.0 wt%以下、
Mn:0.1 wt%以上、1.5 wt%以下、Al:0.2 wt%以上、
1.5 wt%以下およびREM :2wt ppm以上、80 wt ppm 以
下を含み、かつTiおよびZrの不可避混入をそれぞれTi:
15wt ppm以下およびZr:80 wt ppm 以下に抑制し、残部
は実質的にFeの組成よりなる鋼を鋳造後スラブとなし、
直接あるいは冷却後再加熱したのち熱間圧延し、そのま
ま、または熱延板焼鈍もしくは自己焼鈍を施して、1回
または中間焼鈍を挟む2回以上の冷間圧延を行ったの
ち、仕上焼鈍を施すことを特徴とする低温短時間での歪
取焼鈍後鉄損に優れる無方向性電磁鋼板の製造方法(第
7発明)。C: 0.01 wt% or less, Si: 1.0 wt% or less,
Mn: 0.1 wt% or more, 1.5 wt% or less, Al: 0.2 wt% or more,
1.5 wt% or less and REM: 2 wt ppm or more, 80 wt ppm or less, and Ti and Zr unavoidable contaminations are Ti:
Suppressed to below 15 wt ppm and Zr: 80 wt ppm, the balance was made into a slab after casting of steel consisting essentially of Fe composition,
Directly or after cooling and then reheating, then hot rolling, as it is, or after hot-rolled sheet annealing or self-annealing, perform one or two or more cold rollings with intermediate annealing, and then perform finish annealing. A method for producing a non-oriented electrical steel sheet excellent in iron loss after stress relief annealing at low temperature in a short time (seventh invention), which is characterized by the above.
【0016】C:0.01wt%以下、Si:1.0 wt%以下、
Mn:0.1 wt%以上、1.5 wt%以下、Al:0.2 wt%以上、
1.5 wt%以下およびREM :5wt ppm以上、50 wt ppm 以
下を含み、かつTiおよびZrの不可避混入をそれぞれTi:
10wt ppm以下およびZr:80 wt ppm 以下に抑制し、残部
は実質的にFeの組成よりなる鋼を鋳造後スラブとなし、
直接あるいは冷却後再加熱したのち熱間圧延し、そのま
ま、または熱延板焼鈍もしくは自己焼鈍を施して、1回
または中間焼鈍を挟む2回以上の冷間圧延を行ったの
ち、仕上焼鈍を施すことを特徴とする低温短時間での歪
取焼鈍後鉄損に優れる無方向性電磁鋼板の製造方法(第
8発明)。C: 0.01 wt% or less, Si: 1.0 wt% or less,
Mn: 0.1 wt% or more, 1.5 wt% or less, Al: 0.2 wt% or more,
1.5 wt% or less and REM: 5 wt ppm or more, 50 wt ppm or less, and Ti and Zr unavoidable contaminations are contained in Ti:
Suppressed to below 10 wt ppm and Zr: 80 wt ppm, and the balance was made into a slab after casting of steel consisting essentially of Fe composition,
Directly or after cooling and then reheating, then hot rolling, as it is, or after hot-rolled sheet annealing or self-annealing, perform one or two or more cold rollings with intermediate annealing, and then perform finish annealing. A method for producing a non-oriented electrical steel sheet which is excellent in iron loss after stress relief annealing at low temperature in a short time (eighth invention).
【0017】C:0.01wt%以下、Si:1.0 wt%以下、
Mn:0.1 wt%以上、1.5 wt%以下、Al:0.2 wt%以上、
1.5 wt%以下およびREM :5wt ppm以上、50 wt ppm 以
下を含み、かつTiおよびZrの不可避混入をそれぞれTi:
10wt ppm以下およびZr:80 wt ppm 以下に抑制し、残部
は実質的にFeの組成よりなる鋼を鋳造後スラブとなし、
直接あるいは冷却後再加熱したのち熱間圧延し、800 〜
1100℃の温度範囲で均熱時間40秒間以下の短時間連続熱
延板焼鈍を施し、1回または中間焼鈍を挟む2回以上の
冷間圧延を行ったのち、仕上焼鈍を施すことを特徴とす
る低温短時間での歪取焼鈍後鉄損に優れる無方向性電磁
鋼板の製造方法(第9発明)。C: 0.01 wt% or less, Si: 1.0 wt% or less,
Mn: 0.1 wt% or more, 1.5 wt% or less, Al: 0.2 wt% or more,
1.5 wt% or less and REM: 5 wt ppm or more, 50 wt ppm or less, and Ti and Zr unavoidable contaminations are contained in Ti:
Suppressed to below 10 wt ppm and Zr: 80 wt ppm, and the balance was made into a slab after casting of steel consisting essentially of Fe composition,
Directly or after reheating after cooling, hot rolling, 800 ~
Characterized by performing short-time continuous hot-rolled sheet annealing in a temperature range of 1100 ° C for a soaking time of 40 seconds or less, performing cold rolling once or twice with intermediate annealing, and then performing finish annealing. A method for manufacturing a non-oriented electrical steel sheet excellent in iron loss after stress relief annealing at low temperature for a short time (ninth invention).
【0018】[0018]
【作用】以下に、この発明の作用についてその詳細を述
べる。この発明は、上述の条件を要件とするものである
が、かかる発明をなすに至った経緯について説明する。
この発明者らは、従来までの知見より一層詳しく、低Si
無方向性電磁鋼板の低温歪取焼鈍時の粒成長について、
研究、検討を行った結果、微量のTi, Zr, REMなどが低
温歪取焼鈍時の粒成長性に著しい影響をあたえることが
明かとなった。以下に、それらの結果の詳細を各成分別
に述べる。なお以下は研究室的規模で調査したものであ
る。The function of the present invention will be described in detail below. The present invention is subject to the above-mentioned conditions, but the background of the invention will be described.
The inventors of the present invention are more detailed than the conventional knowledge, and
Regarding grain growth during low temperature strain relief annealing of non-oriented electrical steel sheets,
As a result of research and study, it was revealed that a small amount of Ti, Zr, REM, etc. exerts a significant effect on grain growth during low temperature strain relief annealing. The details of the results are described below for each component. The following is a research on a laboratory scale.
【0019】 Ti 種々のTi濃度を有し、かつ、Si:0.5 %、Mn:0.55%、
Zr:5ppm 、Al:0.3%を含有する鋼に、さらにREM :2
0 ppmを添加したものと無添加のものとを熱間圧延し、
冷間圧延ののち、780 ℃・30秒間の仕上げ焼鈍を施し、
製品板とした。これら製品板結晶の粒径は22〜26μm で
あった。つぎにこれらの製品板に725 ℃・1時間の歪取
り焼鈍を施したのち磁気測定を行い、Tiが低温短時間歪
取焼鈍後の鉄損におよぼす影響について調査した。図1
にTiが725 ℃・1時間の歪取焼鈍後の鉄損におよぼす影
響を示す。図1からTiが増加すると鉄損は劣化し、希土
類成分を添加しない場合、特にその傾向は著しい。逆
に、希土類成分を添加し、かつTiを15ppm 以下、とく
に、10ppm 以下とすることにより、極めて良好な鉄損が
得られることが明らかとなった。Ti having various Ti concentrations, Si: 0.5%, Mn: 0.55%,
Steel containing Zr: 5ppm, Al: 0.3%, and REM: 2
Hot rolling the one with 0 ppm added and the one without addition,
After cold rolling, finish annealing at 780 ℃ for 30 seconds,
Product board. The grain size of these product plate crystals was 22 to 26 μm. Next, these product sheets were subjected to strain relief annealing at 725 ° C. for 1 hour and then magnetic measurements were performed to investigate the effect of Ti on iron loss after low temperature short time strain relief annealing. FIG.
Shows the effect of Ti on iron loss after stress relief annealing at 725 ° C for 1 hour. From FIG. 1, iron loss deteriorates as Ti increases, and this tendency is particularly remarkable when rare earth components are not added. On the contrary, it became clear that extremely good iron loss can be obtained by adding a rare earth component and setting Ti to 15 ppm or less, particularly 10 ppm or less.
【0020】 Zr 種々のZr濃度を有する、Si:0.5 %、Mn:0.55%、Ti:
5ppm 、Al:0.3 %の鋼を熱間圧延し、冷間圧延のの
ち、780 ℃・30秒間の仕上焼鈍を施し、製品板とした。
それら製品板の結晶粒径は24〜26μm であった。つぎに
これらの製品板に750 ℃・2時間、および725 ℃・1時
間の歪取焼鈍を施したのち、磁気測定と断面の結晶粒径
の測定とを行い、Zrが低温短時間歪取焼鈍後の鉄損およ
び粒成長におよぼす影響について調査した。図2にZrが
750 ℃・2時間および725 ℃・1時間の歪取焼鈍後の鉄
損(W15/50)におよぼす影響を示す。図2から明らかな
ように、725 ℃・1時間歪取焼鈍ではZr:5ppm 未満で
のみ良好な鉄損が得られた。そして、Zr:5ppm 以上で
は、歪取焼鈍条件が750 ℃・2時間から725 ℃・1時間
に低温短時間化することで、約0.7 W/kgもの鉄損劣化を
生じた。Zr Si: 0.5%, Mn: 0.55%, Ti: with various Zr concentrations.
Steel of 5 ppm and Al: 0.3% was hot-rolled, cold-rolled, and then finish-annealed at 780 ° C. for 30 seconds to obtain a product sheet.
The grain size of the product plates was 24-26 μm. Next, these product sheets were subjected to strain relief annealing at 750 ° C. for 2 hours and 725 ° C. for 1 hour, and then magnetic measurement and cross-sectional grain size measurement were carried out. The effects on subsequent iron loss and grain growth were investigated. Zr in Figure 2
The effect on iron loss (W 15/50 ) after strain relief annealing at 750 ° C for 2 hours and 725 ° C for 1 hour is shown. As is clear from FIG. 2, in the stress relief annealing at 725 ° C. for 1 hour, good iron loss was obtained only at Zr: less than 5 ppm. When Zr: 5 ppm or more, the strain relief annealing condition was reduced from 750 ° C. for 2 hours to 725 ° C. for 1 hour at a low temperature for a short time, resulting in iron loss deterioration of about 0.7 W / kg.
【0021】図3にZrが750 ℃・2時間および725 ℃・
1時間の歪取焼鈍後の結晶粒径におよぼす影響を示す。
図3から、725 ℃・1時間の歪取焼鈍では、Zr:5ppm
未満の場合のみ良好な粒成長性が得られ、低温短時間焼
鈍時の鉄損劣化の原因が粒成長不良であることが確認さ
れた。In FIG. 3, Zr is 750 ° C. for 2 hours and 725 ° C.
The effect on the crystal grain size after 1 hour of strain relief annealing is shown.
From Fig. 3, Zr: 5ppm in strain relief annealing at 725 ° C for 1 hour
It was confirmed that good grain growth was obtained only when the amount was less than the range, and the cause of iron loss deterioration during low temperature short time annealing was poor grain growth.
【0022】歪取焼鈍条件による粒成長性の相違は、低
温歪取焼鈍において、とくに粒成長阻害因子であるZrを
含有する微細析出物の影響を強く受けるためと考えられ
る。このように、Zrを5ppm 未満とすれば、低温短時間
歪取焼鈍後の鉄損は良好となることが明かとなったが、
Al>0.2 %を含む鋼の工場規模の溶製では、Zrを5ppm
未満とすることは、非常に困難である。というのは、溶
鋼に添加される合金鉄中のZrを低減しても、スラグや耐
火物中のZrがAlによって還元され、鋼中のZr濃度は通常
5ppm 以上となるからである。It is considered that the difference in grain growth property depending on the strain relief annealing condition is strongly influenced by the fine precipitates containing Zr which is a grain growth inhibitor in the low temperature strain relief annealing. Thus, it was revealed that if Zr is less than 5 ppm, the iron loss after low-temperature short-time stress relief annealing is good, but
For factory-scale melting of steel containing Al> 0.2%, Zr is 5ppm.
It is very difficult to be less than. This is because even if Zr in the ferroalloy added to the molten steel is reduced, Zr in the slag and refractory is reduced by Al, and the Zr concentration in the steel is usually 5 ppm or more.
【0023】そこで、発明者らは種々の添加成分が低温
短時間歪取焼鈍後の鉄損に及ぼす影響を調査した。種々
のZr濃度を有し、かつSi:0.5 %、Mn:0.55%、Ti:5
ppm 、Al:0.3 %を含有する鋼に、さらにREM :20ppm
を含有させたものとREM 無添加のものとを熱間圧延し、
冷間圧延ののち、780 ℃・30秒間の仕上焼鈍を施し製品
板とした。それら製品板の結晶粒径は24〜26μm であっ
た。つぎにそれらの製品板に725 ℃・1時間の歪取焼鈍
を施し磁気測定を行った。Therefore, the inventors investigated the effect of various additive components on iron loss after low temperature short time stress relief annealing. With various Zr concentrations, Si: 0.5%, Mn: 0.55%, Ti: 5
ppm, Al: 0.3% steel, REM: 20 ppm
Hot-rolled one containing REM and one without REM,
After cold rolling, finish annealing was carried out at 780 ° C for 30 seconds to obtain a product sheet. The grain size of the product plates was 24-26 μm. Next, the product sheets were subjected to stress relief annealing at 725 ° C. for 1 hour and magnetic measurements were performed.
【0024】図4に、Zr濃度が725 ℃・1時間の歪取焼
鈍後の鉄損におよぼす影響を示す。図4から明らかなよ
うに、希土類成分の添加によって、Zr:80ppm まで良好
な鉄損を得ることができた。このように、極微量(2〜
80ppm)の希土類金属を鋼中に含有させることにより、Zr
の低温短時間歪取焼鈍後の鉄損への悪影響を除くことが
できることを新たに見いだした。FIG. 4 shows the effect of Zr concentration on iron loss after stress relief annealing at 725 ° C. for 1 hour. As is clear from FIG. 4, by adding the rare earth component, good iron loss could be obtained up to Zr: 80 ppm. In this way, very small amount (2-
(80ppm) Rare earth metal in steel
It was newly found that the adverse effect on iron loss after low temperature short time stress relief annealing can be eliminated.
【0025】 REM (希土類金属) 種々のREM 濃度を有し、かつSi:0.5 %、Mn:0.55%、
Ti:7ppm 、Zr:40ppm 、Al:0.3 %を含有する鋼を熱
間圧延し、冷間圧延ののち、780 ℃・30秒間の仕上焼鈍
を施し製品板とした。それら製品板の結晶粒径は23〜26
μm であった。これらの製品板に725 ℃・1時間の歪取
焼鈍を施したのち磁気測定を行い、REMが低温短時間歪
取焼鈍後の鉄損におよぼす影響について調査した。図5
にREM が725 ℃・1時間の歪取焼鈍後の鉄損におよぼす
影響を示す。図5から明らかなようにREM が2〜80ppm
、とくに5〜50ppm で著しく良好な鉄損が得られた。REM (rare earth metal) Having various REM concentrations, Si: 0.5%, Mn: 0.55%,
Steel containing Ti: 7 ppm, Zr: 40 ppm, and Al: 0.3% was hot-rolled, cold-rolled, and then subjected to finish annealing at 780 ° C. for 30 seconds to obtain a product sheet. The crystal grain size of those product plates is 23 to 26.
It was μm. These product sheets were subjected to stress relief annealing at 725 ° C. for 1 hour and then magnetic measurements were performed to investigate the effect of REM on iron loss after low temperature short time stress relief annealing. Figure 5
Shows the effect of REM on iron loss after stress relief annealing at 725 ° C for 1 hour. As is clear from Fig. 5, REM is 2-80ppm
Especially, a very good iron loss was obtained at 5 to 50 ppm.
【0026】このように、低Si無方向性電磁鋼板に、Ti
を15 ppm以下、Alを0.2 〜1.5 %とし、希土類成分を含
有量2〜80ppm の範囲で添加することにより、Zr濃度80
ppmまで低温短時間歪取焼鈍後において良好な鉄損が得
られることが判明した。したがって、この発明は、従来
不可能であった、低温短時間歪取焼鈍後に優れる鉄損を
有する低Si無方向性電磁鋼板の工業的規模での生産を可
能にするものである。As described above, the low Si non-oriented electrical steel sheet is
Content of 15 ppm or less, Al content of 0.2 to 1.5%, and addition of rare earth component in the content range of 2 to 80 ppm
It was found that good iron loss can be obtained after low temperature short time stress relief annealing up to ppm. Therefore, the present invention enables industrial-scale production of a low-Si non-oriented electrical steel sheet having excellent iron loss after low-temperature short-time strain relief annealing, which has been impossible in the past.
【0027】ここで、この発明と前記した従来技術との
関係についてその相違を以下に列記する。特開昭51−62
115 号、同55−34675 号、同56−102550号、及び同57−
192219号公報等においてはγ→α変態点の高い(もしく
は変態しない)Si:1.0 %を超える中高Si鋼における、
低S化、S固定のための希土類成分添加に関する技術で
ある。しかしながら、この発明はSi:1.0 %以下のγ→
α変態点の低い、低Si鋼を対称としていて、この発明と
は異なる技術と理解できる。さらに、Tiを15ppm 以下と
することと、希土類成分添加との複合効果により、著し
く良好な低温短時間歪取焼鈍後の鉄損が得られること
は、これら従来公知技術からは類推しえない。Here, the differences between the present invention and the above-mentioned prior art will be listed below. JP-A-51-62
115, 55-34675, 56-102550, and 57-
In the 192219 publication, etc., Si having a high γ → α transformation point (or no transformation): Middle-high Si steel exceeding 1.0%,
This is a technology related to the addition of rare earth components for lowering S and fixing S. However, according to the present invention, Si: 1.0% or less γ →
It can be understood that this is a technology different from the present invention because the low Si steel having a low α transformation point is symmetrical. Further, it cannot be inferred from these conventionally known techniques that a remarkably excellent iron loss after low-temperature short-time stress relief annealing can be obtained by the combined effect of setting Ti to 15 ppm or less and addition of a rare earth component.
【0028】特開昭52−2824号公報はSi:0.5 〜4.0 %
鋼、同58−164724号公報は4%以下のSi鋼における希土
類成分添加の技術である。しかしながら、いずれの場合
においても、本文ならびに実施例では、Si:1.0 %超え
の場合のみが取り上げられ、Si:1.0 %以下の場合につ
いての記述はない。したがって、これらも、γ→α変態
点の高い、中高Si鋼における低S化、S固定のための希
土類成分添加に関する技術である。また、この発明にお
ける希土類成分添加の目的がZrの無害化にあることから
も、上記技術は、この発明とは異なる技術であると解さ
れる。さらに、Tiを15ppm 以下とすることと、希土類成
分添加との複合効果により、著しく良好な低温短時間歪
取焼鈍後の鉄損が得られることは、これら従来公知技術
からは類推しえない。Japanese Unexamined Patent Publication No. 52-2824 discloses that Si: 0.5 to 4.0%
Steel, JP-A-58-164724 is a technique for adding a rare earth component in Si steel of 4% or less. However, in any case, in the text and examples, only the case where Si: 1.0% is exceeded, and there is no description about the case where Si: 1.0% or less. Therefore, these are also the techniques related to the addition of rare earth components for lowering S and fixing S in medium-high Si steels having a high γ → α transformation point. Further, since the purpose of adding the rare earth component in the present invention is to render Zr harmless, it is understood that the above technique is different from the present invention. Further, it cannot be inferred from these conventionally known techniques that a remarkably excellent iron loss after low-temperature short-time stress relief annealing can be obtained by the combined effect of setting Ti to 15 ppm or less and addition of a rare earth component.
【0029】特開昭59−43814 号公報、同59−74212 号
公報は製鋼におけるREM 脱硫技術に関するものである
が、いずれも、本文、実施例において3%Si鋼の場合の
みが取り上げられ、Si:1.0 %以下の記述はなく、中高
Si鋼における、低S化、S固定のための希土類成分の添
加に関する技術である。また、特開昭60−145310号公報
はSi:0.1 〜1.0 %、Al<10ppm の鋼において、Si脱酸
と希土類成分添加による脱酸を併用し、Oを減少させる
ことを目的とするものであるから、この発明とは異なる
技術である。Japanese Unexamined Patent Publication Nos. 59-43814 and 59-74212 relate to REM desulfurization technology in steelmaking, but in both the text and examples, only the case of 3% Si steel is taken up. : No description below 1.0%, high
It is a technology related to the addition of rare earth components for lowering S and fixing S in Si steel. Further, JP-A-60-145310 aims to reduce O by simultaneously using Si deoxidation and deoxidation by adding a rare earth component in a steel having Si: 0.1 to 1.0% and Al <10 ppm. Therefore, the technology is different from the present invention.
【0030】特開平3−215627号公報はSi:0.1 〜1.4
%、Al:0.2 %未満の無方向性電磁鋼板における、希土
類成分添加の技術である。これに対し、この発明の特徴
はAlを0.2 〜1.5 %とし、Tiを15ppm 以下とすること
と、希土類成分添加との複合効果により、著しく良好な
低温短時間歪取焼鈍時の粒成長性、ならびに良好な鉄損
が得られることであり、その効果は上記特開平3−2156
27号公報からは到底類推しえるものでなく、この発明
は、更に進んだ技術と解される。Japanese Patent Laid-Open No. 3-215627 discloses Si: 0.1 to 1.4.
%, Al: A technology for adding rare earth components in non-oriented electrical steel sheets of less than 0.2%. On the other hand, the feature of the present invention is that Al is 0.2 to 1.5%, Ti is 15 ppm or less, and due to the combined effect of the rare earth component addition, the grain growth property during the extremely low temperature short time stress relief annealing, In addition, good iron loss can be obtained, and the effect thereof is described in the above-mentioned JP-A-3-2156
Nothing can be inferred from the publication No. 27, and the present invention is understood to be a further advanced technology.
【0031】次にこの発明の諸条件について述べる。ま
ず、成分組成の限定理由から述べる。 C:0.01wt%以下 Cは炭化物の析出により、磁気特性を劣化させるので、
その含有量は0.01wt%以下とする。望ましくは0.005 wt
%未満とすることが好ましい。Next, various conditions of the present invention will be described. First, the reasons for limiting the component composition will be described. C: 0.01 wt% or less Since C deteriorates the magnetic properties due to the precipitation of carbides,
Its content is 0.01 wt% or less. Desirably 0.005 wt
It is preferably less than%.
【0032】Si:1.0 wt%以下 Siの添加は硬度を高め、打抜精度を劣化させる。したが
ってその含有量は、1.0 wt%以下とするが、Siは固有抵
抗を高めることによって鉄損を低減する有用な成分であ
るので、0.1 wt%以上含有させることが望ましい。Si: 1.0 wt% or less Addition of Si increases hardness and deteriorates punching accuracy. Therefore, its content is set to 1.0 wt% or less, but Si is a useful component for reducing iron loss by increasing the specific resistance, so it is desirable to contain 0.1 wt% or more.
【0033】Mn:0.1 〜1.5 wt% Mnは、Sを粗大MnS として固定する働きがあり、そのた
めに0.1 wt%以上、望ましくは0.2 wt%以上含有させ
る。一方、Mn添加量の増加は磁束密度を劣化させるた
め、その含有量の上限は1.5 wt%とするが望ましくは1.
0 wt%がよい。したがってその含有量は0.1 wt%以上、
1.5wt %以下とするが、望ましくは0.2 wt%以上、1.0
wt%以下が好ましい。Mn: 0.1-1.5 wt% Mn has a function of fixing S as coarse MnS, and therefore, it is contained in an amount of 0.1 wt% or more, preferably 0.2 wt% or more. On the other hand, since an increase in the amount of Mn added deteriorates the magnetic flux density, the upper limit of its content is set to 1.5 wt%, but preferably 1.
0 wt% is good. Therefore, its content is 0.1 wt% or more,
1.5 wt% or less, preferably 0.2 wt% or more, 1.0
Wt% or less is preferable.
【0034】Al:0.2 %〜1.5 wt% Alは、0.2 wt%未満では微細なAlN が生成し、粒成長性
を劣化させる。また、1.5 wt%を超えて含有させると磁
束密度を劣化させる。したがってその含有量は、0.2 wt
%以上、1.5 wt%以下とする。Al: 0.2% to 1.5 wt% When Al is less than 0.2 wt%, fine AlN is produced and the grain growth property is deteriorated. Further, if the content exceeds 1.5 wt%, the magnetic flux density is deteriorated. Therefore, its content is 0.2 wt.
% Or more and 1.5 wt% or less.
【0035】REM :2〜80 wt ppm REM は、これらの成分の中から1種または2種以上を合
計2〜80 wt ppm の範囲で含有させることにより、工業
的規模での製鋼において不可避的に含まれる5〜80 wt
ppm のZrの低温短時間歪取焼鈍時の粒成長性への悪影響
を回避することができる。含有量が2 wt ppm 未満では
上記効果が不十分であり、その含有量は2 wt ppm 以上
とするが、好ましくは5 wt ppm 以上含有させることが
よい。一方、過度の添加はREM が形成する介在物の増加
を招き、REM 系介在物そのものによる粒成長の阻害が問
題となることから、その含有量は80 wt ppm 以下とする
が、望ましくは50 wt ppm 以下がよい。REM: 2-80 wt ppm REM is unavoidable in steel making on an industrial scale by containing one or more of these components in a total amount of 2-80 wt ppm. 5 to 80 wt included
It is possible to avoid the adverse effect of ppm Zr on grain growth during low temperature short time stress relief annealing. If the content is less than 2 wtppm, the above effect is insufficient, and the content is set to 2 wtppm or more, but preferably 5 wtppm or more. On the other hand, excessive addition causes an increase in inclusions formed by REM, and there is a problem of inhibition of grain growth by the REM inclusions themselves.Therefore, the content should be 80 wt ppm or less, but preferably 50 wt ppm. ppm or less is good.
【0036】Ti:15 wt ppm 以下 Tiは極微量で低温短時間歪取焼鈍時の粒成長性、および
鉄損を著しく劣化させるので、良好な鉄損を得るために
その含有量は15 wt ppm 以下とする。含有量を10 wt pp
m 以下とすることにより、さらに良好な鉄損を得ること
ができる。なお、Tiは単独で15 wt ppm 以下としても上
記効果は小さく、REM 添加による複合効果により、低温
短時間歪取焼鈍時の粒成長性は良好となる。Ti: 15 wt ppm or less Ti is a very small amount and significantly deteriorates grain growth property and iron loss at the time of low temperature short time stress relief annealing. Therefore, the content is 15 wt ppm in order to obtain good iron loss. Below. Content of 10 wt pp
By setting m or less, it is possible to obtain a better iron loss. The above effect is small even if Ti alone is 15 wt ppm or less, and due to the combined effect of REM addition, grain growth during low temperature short time stress relief annealing is improved.
【0037】Zr:80 wt ppm 以下 Zrは、極微量で低温短時間歪取焼鈍後の鉄損を劣化させ
るので、できるだけ低減することが望ましが、5wt ppm
以下を工業的規模で安定して達成することは著しくコス
ト高を招く。そこで、この発明では、工業的に安定して
達成可能なZr:5〜80 wt ppm の範囲においてREM を添
加することによりZrを無害化する。REM添加と併せてZr
を80wt ppm以下にすることにより低温短時間歪取焼鈍後
の鉄損の低減効果が顕著となることからその含有量は80
wt ppm 以下とする。Zr: 80 wt ppm or less Zr deteriorates the iron loss after the stress relief annealing at a low temperature for a short time in a very small amount, so it is desirable to reduce it as much as possible, but it is 5 wt ppm.
Stable achievement of the following on an industrial scale is extremely costly. Therefore, in the present invention, Zr is made harmless by adding REM within the range of Zr: 5 to 80 wt ppm which can be achieved industrially stably. Zr together with REM addition
Content of 80 wt ppm or less, the effect of reducing iron loss after low-temperature short-time strain relief annealing becomes remarkable, so its content is 80%.
It should be below wt ppm.
【0038】この発明は、上記以外の成分については特
に限定するものではないが好適な範囲を以下に述べる。In the present invention, the components other than those described above are not particularly limited, but preferred ranges will be described below.
【0039】P:0.2 wt%以下 Pは、打抜性改善のため、添加することができるが、含
有量が0.2 wt%を超える添加は冷延性を劣化させるの
で、その含有量は0.2 wt%以下とすることが望ましい。P: 0.2 wt% or less P can be added in order to improve punchability, but if the content exceeds 0.2 wt%, the cold rolling property deteriorates, so the content is 0.2 wt%. The following is desirable.
【0040】S:0.01wt%以下 Sは、MnとともにMnSを形成し、磁壁移動、粒成長の障
害となり、磁気特性を劣化させるので、その含有量は0.
01wt%以下とすることが望ましい。S: 0.01 wt% or less S forms MnS together with Mn, obstructs domain wall movement and grain growth, and deteriorates magnetic properties.
It is desirable to set it to 01 wt% or less.
【0041】N:0.01wt%以下 Nは、窒化物を生成し、磁壁移動、粒成長の障害とな
り、磁気特性を劣化させるので、その含有量は0.01wt%
以下とすることが望ましい。N: 0.01 wt% or less N forms a nitride, hinders domain wall movement and grain growth, and deteriorates magnetic properties, so its content is 0.01 wt%.
It is desirable to make the following.
【0042】O: 50 wt ppm以下 Oは、 50 wt ppm以上含まれると、磁壁移動、粒成長の
障害となり、磁気特性を劣化させるので、その含有量は
50 wt ppm以下とすることが望ましい。O: 50 wt ppm or less When O is contained in an amount of 50 wt ppm or more, it interferes with domain wall movement and grain growth and deteriorates magnetic characteristics.
It is desirable to set it to 50 wt ppm or less.
【0043】つぎに、この発明における好適な製造条件
ならびに製造条件の限定理由を説明する。転炉、脱ガス
など、常法の製鋼方法により、上記組成に調整し、連続
鋳造あるいは鋳造−造塊法により鋳造しスラブとする。
つづいてスラブを熱間圧延するが、スラブを再加熱した
のち、熱間圧延する方法、スラブ加熱せずに連続鋳造後
直接熱間圧延する方法のいずれもが適用できる。磁気特
性として、特に高い磁束密度を得ようとする場合には、
熱延板焼鈍、もしくは、熱間圧延後巻取時に自己焼鈍を
施すことにより、熱延板の結晶粒を粗大化させ集合組織
を改善することが有効である。熱延板焼鈍は、箱焼鈍
(例えば850 ℃・1時間)あるいは、連続焼鈍(たとえ
ば950 ℃・2分間)のいずれもが適応しうる。Next, suitable manufacturing conditions and reasons for limiting the manufacturing conditions in the present invention will be described. The composition is adjusted to the above-mentioned composition by a conventional steelmaking method such as a converter or degassing, and cast by a continuous casting or a casting-ingot making method to obtain a slab.
Subsequently, the slab is hot-rolled, but either a method of reheating the slab and then hot-rolling it, or a method of directly hot-rolling after continuous casting without heating the slab can be applied. As a magnetic property, when trying to obtain a particularly high magnetic flux density,
It is effective to anneal the hot-rolled sheet or perform self-annealing at the time of winding after hot rolling to coarsen the crystal grains of the hot-rolled sheet and improve the texture. As the hot-rolled sheet annealing, either box annealing (for example, 850 ° C. for 1 hour) or continuous annealing (for example, 950 ° C. for 2 minutes) can be applied.
【0044】熱延板焼鈍は、近年、低コスト化、生産性
の向上の観点から、連続化かつ短時間化されてきてい
る。これまでは、均熱時間が30秒間といった短時間の熱
延板焼鈍では、熱延板の結晶粒径が十分粗大化されず、
高い磁束密度を得ることができなかった。しかし、この
発明においては、短時間の熱延板焼鈍によっても、高い
磁束密度を得ることができる効果も有する。In recent years, hot-rolled sheet annealing has been continuous and shortened in terms of cost reduction and productivity improvement. So far, in hot-rolled sheet annealing for a short soaking time of 30 seconds, the crystal grain size of the hot-rolled sheet is not sufficiently coarsened,
It was not possible to obtain a high magnetic flux density. However, the present invention also has an effect that a high magnetic flux density can be obtained even by annealing the hot rolled sheet for a short time.
【0045】すなわち、上記効果を実験例に基づいて説
明する。表1に示す成分組成のスラブを熱間圧延し、95
0 ℃の温度にて種々の均熱時間の熱延板焼鈍を施し、冷
間圧延後、仕上げ焼鈍ののち725 ℃・1時間の歪取焼鈍
を施した鋼板について磁束密度を調査した。That is, the above effects will be described based on experimental examples. The slabs with the composition shown in Table 1 were hot-rolled to 95
The magnetic flux densities of the steel sheets were annealed at a temperature of 0 ° C. for various soaking times, cold rolled, finish annealed, and then subjected to strain relief annealing at 725 ° C. for 1 hour.
【0046】[0046]
【表1】 これらの熱延板焼鈍条件および調査結果を表1に併記し
た。[Table 1] Table 1 also shows the annealing conditions for hot-rolled sheets and the results of the investigation.
【0047】表1から明らかなように、REM :5〜50wt
ppm、Ti:10wt ppm以下およびZr:80wt ppm以下を満た
してなる成分組成では熱延板の粒成長性が著しく優れて
いるため、従来良好な磁束密度を得るために5分間を要
していた熱延板焼鈍を40秒間以下にできるという顕著な
効果を発揮する。その結果、低コストで磁束密度、鉄損
ともに優れる製品を得ることができる。上記において、
熱延板焼鈍温度は、800 ℃未満では熱延板焼鈍による熱
延板結晶粒成長の効果が小さく、また1100℃を超えると
経済的に不利になるので、800℃以上、1100℃以下の温
度範囲とすることがよい。As is clear from Table 1, REM: 5 to 50 wt
With a composition that satisfies ppm, Ti: 10 wt ppm or less and Zr: 80 wt ppm or less, the grain growth property of the hot-rolled sheet is remarkably excellent. Therefore, conventionally, it took 5 minutes to obtain a good magnetic flux density. It has a remarkable effect that the hot-rolled sheet annealing can be done for 40 seconds or less. As a result, a product having excellent magnetic flux density and iron loss can be obtained at low cost. In the above,
If the hot-rolled sheet annealing temperature is less than 800 ° C, the effect of hot-rolled sheet crystal grain growth due to hot-rolled sheet annealing is small, and if it exceeds 1100 ° C, it is economically disadvantageous. It should be a range.
【0048】その後、冷間圧延を施す。1回の冷間圧延
により製品厚みとし、仕上げ焼鈍する方法、または、中
間焼鈍を挟む2回以上の冷間圧延を施して製品厚みと
し、仕上焼鈍する方法のいずれかにより、製品とする。
仕上焼鈍は、常法のいずれもが適応しうるが、製品の結
晶粒径が大きいと著しく打ち抜き精度が損なわれるの
で、粒径が40μm 未満、望ましくは10〜30μm の範囲と
する焼鈍条件(温度と時間)を選択することがよい。ま
た、公知の方法によって、鋼板表面に絶縁被膜を被成し
てもよい。After that, cold rolling is performed. A product is obtained by either one of a method in which the product thickness is obtained by one cold rolling and finish annealing, or a method in which the product thickness is obtained by performing cold rolling two or more times with intermediate annealing between them and finish annealing.
Any of the usual methods can be applied to finish annealing, but punching accuracy is significantly impaired if the crystal grain size of the product is large.Therefore, annealing conditions (temperature range of 40 μm or less, preferably 10 to 30 μm) should be used. And time). Further, an insulating coating may be formed on the surface of the steel sheet by a known method.
【0049】[0049]
実施例1 転炉で2種類の成分組成に溶製し、脱ガス処理後、連続
鋳造によりスラブと成し、該スラブを再加熱後熱間圧延
を施しそれぞれ熱延板とした。つぎに、熱延板焼鈍を行
ったもの行なわなかったものについて、酸洗後、冷間圧
延により板厚:0.5mm の冷延板とし、800 ℃・15秒間の
仕上焼鈍を行い、絶縁被膜を被成してそれぞれ製品とし
た。それらの製品の結晶粒径は全て35μm 以下であっ
た。その後、それぞれの製品はせん断後、窒素雰囲気中
で725 ℃・1 時間の歪取焼鈍を行ったのち、25cmエプス
タイン法により磁気測定を行った。Example 1 Two types of component compositions were melted in a converter, degassed, and continuously cast into slabs. The slabs were reheated and hot-rolled to obtain hot-rolled sheets. Next, hot-rolled sheet annealed and non-annealed, after pickling, cold-rolled into a cold-rolled sheet with a thickness of 0.5 mm, and finish annealing at 800 ° C for 15 seconds to remove the insulation coating. Each was covered and made into a product. The crystal grain sizes of those products were all 35 μm or less. After that, each product was sheared, subjected to stress relief annealing at 725 ° C. for 1 hour in a nitrogen atmosphere, and then magnetically measured by the 25 cm Epstein method.
【0050】製品板の分析成分組成、熱延板焼鈍条件な
らびに歪取焼鈍後の磁気測定結果を表2にまとめて示
す。Table 2 shows the analytical component composition of the product sheet, the conditions for hot-rolled sheet annealing, and the magnetic measurement results after stress relief annealing.
【表2】 [Table 2]
【0051】表2から明らかなように、試料No. 1およ
び2(第1、第6発明例)は試料No. 3および4の比較
例に比し良好な鉄損を示している。As is clear from Table 2, sample Nos. 1 and 2 (first and sixth invention examples) show better iron loss than the comparative examples of sample Nos. 3 and 4.
【0052】実施例2 転炉で種々の成分組成に溶製し、脱ガス処理後、連続鋳
造によりスラブと成し、冷却することなしに直接熱間圧
延を施しそれぞれ熱延板とした。つぎに、950℃・2分
間の熱延板焼鈍後、酸洗し、冷間圧延により板厚:0.5m
m の冷延板としたのち、800 ℃・15秒間の仕上焼鈍を行
い、絶縁被膜を被成してそれぞれ製品とした。それらの
製品の結晶粒径は全て35μm 以下であった。その後各製
品はせん断後、窒素雰囲気中で725 ℃・1時間の歪取焼
鈍を行い、25cmエプスタイン法により磁気測定を行っ
た。Example 2 Various components were melted in a converter, degassed, continuously cast into slabs, and directly hot-rolled without cooling to obtain hot-rolled sheets. Next, after hot-rolled sheet annealing at 950 ° C for 2 minutes, pickling and cold rolling sheet thickness: 0.5m
After making a cold-rolled sheet of m, finish annealing was performed at 800 ° C for 15 seconds, and an insulating coating was formed to obtain each product. The crystal grain sizes of those products were all 35 μm or less. After that, each product was sheared, subjected to stress relief annealing at 725 ° C. for 1 hour in a nitrogen atmosphere, and magnetically measured by the 25 cm Epstein method.
【0053】製品板の分析成分組成および磁気測定結果
を表3にまとめて示す。Table 3 shows the analytical composition and magnetic measurement results of the product plate.
【表3】 [Table 3]
【0054】表3から明らかなように、比較例に比し発
明例は鉄損が低く、特に試料No. 1〜4の発明例の鉄損
は良好でありその中でも試料No. 1の鉄損は特段に優れ
ている。また試料No. 1〜3は磁束密度も優れた値を示
している。なお試料No.13 はSiを1.25wt%含有させたも
のであり、鉄損は良好であるものの打抜性に問題があり
打抜精度不良が生じた。As is apparent from Table 3, the iron loss of the invention examples is lower than that of the comparative example, and particularly the iron loss of the invention examples of sample Nos. 1 to 4 is good, and among them, the iron loss of sample No. 1 is good. Is exceptionally good. Further, sample Nos. 1 to 3 also show excellent magnetic flux densities. Sample No. 13 contained 1.25 wt% of Si, and although the iron loss was good, there was a problem with the punchability and poor punching accuracy.
【0055】実施例3 熱延板焼鈍を行わなかった以外は実施例2と同様にし
て、製品板の製造、その後の製品板の処理ならびに調査
を行った。Example 3 Production of a product plate, and subsequent treatment and investigation of the product plate were performed in the same manner as in Example 2 except that the hot-rolled plate annealing was not performed.
【0056】それら製品板の結晶粒径は全て35μm 以下
であった。また、製品板の分析成分組成および磁気測定
結果は表4にまとめて示す。The crystal grain sizes of the product plates were all 35 μm or less. Table 4 shows the analysis composition and magnetic measurement results of the product plate.
【表4】 [Table 4]
【0057】表4から明らかなように、熱延板焼鈍を行
わない場合においても、比較例に比し発明例の鉄損が低
いなど実施例2の場合と同様の傾向を示している。As is clear from Table 4, even when the hot-rolled sheet is not annealed, the iron loss of the invention example is lower than that of the comparative example and the same tendency as that of the example 2 is shown.
【0058】実施例4 転炉で5種類の成分組成に溶製し、脱ガス処理後、連続
鋳造によりスラブと成し、冷却することなしに直接熱間
圧延を施しそれぞれ熱延板とした。その後、950 ℃・30
秒間の短時間の熱延板焼鈍を施したのち、酸洗後、冷間
圧延により板厚:0.5mm の冷却板とし、780 ℃・15秒間
の仕上焼鈍を行い、絶縁被膜を被成してそれぞれ製品と
した。それらの製品の結晶粒径は全て15〜25μm の範囲
にあった。その後各製品はせん断後、窒素雰囲気中で72
5 ℃・1時間の歪取焼鈍を行い、25cmエプスタイン法に
より磁気測定を行った。Example 4 Five component compositions were melted in a converter, degassed, and then continuously cast into slabs, which were directly hot-rolled without cooling to obtain hot-rolled sheets. After that, 950 ℃ · 30
After hot-rolled sheet annealing for a short time of 2 seconds, after pickling, cold rolling to make a cold plate with a thickness of 0.5 mm, finish annealing at 780 ° C for 15 seconds, and form an insulating film. Each product. The grain sizes of those products were all in the range of 15 to 25 μm. After that, each product is sheared and then 72
Strain relief annealing was performed at 5 ° C. for 1 hour, and magnetic measurement was performed by the 25 cm Epstein method.
【0059】スラブの分析成分組成および磁気測定結果
を表5にまとめて示す。Table 5 shows the analysis component composition of the slab and the magnetic measurement results.
【表5】 [Table 5]
【0060】表5から明らかなように、第4,5,8お
よび9発明に適合する試料No. 1は、40秒間以下の短時
間熱延板焼鈍にもかかわらず、試料No. 2,3,4およ
び5に比し鉄損に優れていることはもちろんのこと、良
好な磁束密度が得られている。As is clear from Table 5, the sample No. 1 conforming to the inventions of the fourth, fifth, eighth and ninth inventions, despite the short time hot-rolled sheet annealing of 40 seconds or less, the sample Nos. 2, 3 , 4 and 5 are excellent in iron loss, and good magnetic flux density is obtained.
【0061】[0061]
【発明の効果】この発明は、Si:1.0 wt%以下の低Si無
方向性電磁鋼板において、成分組成の限定のうち特にRE
M を添加する、または、さらにその成分組成に混入する
TiおよびZrを抑制するものであり、この発明によれば、
打抜き性が良好であるとともにに低温短時間の歪取焼鈍
により良好な鉄損を得ることができるばかりでなく、短
時間熱延板焼鈍にても良好な磁束密度を得ることがで
き、電気機器類の高効率化に伴い、その鉄心材料として
用いられる無方向性電磁鋼板に対する高品質化および低
コスト化要請に十分こたえることができ、その工業的効
果は非常に大きい。EFFECTS OF THE INVENTION The present invention is particularly applicable to the RE composition of the low Si non-oriented electrical steel sheet with Si: 1.0 wt% or less.
Add M or mix it further into its composition
It suppresses Ti and Zr, and according to the present invention,
Not only good punching property but also good iron loss can be obtained by strain relief annealing at low temperature for a short time, and good magnetic flux density can be obtained even in short-time hot rolled sheet annealing. With the increase in efficiency of the class, the non-oriented electrical steel sheet used as the iron core material can sufficiently meet the demand for higher quality and lower cost, and its industrial effect is very large.
【図1】Tiが725 ℃・1時間の歪取焼鈍後の鉄損におよ
ぼす影響を示すグラフである。FIG. 1 is a graph showing the effect of Ti on iron loss after strain relief annealing at 725 ° C. for 1 hour.
【図2】Zrが750 ℃・2時間および725 ℃・1時間の歪
取焼鈍後の鉄損におよぼす影響を示すグラフである。FIG. 2 is a graph showing the effect of Zr on iron loss after stress relief annealing at 750 ° C. for 2 hours and 725 ° C. for 1 hour.
【図3】Zrが750 ℃・2時間および725 ℃・1時間の歪
取焼鈍後の結晶粒径におよぼす影響を示すグラフであ
る。FIG. 3 is a graph showing the effect of Zr on the crystal grain size after strain relief annealing at 750 ° C. for 2 hours and 725 ° C. for 1 hour.
【図4】Zrが725 ℃・1時間の歪取焼鈍後の鉄損におよ
ぼす影響を示すグラフである。FIG. 4 is a graph showing the effect of Zr on iron loss after stress relief annealing at 725 ° C. for 1 hour.
【図5】REM が725 ℃・1時間の歪取焼鈍後の鉄損にお
よぼす影響を示すグラフである。FIG. 5 is a graph showing the effect of REM on iron loss after stress relief annealing at 725 ° C. for 1 hour.
Claims (9)
以上、80 wt ppm 以下を含み、残部はFeおよび不可避的
不純物の組成になることを特徴とする歪取焼鈍後鉄損に
優れる無方向性電磁鋼板。1. C: 0.01 wt% or less, Si: 1.0 wt% or less, Mn: 0.1 wt% or more, 1.5 wt% or less, Al: 0.2 wt% or more, 1.5 wt% or less and REM: 2 wt ppm
As described above, a non-oriented electrical steel sheet excellent in core loss after stress relief annealing, characterized by containing 80 wt ppm or less and the balance being Fe and inevitable impurities.
以上、80 wt ppm 以下を含み、かつTiおよびZrの不可避
混入をそれぞれTi:15 wt ppm 以下およびZr:80 wt pp
m 以下に抑制し、残部は実質的にFeの組成になることを
特徴とする低温短時間での歪取焼鈍後鉄損に優れる無方
向性電磁鋼板。2. C: 0.01 wt% or less, Si: 1.0 wt% or less, Mn: 0.1 wt% or more, 1.5 wt% or less, Al: 0.2 wt% or more, 1.5 wt% or less and REM: 2 wt ppm
Above, 80 wt ppm or less, and Ti and Zr unavoidable mixture of Ti: 15 wt ppm or less and Zr: 80 wt pp, respectively.
A non-oriented electrical steel sheet excellent in core loss after stress relief annealing at low temperature and in a short time, characterized in that the composition is suppressed to m or less and the balance is substantially Fe composition.
取焼鈍後の鉄損(W 15/50)が4.0W/kg 未満である無方向
性電磁鋼板。3. The strain of claim 2 at 725 ° C. for 1 hour.
Iron loss after annealing (W 15/50) Is less than 4.0 W / kg
Magnetic electrical steel sheet.
以上、50 wt ppm 以下を含み、かつTiおよびZrの不可避
混入をそれぞれTi:10wt ppm以下およびZr:80 wt ppm
以下に抑制し、残部は実質的にFeの組成になることを特
徴とする低温短時間での歪取焼鈍後鉄損に優れる無方向
性電磁鋼板。4. C: 0.01 wt% or less, Si: 1.0 wt% or less, Mn: 0.1 wt% or more, 1.5 wt% or less, Al: 0.2 wt% or more, 1.5 wt% or less and REM: 5 wt ppm
Above, 50 wt ppm or less and Ti and Zr unavoidable mixture of Ti: 10 wt ppm or less and Zr: 80 wt ppm, respectively
A non-oriented electrical steel sheet excellent in iron loss after stress relief annealing at low temperature and in a short time, characterized in that the balance is suppressed to the following, and the balance is substantially Fe composition.
取焼鈍後の鉄損(W 15/50)が3.5W/kg 未満である無方向
性電磁鋼板。5. The strain of claim 4 at 725 ° C. for 1 hour
Iron loss after annealing (W 15/50) Is less than 3.5 W / kg
Magnetic electrical steel sheet.
以上、80 wt ppm 以下を含み、残部はFeおよび不可避的
不純物の組成よりなる鋼を鋳造後スラブとなし、直接あ
るいは冷却後再加熱したのち熱間圧延し、そのまま、ま
たは熱延板焼鈍もしくは自己焼鈍を施して、1回または
中間焼鈍を挟む2回以上の冷間圧延を行ったのち、仕上
焼鈍を施すことを特徴とする歪取焼鈍後鉄損に優れる無
方向性電磁鋼板の製造方法。6. C: 0.01 wt% or less, Si: 1.0 wt% or less, Mn: 0.1 wt% or more, 1.5 wt% or less, Al: 0.2 wt% or more, 1.5 wt% or less and REM: 2 wt ppm
Above, 80 wt ppm or less, and the balance is steel having a composition of Fe and inevitable impurities, which is made into a slab after casting, and is directly or after cooling and reheating, and then hot rolling, as it is, or after annealing or hot rolling. A method for producing a non-oriented electrical steel sheet excellent in core loss after stress relief annealing, which comprises performing annealing once and performing cold rolling once or twice or more with intervening intermediate annealing, and then performing finish annealing.
以上、80 wt ppm 以下を含み、かつTiおよびZrの不可避
混入をそれぞれTi:15wt ppm以下およびZr:80 wt ppm
以下に抑制し、残部は実質的にFeの組成よりなる鋼を鋳
造後スラブとなし、直接あるいは冷却後再加熱したのち
熱間圧延し、そのまま、または熱延板焼鈍もしくは自己
焼鈍を施して、1回または中間焼鈍を挟む2回以上の冷
間圧延を行ったのち、仕上焼鈍を施すことを特徴とする
低温短時間での歪取焼鈍後鉄損に優れる無方向性電磁鋼
板の製造方法。7. C: 0.01 wt% or less, Si: 1.0 wt% or less, Mn: 0.1 wt% or more, 1.5 wt% or less, Al: 0.2 wt% or more, 1.5 wt% or less and REM: 2 wt ppm
Above, 80 wt ppm or less, and Ti and Zr unavoidable mixture of Ti: 15 wt ppm or less and Zr: 80 wt ppm, respectively
Suppressed below, the rest is made into a slab after casting steel consisting essentially of Fe, and then directly or after cooling and hot rerolling, hot rolling, as it is, or subjected to hot-rolled sheet annealing or self-annealing, A method for producing a non-oriented electrical steel sheet excellent in iron loss after stress relief annealing at low temperature in a short time, which comprises performing cold annealing once or twice or more with intervening intermediate annealing and then performing finish annealing.
以上、50 wt ppm 以下を含み、かつTiおよびZrの不可避
混入をそれぞれTi:10wt ppm以下およびZr:80 wt ppm
以下に抑制し、残部は実質的にFeの組成よりなる鋼を鋳
造後スラブとなし、直接あるいは冷却後再加熱したのち
熱間圧延し、そのまま、または熱延板焼鈍もしくは自己
焼鈍を施して、1回または中間焼鈍を挟む2回以上の冷
間圧延を行ったのち、仕上焼鈍を施すことを特徴とする
低温短時間での歪取焼鈍後鉄損に優れる無方向性電磁鋼
板の製造方法。8. C: 0.01 wt% or less, Si: 1.0 wt% or less, Mn: 0.1 wt% or more, 1.5 wt% or less, Al: 0.2 wt% or more, 1.5 wt% or less and REM: 5 wt ppm
Above, 50 wt ppm or less and Ti and Zr unavoidable mixture of Ti: 10 wt ppm or less and Zr: 80 wt ppm, respectively
Suppressed below, the rest is made into a slab after casting steel consisting essentially of Fe, and then directly or after cooling and hot rerolling, hot rolling, as it is, or subjected to hot-rolled sheet annealing or self-annealing, A method for producing a non-oriented electrical steel sheet excellent in iron loss after stress relief annealing at low temperature in a short time, which comprises performing cold annealing once or twice or more with intervening intermediate annealing and then performing finish annealing.
以上、50 wt ppm 以下を含み、かつTiおよびZrの不可避
混入をそれぞれTi:10wt ppm以下およびZr:80 wt ppm
以下に抑制し、残部は実質的にFeの組成よりなる鋼を鋳
造後スラブとなし、直接あるいは冷却後再加熱したのち
熱間圧延し、800 〜1100℃の温度範囲で均熱時間40秒間
以下の短時間連続熱延板焼鈍を施し、1回または中間焼
鈍を挟む2回以上の冷間圧延を行ったのち、仕上焼鈍を
施すことを特徴とする低温短時間での歪取焼鈍後鉄損に
優れる無方向性電磁鋼板の製造方法。9. C: 0.01 wt% or less, Si: 1.0 wt% or less, Mn: 0.1 wt% or more, 1.5 wt% or less, Al: 0.2 wt% or more, 1.5 wt% or less and REM: 5 wt ppm
Above, 50 wt ppm or less and Ti and Zr unavoidable mixture of Ti: 10 wt ppm or less and Zr: 80 wt ppm, respectively
Suppress the temperature below and make the rest a steel consisting essentially of Fe to form a slab after casting, and either directly or after cooling and reheating, hot rolling, soaking time in the temperature range of 800-1100 ° C for 40 seconds or less. Iron loss after stress relief annealing at low temperature in a short time characterized by carrying out finish annealing after performing short-time continuous hot-rolled sheet annealing and performing cold rolling once or twice with intermediate annealing sandwiched A method for producing a non-oriented electrical steel sheet with excellent heat resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7075194A JP3037878B2 (en) | 1994-04-22 | 1995-03-31 | Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-84708 | 1994-04-22 | ||
JP8470894 | 1994-04-22 | ||
JP7075194A JP3037878B2 (en) | 1994-04-22 | 1995-03-31 | Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH083699A true JPH083699A (en) | 1996-01-09 |
JP3037878B2 JP3037878B2 (en) | 2000-05-08 |
Family
ID=26416351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7075194A Expired - Fee Related JP3037878B2 (en) | 1994-04-22 | 1995-03-31 | Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3037878B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006048989A1 (en) * | 2004-11-04 | 2006-05-11 | Nippon Steel Corporation | Non-oriented magnetic steel sheet excellent in iron loss |
DE19838600B4 (en) * | 1997-08-28 | 2007-05-31 | Hitachi, Ltd. | Energy filter and electron microscope with energy filter |
DE19860988B4 (en) * | 1997-08-28 | 2007-12-13 | Hitachi, Ltd. | Energy filter for electron microscope |
WO2008050597A1 (en) * | 2006-10-23 | 2008-05-02 | Nippon Steel Corporation | Method for manufacturing non-oriented electrical sheet having excellent magnetic properties |
US7470333B2 (en) | 2003-05-06 | 2008-12-30 | Nippon Steel Corp. | Non-oriented electrical steel sheet excellent in core loss and manufacturing method thereof |
CN102031349A (en) * | 2010-11-09 | 2011-04-27 | 王旋旋 | Method for eliminating stress of cast steel structure |
-
1995
- 1995-03-31 JP JP7075194A patent/JP3037878B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19838600B4 (en) * | 1997-08-28 | 2007-05-31 | Hitachi, Ltd. | Energy filter and electron microscope with energy filter |
DE19860988B4 (en) * | 1997-08-28 | 2007-12-13 | Hitachi, Ltd. | Energy filter for electron microscope |
US7470333B2 (en) | 2003-05-06 | 2008-12-30 | Nippon Steel Corp. | Non-oriented electrical steel sheet excellent in core loss and manufacturing method thereof |
WO2006048989A1 (en) * | 2004-11-04 | 2006-05-11 | Nippon Steel Corporation | Non-oriented magnetic steel sheet excellent in iron loss |
KR100912974B1 (en) * | 2004-11-04 | 2009-08-20 | 신닛뽄세이테쯔 카부시키카이샤 | Non-oriented magnetic steel sheet with low iron loss |
US7662242B2 (en) | 2004-11-04 | 2010-02-16 | Nippon Steel Corporation | Non-oriented electrical steel superior in core loss |
WO2008050597A1 (en) * | 2006-10-23 | 2008-05-02 | Nippon Steel Corporation | Method for manufacturing non-oriented electrical sheet having excellent magnetic properties |
JP2008132534A (en) * | 2006-10-23 | 2008-06-12 | Nippon Steel Corp | Method for manufacturing non-oriented electrical sheet having excellent magnetic property |
JP4648910B2 (en) * | 2006-10-23 | 2011-03-09 | 新日本製鐵株式会社 | Method for producing non-oriented electrical steel sheet with excellent magnetic properties |
US8052811B2 (en) | 2006-10-23 | 2011-11-08 | Nippon Steel Corporation | Method of producing non-oriented electrical steel sheet excellent in magnetic properties |
EP2078572A4 (en) * | 2006-10-23 | 2016-03-23 | Nippon Steel & Sumitomo Metal Corp | Method for manufacturing non-oriented electrical sheet having excellent magnetic properties |
CN102031349A (en) * | 2010-11-09 | 2011-04-27 | 王旋旋 | Method for eliminating stress of cast steel structure |
Also Published As
Publication number | Publication date |
---|---|
JP3037878B2 (en) | 2000-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5643370A (en) | Grain oriented electrical steel having high volume resistivity and method for producing same | |
KR100658408B1 (en) | An electromagnetic steel sheet having superior formability and magnetic properties and a process for the production of the same | |
KR20050065608A (en) | Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet | |
JP7507157B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
JP4032162B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
EP0861914A1 (en) | Method for producing silicon-chromium grain oriented electrical steel | |
EP0678878B1 (en) | Non-oriented electromagnetic steel sheet with low iron loss after stress relief annealing, and core of motor or transformer | |
KR930004849B1 (en) | Electrcal steel sheet having a good magnetic property and its making process | |
JP3037878B2 (en) | Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same | |
JP3430794B2 (en) | Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same | |
KR100683471B1 (en) | Method for processing non-directional electromagnetic steel plate and hot rolling steel plate with material for the non-directional electromagnetic steel plate | |
JP3458683B2 (en) | Method for producing non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing | |
JPH0717959B2 (en) | Method for manufacturing unidirectional high magnetic flux density electrical steel sheet | |
JPH055126A (en) | Production of nonoriented silicon steel sheet | |
JP3148567B2 (en) | Non-oriented electrical steel sheet excellent in iron loss after low-temperature short-time strain relief annealing and method for producing the same | |
JPH0443981B2 (en) | ||
JPH11236618A (en) | Production of low core loss nonoriented silicon steel sheet | |
JP3056970B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties | |
JP3458682B2 (en) | Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same | |
JP2001192787A (en) | Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method | |
US20230212720A1 (en) | Method for the production of high permeability grain oriented electrical steel containing chromium | |
CN115003845B (en) | Non-oriented electrical steel sheet and method for manufacturing same | |
JP2712913B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
JPS5855209B2 (en) | Method for manufacturing non-oriented silicon steel sheet with little aging deterioration and good surface quality | |
JP2752882B2 (en) | Method for producing grain-oriented silicon steel sheet with good magnetic properties and few surface defects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080225 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090225 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100225 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100225 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110225 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120225 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120225 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130225 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130225 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |