JPH08334463A - Pipe inside turbidity evaluation device - Google Patents
Pipe inside turbidity evaluation deviceInfo
- Publication number
- JPH08334463A JPH08334463A JP16452095A JP16452095A JPH08334463A JP H08334463 A JPH08334463 A JP H08334463A JP 16452095 A JP16452095 A JP 16452095A JP 16452095 A JP16452095 A JP 16452095A JP H08334463 A JPH08334463 A JP H08334463A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- bypass
- valve
- turbidity
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
- Optical Measuring Cells (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Pipeline Systems (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この本発明は、配管内を流れる流
体の濁度を検出する配管内濁度評価装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-pipe turbidity evaluation device for detecting the turbidity of a fluid flowing in a pipe.
【0002】[0002]
【従来の技術】配管内を流れる流体の濁度を光学的に計
測するものは従来からあり、例えば、特公昭63-66236号
公報記載の発明では、洗浄液の濁度変化を濁度計により
光学的に計測して、洗い或いはすすぎ動作を制御する洗
濯機が提案されている。2. Description of the Related Art There has been a conventional technique for optically measuring the turbidity of a fluid flowing in a pipe. For example, in the invention described in Japanese Patent Publication No. 63-66236, the change in the turbidity of a cleaning liquid is optically measured by a turbidimeter. A washing machine has been proposed in which the washing or rinsing operation is controlled by performing a specific measurement.
【0003】[0003]
【発明が解決しようとする課題】ところが、上記従来例
では、濁度計が流動状態にある洗浄液の濁度を計測する
ものであるため、検出対象となる洗浄液中に気泡が存在
し、この気泡の影響で濁度計は洗浄液の濁度が低いと計
測してしまうことがある。However, in the above-mentioned conventional example, since the turbidimeter measures the turbidity of the washing liquid in a flowing state, air bubbles exist in the washing liquid to be detected, and the bubbles are present. Due to the above, the turbidimeter may measure that the turbidity of the cleaning liquid is low.
【0004】本発明は、上述の事情を考慮してなされた
ものであり、配管に異音を発生させることなく、配管内
を流れる流体の濁度を正確に計測できる配管内濁度評価
装置を提供することを目的とする。The present invention has been made in view of the above circumstances, and provides an in-pipe turbidity evaluation device capable of accurately measuring the turbidity of a fluid flowing in a pipe without generating abnormal noise in the pipe. The purpose is to provide.
【0005】[0005]
【課題を解決するための手段】請求項1に記載の発明
は、流体が流れるメイン配管にバイパス配管が接続さ
れ、このバイパス配管に濁度計及びバイパス仕切弁が直
列配置され、上記メイン配管のうち上記バイパス配管に
迂回された部分にメイン仕切弁が配置されて、上記バイ
パス仕切弁を開弁し閉弁した後の静止状態の流体につき
上記濁度計にて濁度を計測するとともに、上記メイン仕
切弁及びバイパス仕切弁は、少なくとも一方が常に開弁
状態に制御されるようにしたものである。According to a first aspect of the present invention, a bypass pipe is connected to a main pipe through which a fluid flows, and a turbidimeter and a bypass sluice valve are arranged in series in the bypass pipe. A main sluice valve is arranged in a portion bypassed by the bypass pipe, and the turbidity of the fluid in a stationary state after the bypass sluice valve is opened and closed is measured by the turbidimeter and At least one of the main sluice valve and the bypass sluice valve is always controlled to be in an open state.
【0006】請求項2に記載の発明は、請求項1に記載
の発明において、濁度計の計測面には、常時清浄用流体
が吹きかけられて、上記計測面が清浄状態に保持される
ようにしたものである。According to a second aspect of the present invention, in the first aspect of the invention, a cleaning fluid is constantly sprayed onto the measurement surface of the turbidimeter so that the measurement surface is kept in a clean state. It is the one.
【0007】[0007]
【作用】請求項1に記載の発明には、次の作用がある。
バイパス仕切弁を開弁してメイン配管内の流体をバイパ
ス配管内へ導き、次に、このバイパス仕切弁を閉弁して
バイパス配管内の流体を静止状態とし、この静止状態と
なった流体の濁度を濁度計が計測するので、静止状態の
流体には気泡が存在せず、従って、濁度計は、気泡の影
響を受けることなく、流体の濁度を正確に計測し評価で
きる。The invention described in claim 1 has the following effects.
The bypass sluice valve is opened to guide the fluid in the main pipe into the bypass pipe, and then the bypass sluice valve is closed to make the fluid in the bypass pipe stand still. Since the turbidity meter measures the turbidity, no bubbles are present in the stationary fluid, and therefore the turbidity meter can accurately measure and evaluate the turbidity of the fluid without being affected by the bubbles.
【0008】また、バイパス仕切弁及びメイン仕切弁を
同時に閉弁して一定時間経過させると、メイン配管及び
バイパス配管の内圧が上昇して、メイン配管にはウォタ
ーハンマ現象による異音が発生する虞れがある。本発明
では、バイパス仕切弁及びメイン仕切弁は少なくとも一
方が常に開弁状態となるよう制御されるので、メイン配
管の内圧が上昇せず、従って異音の発生を防止できる。Further, if the bypass sluice valve and the main sluice valve are closed at the same time for a certain period of time, the internal pressure of the main pipe and the bypass pipe rises, and abnormal noise may occur in the main pipe due to the water hammer phenomenon. There is In the present invention, at least one of the bypass sluice valve and the main sluice valve is controlled so that at least one of them is always in the open state, so that the internal pressure of the main pipe does not rise, and therefore the generation of abnormal noise can be prevented.
【0009】請求項2に記載の発明には、次の作用があ
る。濁度計の計測面に清浄用流体が常時吹きかけられ
て、この計測面が清浄状態に保たれるので、濁度計の計
測精度をより一層正確にできる。The invention according to claim 2 has the following effects. Since the cleaning fluid is constantly sprayed on the measurement surface of the turbidimeter to keep the measurement surface in a clean state, the measurement accuracy of the turbidimeter can be further improved.
【0010】[0010]
【実施例】以下、本発明の実施例を、図面に基づいて説
明する。図1は、本発明に係る配管内濁度評価装置の一
実施例が適用されたストレーナ洗浄装置を示す管路図で
ある。図2は、図1のII-II 線に沿う概略断面図であ
る。図3は、図1のストレーナ洗浄装置の一部を破断状
態で示す部分側面図である。図4は、図1のストレーナ
洗浄装置の作動を示すフローチャートである。図5
(A)は、図1の濁度計を示す平面図であり、図5
(B)は、図5(A)の VB矢視図である。図6は、図
1の仕切弁の制御パターンを示すタイムチャートであ
る。図7は、ストレーナへ導かれる各製品液を洗浄した
洗浄液についての特性値を示す図表である。図8は、液
種Iに関する濁度計の透過光出力電圧とTOD値との関
係を示すグラフである。図9は、液種Eに関する濁度計
の透過光出力電圧とTOD値との関係を示すグラフであ
る。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a pipeline diagram showing a strainer cleaning device to which an embodiment of the pipe turbidity evaluation device according to the present invention is applied. FIG. 2 is a schematic sectional view taken along the line II-II in FIG. FIG. 3 is a partial side view showing a part of the strainer cleaning device of FIG. 1 in a broken state. FIG. 4 is a flowchart showing the operation of the strainer cleaning device of FIG. Figure 5
(A) is a plan view showing the turbidimeter of FIG.
FIG. 5B is a VB arrow view of FIG. FIG. 6 is a time chart showing a control pattern of the gate valve of FIG. FIG. 7 is a table showing the characteristic values of the cleaning liquid obtained by cleaning each product liquid introduced to the strainer. FIG. 8 is a graph showing the relationship between the transmitted light output voltage of the turbidimeter and the TOD value for the liquid type I. FIG. 9 is a graph showing the relationship between the transmitted light output voltage of the turbidimeter and the TOD value regarding the liquid type E.
【0011】図1に示すストレーナ洗浄装置1が洗浄の
対象とするストレーナ10は、円筒形状の側筒部11に
天面部12及び底面部13を備え、これら側筒部11、
天面部12及び底面部13の内部に、網形状のフィルタ
14が収容されたものである。底面部13の中央部に製
品液導入配管16が接続され、一方、側筒部11の上部
に製品液導出配管17が接続される。ストレーナ10
は、製品液導入配管16から製品液を導いて、フィルタ
14にて製品液中の不純物を除去し、この不純物を除去
した製品液を製品液導出配管17から他の系、例えば製
品液充填機へ供給する。A strainer 10 to be cleaned by the strainer cleaning device 1 shown in FIG. 1 includes a cylindrical side cylinder portion 11 having a top surface portion 12 and a bottom surface portion 13, and these side cylinder portions 11,
A net-shaped filter 14 is housed inside the top surface portion 12 and the bottom surface portion 13. The product liquid introduction pipe 16 is connected to the central portion of the bottom surface portion 13, and the product liquid discharge pipe 17 is connected to the upper portion of the side tubular portion 11. Strainer 10
Guides the product liquid from the product liquid introduction pipe 16, removes impurities in the product liquid with the filter 14, and removes the impurities from the product liquid through the product liquid discharge pipe 17 to another system, for example, a product liquid filling machine. Supply to.
【0012】製品液導入配管16には、ストレーナ10
に近い側に導入弁18が、遠い側にメイン仕切弁19が
それぞれ配設され、このメイン仕切弁19を迂回してバ
イパス配管20が接続される。このバイパス配管20
に、後述の濁度計23が配設され、更にバイパス配管2
0には、この濁度計23の両側に第1バイパス仕切弁2
1及び第2バイパス仕切弁22が濁度計23と直列に配
設される。一方、製品液導出配管17には導出弁24が
配設される。導入弁18の開閉によって、ストレーナ1
0への製品液の導入が制御され、導出弁24の開閉によ
って、ストレーナ10からの製品液の供給が制御され
る。The strainer 10 is connected to the product liquid introducing pipe 16.
The introduction valve 18 is provided on the side closer to the main sluice, and the main sluice valve 19 is provided on the distant side. A bypass pipe 20 is connected to bypass the main sluice valve 19. This bypass piping 20
A turbidimeter 23, which will be described later, is provided in the bypass pipe 2
The first bypass sluice valve 2 on both sides of this turbidity meter 23
The first and second bypass sluice valves 22 are arranged in series with the turbidity meter 23. On the other hand, a discharge valve 24 is arranged in the product liquid discharge pipe 17. By opening and closing the introduction valve 18, the strainer 1
The introduction of the product liquid to 0 is controlled, and the opening and closing of the outlet valve 24 controls the supply of the product liquid from the strainer 10.
【0013】更に、ストレーナ10には、製品導出部洗
浄媒体導入配管25、上部洗浄媒体導出配管26及び上
部洗浄媒体導入配管27が接続され、更に、側部洗浄媒
体導入配管28が接続される。これらの製品導出部洗浄
媒体導入配管25、上部洗浄媒体導入配管27、側部洗
浄媒体導入配管28からストレーナ10内へ洗浄液(温
水、冷水)、蒸気或いは圧縮空気等の洗浄媒体が供給さ
れ、後述の如く、ストレーナ10内が洗浄される。The strainer 10 is further connected with a product outlet cleaning medium introducing pipe 25, an upper cleaning medium outlet pipe 26 and an upper cleaning medium introducing pipe 27, and further with a side cleaning medium introducing pipe 28. A cleaning medium (hot water, cold water), a cleaning medium such as steam or compressed air is supplied into the strainer 10 from the product outlet cleaning medium introducing pipe 25, the upper cleaning medium introducing pipe 27, and the side cleaning medium introducing pipe 28. As described above, the inside of the strainer 10 is washed.
【0014】製品導出部洗浄媒体導入配管25は、製品
液導出配管17において導出弁24よりもストレーナ1
0側に接続され、第1上部弁31を備える。上部洗浄媒
体導出配管26及び上部洗浄媒体導入配管27は、スト
レーナ10の天面部12に接続され、上部洗浄媒体導出
配管26に第2上部弁32が、上部洗浄媒体導入配管2
7に第3上部弁33が配設される。In the product liquid outlet pipe 17, the product outlet cleaning medium inlet pipe 25 is installed in the strainer 1 rather than the outlet valve 24.
It is connected to the 0 side and includes a first upper valve 31. The upper cleaning medium outlet pipe 26 and the upper cleaning medium inlet pipe 27 are connected to the top surface portion 12 of the strainer 10, and the second upper valve 32 is connected to the upper cleaning medium outlet pipe 26 and the upper cleaning medium inlet pipe 2
A third upper valve 33 is arranged at 7.
【0015】また、側部洗浄媒体導入配管28は、図2
に示すように、ストレーナ10の側筒部11における下
部に複数本、例えば8本接続される。各側部洗浄媒体導
入配管28に側部弁34が配設される。The side cleaning medium introduction pipe 28 is shown in FIG.
As shown in, a plurality of, for example, eight, are connected to the lower portion of the side tubular portion 11 of the strainer 10. A side valve 34 is provided in each side cleaning medium introduction pipe 28.
【0016】各側部洗浄媒体導入配管28の先端部は、
ノズルが取付けてある。側部洗浄媒体導入配管28の先
端部は、図3に示すように、鉛直線に対し角度θ(例え
ばθ=45°)に設定されて、後述のバブル洗浄時に洗浄
液(温水)の攪拌を良好とする。尚、ストレーナ10の
上記底面部13は、製品液導入配管16が接続された中
央部が最も低く、外周部が最も高くなるように、テーパ
形状に形成されている。The tip of each side cleaning medium introducing pipe 28 is
The nozzle is installed. As shown in FIG. 3, the tip of the side washing medium introduction pipe 28 is set at an angle θ (for example, θ = 45 °) with respect to the vertical line so that the washing liquid (warm water) can be well stirred during bubble washing described later. And The bottom surface portion 13 of the strainer 10 is formed in a tapered shape so that the central portion to which the product liquid introduction pipe 16 is connected is the lowest and the outer peripheral portion is the highest.
【0017】図1に示す製品液導入配管16からストレ
ーナ10へ導入される製品液の品種を変更する際に、導
入弁18及び導出弁24の制御、並びに第1上部弁3
1、第2上部弁32、第3上部弁33、側部弁34の制
御により、上記製品導出部洗浄媒体導入配管25、上部
洗浄媒体導入配管27、側部洗浄媒体導入配管28から
ストレーナ10内へ洗浄媒体が導入され、このストレー
ナ10内において、製品液廃棄、温水溜、バブル洗浄及
びバブル廃棄が、温水溜量を変更して順次実施可能とさ
れる。When changing the type of the product liquid introduced into the strainer 10 from the product liquid introduction pipe 16 shown in FIG. 1, control of the introduction valve 18 and the discharge valve 24, and the first upper valve 3
By controlling the first, second upper valve 32, third upper valve 33, and side valve 34, the product outlet cleaning medium introducing pipe 25, the upper cleaning medium introducing pipe 27, and the side cleaning medium introducing pipe 28 to the inside of the strainer 10. A cleaning medium is introduced into the strainer 10, and product liquid disposal, hot water storage, bubble cleaning, and bubble disposal can be sequentially performed in the strainer 10 by changing the hot water storage amount.
【0018】つまり、図4に示すように、ストレーナ1
0の洗浄時には、先ず導出弁24を閉弁し、第1上部弁
31を開弁して、製品導出部洗浄媒体導入配管25から
製品液導出配管17を介して圧縮空気をストレーナ10
内へ導入し、このストレーナ10内の製品液を製品液導
入配管16へ排出して廃棄する。このとき、側部弁34
を開弁し、側部洗浄媒体導入配管28から圧縮空気をス
トレーナ10内へ供給して、ストレーナ10内の製品液
をより迅速に廃棄しても良い。That is, as shown in FIG. 4, the strainer 1
At the time of cleaning of 0, first, the outlet valve 24 is closed, the first upper valve 31 is opened, and the compressed air is transferred from the product outlet cleaning medium introduction pipe 25 through the product liquid outlet pipe 17 to the strainer 10
The product liquid in the strainer 10 is discharged into the product liquid introduction pipe 16 and discarded. At this time, the side valve 34
May be opened, compressed air may be supplied into the strainer 10 from the side cleaning medium introduction pipe 28, and the product liquid in the strainer 10 may be discarded more quickly.
【0019】次に、導入弁18及び第1上部弁31を閉
弁し、第2上部弁32、第3上部弁33、側部弁34を
開弁し、上部洗浄媒体導入配管27、側部洗浄媒体導入
配管28からストレーナ10内へ温水を供給する。この
温水の液面Hが、ストレーナ10の底面部13から約80
mmまで溜ったときに、温水の供給を停止する(温水
溜)。その後、側部弁34を開弁して、側部洗浄媒体導
入配管28から貯溜した温水中に圧縮空気を混入させ、
この温水に乱流を発生させて、ストレーナ10の底部を
約10秒間バブル洗浄する。このときバルブ32は開とす
る。Next, the introduction valve 18 and the first upper valve 31 are closed, the second upper valve 32, the third upper valve 33 and the side valve 34 are opened, and the upper cleaning medium introduction pipe 27 and the side portion are opened. Hot water is supplied into the strainer 10 from the cleaning medium introduction pipe 28. The liquid surface H of this warm water is about 80 degrees from the bottom surface portion 13 of the strainer 10.
When the water reaches up to mm, the supply of hot water is stopped (warm water pool). After that, the side valve 34 is opened to mix compressed air into the warm water stored from the side cleaning medium introduction pipe 28,
A turbulent flow is generated in this warm water to bubble-clean the bottom of the strainer 10 for about 10 seconds. At this time, the valve 32 is opened.
【0020】上記バブル洗浄後、導入弁18及び第3上
部弁33を開弁し、上部洗浄媒体導入配管27、側部洗
浄媒体導入配管28から圧縮空気をストレーナ10内へ
供給して、洗浄後の温水をストレーナ10から製品液導
入配管16を経て廃棄する(バブル廃棄)。上記温水
溜、バブル洗浄及びバブル廃棄を2度繰り返す。このと
きバルブ32は開とする。After the bubble cleaning, the introducing valve 18 and the third upper valve 33 are opened, compressed air is supplied into the strainer 10 from the upper cleaning medium introducing pipe 27 and the side cleaning medium introducing pipe 28, and after the cleaning. The hot water of (1) is discarded from the strainer 10 through the product liquid introducing pipe 16 (bubble disposal). The above warm water reservoir, bubble washing and bubble discarding are repeated twice. At this time, the valve 32 is opened.
【0021】次に、導入弁18及び第1上部弁31を閉
弁し、第2上部弁32、第3上部弁33、側部弁34を
開弁して、上部洗浄媒体導入配管27、側部洗浄媒体導
入配管28から温水をストレーナ10の天面部12まで
貯溜する。望ましくは、第2上部弁32の位置まで温水
を貯溜する(温水溜)。その後、第2上部弁32、第3
上部弁33、側部弁34を開弁して、上部洗浄媒体導入
配管27、側部洗浄媒体導入配管28から圧縮空気を供
給して、ストレーナ10に貯溜された温水中に乱流を発
生させ、ストレーナ10の全体を約60秒間バブル洗浄す
る。Next, the introduction valve 18 and the first upper valve 31 are closed, the second upper valve 32, the third upper valve 33, and the side valve 34 are opened, and the upper cleaning medium introduction pipe 27, side Hot water is stored from the partial cleaning medium introduction pipe 28 to the top surface portion 12 of the strainer 10. Desirably, warm water is stored up to the position of the second upper valve 32 (warm water reservoir). Then, the second upper valve 32, the third
The upper valve 33 and the side valve 34 are opened, and compressed air is supplied from the upper cleaning medium introducing pipe 27 and the side cleaning medium introducing pipe 28 to generate a turbulent flow in the warm water stored in the strainer 10. Bubble wash the entire strainer 10 for about 60 seconds.
【0022】このバブル洗浄後、導入弁18及び第3上
部弁33を開弁し、第3上部洗浄媒体導入配管27、側
部洗浄媒体導入配管28から圧縮空気を供給して、洗浄
後の温水をストレーナ10から製品液導入配管16を経
て排出し廃棄する(バブル廃棄)。このバブル廃棄時
に、ストレーナ10から1度剥離した不純物が再びスト
レーナ10に付着するおそれがあるので、上記天面部1
2までの温水溜、バブル洗浄及びバブル廃棄を2度繰り
返す。After the bubble cleaning, the introducing valve 18 and the third upper valve 33 are opened, compressed air is supplied from the third upper cleaning medium introducing pipe 27 and the side cleaning medium introducing pipe 28, and hot water after washing is supplied. Is discharged from the strainer 10 through the product liquid introduction pipe 16 and discarded (bubble discard). At the time of discarding the bubbles, impurities once peeled off from the strainer 10 may adhere to the strainer 10 again, so the top surface portion 1
Repeat warm water reservoir up to 2 and bubble washing and bubble discarding twice.
【0023】その後、製品液導入配管16中を流れる温
水を、メイン仕切弁19と第1バイパス仕切弁21及び
第2バイパス仕切弁22とを同時に閉弁状態としない制
御によってバイパス配管20に導いて静止状態とし、、
この静止状態の温水の濁度を濁度計23にて検出する。
この濁度が所定値以下でない場合には、天面部12まで
の温水溜、バブル洗浄及びバブル廃棄を繰り返し、製品
液導入配管16にて排出された温水が所定の濁度以下に
なったときに、ストレーナ10の洗浄を終了する。After that, the hot water flowing through the product liquid introducing pipe 16 is guided to the bypass pipe 20 by the control in which the main sluice valve 19 and the first bypass sluice valve 21 and the second bypass sluice valve 22 are not closed at the same time. Set it to a stationary state,
The turbidity meter 23 detects the turbidity of the hot water in the stationary state.
If the turbidity is not less than the predetermined value, when the warm water discharged up to the top surface portion 12, bubble cleaning and bubble discarding are repeated until the hot water discharged through the product liquid introducing pipe 16 becomes less than the predetermined turbidity. The cleaning of the strainer 10 is completed.
【0024】ところで、図1に示す上記濁度計23、メ
イン仕切弁19、第1バイパス仕切弁21及び第2バイ
パス仕切弁22、並びに図5に示す防塵カバー43及び
空気供給ノズル44は、配管内濁度評価装置39を構成
する。By the way, the turbidity meter 23, the main sluice valve 19, the first bypass sluice valve 21 and the second bypass sluice valve 22 shown in FIG. 1, the dustproof cover 43 and the air supply nozzle 44 shown in FIG. The internal turbidity evaluation device 39 is configured.
【0025】先ず、濁度計23は、図5に示すように、
投光用光センサ40及び受光用光センサ41を有して構
成される。これらの投光用光センサ40及び受光用光セ
ンサ41は、バイパス配管20に設けられた透明材質か
らなるサイトグラス42の両側に、水平状態でそれぞれ
設置される。投光用光センサ40は、波長780nm の単一
レーザ光を発するものである。受光用光センサ41は、
投光用光センサ40から投射されて、製品液導入配管1
6内を流れる洗浄液(例えば温水)中を透過したレーザ
光を受光する。First, the turbidity meter 23, as shown in FIG.
It is configured to include a light projecting light sensor 40 and a light receiving photosensor 41. The light projecting light sensor 40 and the light receiving photosensor 41 are horizontally installed on both sides of a sight glass 42 made of a transparent material provided in the bypass pipe 20. The light projecting light sensor 40 emits a single laser beam having a wavelength of 780 nm. The light receiving optical sensor 41 is
The product liquid introduction pipe 1 projected from the light projecting light sensor 40.
The laser light that has passed through the cleaning liquid (for example, warm water) flowing inside 6 is received.
【0026】一般に、洗浄液においては、不純物濃度Y
(ppm)が高くなれば、同洗浄液中の全酸素要求量
(TOD)値X(ppm)が高くなる。そして、洗浄液
中のTOD値Xが大きくなると、この洗浄液中を透過す
るレーザ光の透過量が低くなり、濁度計23の受光用光
センサ41における透過光出力電圧値Z(V)が低下す
る負の相関関係を示す。Generally, in the cleaning liquid, the impurity concentration Y
The higher the (ppm), the higher the total oxygen demand (TOD) value X (ppm) in the cleaning solution. When the TOD value X in the cleaning liquid increases, the amount of laser light transmitted through the cleaning liquid decreases, and the transmitted light output voltage value Z (V) in the light receiving optical sensor 41 of the turbidity meter 23 decreases. Shows a negative correlation.
【0027】例えば、図7に示す赤系の製品液(液種
I)の場合には、濁度計23の透過光出力電圧値Zとこ
の製品液を洗浄した洗浄液のTOD値Xとの間に、相関
係数−0.99のもとで、 Z=−2.98×10-3X−4.82 … の関係があり(図8)、濁度計23の透過光出力電圧値
Zと洗浄液のTOD値との間に負の相関関係があること
が分かる。また、図7に示す青系の製品液(液種E)の
場合には、濁度計23の透過光出力電圧Zと、この製品
液を洗浄した洗浄液のTOD値Xとの間に、相関係数−
0.99のもとで、 Z=−5.48×10-10 X3 +8.59×10-7X2 −5.21×10-4X+4.93 … の関係があり(図9)、この場合も、濁度計23の透過
光出力電圧値Zと洗浄液のTOD値Xとの間に負の相関
関係があることが分かる。その他、図7に示す製品液の
11品種の全てについて、濁度計23の透過光出力電圧
値Zと各製品液を洗浄した洗浄液のTOD値Xとの間
に、相関係数−0.9 以上の負の相関関係がある。For example, in the case of the red product liquid (liquid type I) shown in FIG. 7, it is between the transmitted light output voltage value Z of the turbidimeter 23 and the TOD value X of the cleaning liquid that has washed this product liquid. Then, under the correlation coefficient of −0.99, there is a relationship of Z = −2.98 × 10 −3 X−4.82 ... (FIG. 8), and the transmitted light output voltage value Z of the turbidimeter 23 and the TOD value of the cleaning liquid It can be seen that there is a negative correlation between. Further, in the case of the blue-based product liquid (liquid type E) shown in FIG. 7, there is a phase difference between the transmitted light output voltage Z of the turbidimeter 23 and the TOD value X of the cleaning liquid that has cleaned this product liquid. Number of relationships −
Under 0.99, there is a relation of Z = −5.48 × 10 −10 X 3 + 8.59 × 10 −7 X 2 −5.21 × 10 −4 X + 4.93… (Fig. 9), and in this case also, turbidity It can be seen that there is a negative correlation between the transmitted light output voltage value Z of the total 23 and the TOD value X of the cleaning liquid. In addition, for all 11 product liquids shown in FIG. 7, between the transmitted light output voltage value Z of the turbidimeter 23 and the TOD value X of the cleaning liquid after cleaning each product liquid, a correlation coefficient of −0.9 or more is obtained. There is a negative correlation.
【0028】ここで、濁度計23が検出する洗浄液のT
OD値Xが、安全率を考慮して 200ppm以下であれ
ば、製品液導入配管16を含む各種配管及びストレーナ
10が十分洗浄されたものと判断できる。濁度計23
は、この濁度計23により計測される透過光出力電圧値
Zが、洗浄液のTOD値Xの 200ppmに対応する値に
なるまで、洗浄液の濁度を評価する。図7に、製品液の
品種毎に、各製品液を洗浄した洗浄液のTOD値Xの 2
00ppmに対応する濁度計23の透過光出力電圧Zの値
を示している。Here, T of the cleaning liquid detected by the turbidimeter 23
If the OD value X is 200 ppm or less in consideration of the safety factor, it can be determined that the various pipes including the product liquid introduction pipe 16 and the strainer 10 have been sufficiently washed. Turbidity meter 23
Evaluates the turbidity of the cleaning liquid until the transmitted light output voltage value Z measured by the turbidity meter 23 reaches a value corresponding to 200 ppm of the TOD value X of the cleaning liquid. Fig. 7 shows the TOD value X of the cleaning liquid obtained by cleaning each product liquid for each product type 2
The value of the transmitted light output voltage Z of the turbidimeter 23 corresponding to 00 ppm is shown.
【0029】尚、図8及び図9から明らかなように、青
系の製品液における式の直線の傾き(ΔZ/ΔX)の
絶対値は、赤系の製品液における式の直線の(ΔZ/
ΔX)の絶対値よりも小さく、従って、濁度計23にお
いては、製品液の品種が赤系であるよりも青系であるも
のの方が、濁度計の23の分解能が低下する傾向を示
す。しかし、実際には、製品液が青系の液種Eについ
て、濁度計23の透過光出力電圧値Zが4.852 V(200
ppm以下切替値)を示す時、この洗浄液をサンプリン
グして、この洗浄液のTOD値Xを測定すると 198pp
mとなっており、濁度計23は、分解能が低下する青系
の製品液についても、計測誤差が小さいことが分かる。
従って、濁度計23は、最も計測誤差が大きな青系の製
品液に対しても計測が正確であるため、青系から赤系の
全てのスペクトルの製品液について、それらの製品液を
洗浄した洗浄液の濁度を正確に評価できる。As can be seen from FIGS. 8 and 9, the absolute value of the slope (ΔZ / ΔX) of the straight line of the formula for the blue product liquid is (ΔZ /
Smaller than the absolute value of ΔX). Therefore, in the turbidity meter 23, when the product liquid type is bluish rather than reddish, the resolution of the turbidity meter 23 tends to decrease. . However, in reality, for the liquid type E whose product liquid is blue, the transmitted light output voltage value Z of the turbidimeter 23 is 4.852 V (200
When this cleaning solution is sampled and the TOD value X of this cleaning solution is measured, it is 198 pp
Since m is m, it can be seen that the turbidity meter 23 has a small measurement error even for a blue-based product liquid whose resolution is lowered.
Therefore, since the turbidity meter 23 is accurate in measuring even the blue-based product liquid having the largest measurement error, the product liquids of all spectra from blue to red are washed. The turbidity of the cleaning solution can be accurately evaluated.
【0030】次に、図5に示すように、濁度計23の投
光用光センサ40及び受光用光センサ41は、防塵カバ
ー43によって囲まれるとともに、この防塵カバー43
に空気供給ノズル44が配設される。この空気供給ノズ
ル44の開口は、投光用光センサ40及び受光用光セン
サ41の計測面45付近にあって、空気供給ノズル44
から計測面45へ、適時清浄用流体としての空気を吹き
かけ、この計測面を清浄状態に保持する。Next, as shown in FIG. 5, the light projecting optical sensor 40 and the light receiving optical sensor 41 of the turbidity meter 23 are surrounded by a dustproof cover 43 and the dustproof cover 43.
An air supply nozzle 44 is provided in the. The opening of the air supply nozzle 44 is near the measurement surface 45 of the light projecting light sensor 40 and the light receiving photosensor 41, and the air supply nozzle 44
From this to the measurement surface 45, air as a cleaning fluid is sprayed at appropriate times, and this measurement surface is kept in a clean state.
【0031】また、図1に示すメイン仕切弁19、第1
バイパス仕切弁21及び第2バイパス仕切弁22は図6
に示すように制御され、第1バイパス仕切弁21及び第
2バイパス仕切弁22が開弁された後閉弁されて、バイ
パス配管20内に製品液導入配管16内の洗浄液(温
水)が導かれて静止状態とされ、この静止状態の洗浄液
につき濁度計23にて濁度が評価されるとともに、メイ
ン仕切弁19と第1バイパス仕切弁21及び第2バイパ
ス仕切弁22とは、少なくとも一方が常に開弁状態とな
るよう制御される。Further, the main sluice valve 19 shown in FIG.
The bypass sluice valve 21 and the second bypass sluice valve 22 are shown in FIG.
As shown in FIG. 3, the first bypass sluice valve 21 and the second bypass sluice valve 22 are opened and then closed to introduce the cleaning liquid (hot water) in the product liquid introduction pipe 16 into the bypass pipe 20. The turbidity meter 23 evaluates the turbidity of the stationary cleaning liquid, and at least one of the main sluice valve 19, the first bypass sluice valve 21, and the second bypass sluice valve 22 is The valve is always controlled to be open.
【0032】つまり、図6に示すように、濁度計23に
よる濁度評価の前にメイン仕切弁19、第1バイパス仕
切弁21及び第2バイパス仕切弁22を全て開弁させ
る。そして、メイン仕切弁19の開弁から 2秒経過後
に、このメイン仕切弁19を閉弁して、製品液導入配管
16からの洗浄液をバイパス配管20内へ積極的に導
く。That is, as shown in FIG. 6, the main sluice valve 19, the first bypass sluice valve 21 and the second bypass sluice valve 22 are all opened before the turbidity meter 23 evaluates the turbidity. Then, 2 seconds after the main sluice valve 19 is opened, the main sluice valve 19 is closed to positively introduce the cleaning liquid from the product liquid introduction pipe 16 into the bypass pipe 20.
【0033】次に、第2バイパス仕切弁22の開弁から
5秒経過後にこの第2バイパス仕切弁22を閉弁し、同
時にメイン仕切弁19を開弁する。第2バイパス仕切弁
22の閉弁によって、バイパス配管20内を流動する洗
浄液が堰き止められる。この第2バイパス仕切弁22の
閉弁とメイン仕切弁19の開弁との同時操作から 2秒経
過後に、第1バイパス仕切弁21を閉弁して、バイパス
配管20内における洗浄液の流れを停止させて静止状態
とする。Next, from the opening of the second bypass gate valve 22
After the lapse of 5 seconds, the second bypass sluice valve 22 is closed, and at the same time, the main sluice valve 19 is opened. By closing the second bypass gate valve 22, the cleaning liquid flowing in the bypass pipe 20 is blocked. Two seconds after the simultaneous operation of closing the second bypass sluice valve 22 and opening the main sluice valve 19, the first bypass sluice valve 21 is closed to stop the flow of the cleaning liquid in the bypass pipe 20. Let it stand still.
【0034】第1バイパス仕切弁21の閉弁から 3秒待
機後に、静止状態の洗浄水の濁度を濁度計23にて計測
する。上記 3秒の待機時間は、バイパス配管20内の洗
浄液中の気泡が消失するための時間であり、洗浄液の粘
度によって異なるため製品液毎に設定される。After waiting for 3 seconds from the closing of the first bypass sluice valve 21, the turbidity meter 23 measures the turbidity of the stationary wash water. The waiting time of 3 seconds is a time for the bubbles in the cleaning liquid in the bypass pipe 20 to disappear, and varies depending on the viscosity of the cleaning liquid, and is set for each product liquid.
【0035】上述のメイン仕切弁19、第1バイパス仕
切弁21及び第2バイパス仕切弁22並びに濁度計23
の作動制御が連続して実施され、濁度計23の計測値か
ら、洗浄液のTOD値Xが 200ppm以下であると評価
されるまで、ストレーナ10及び配管系の洗浄を実施す
る。The main gate valve 19, the first bypass gate valve 21, the second bypass gate valve 22 and the turbidity meter 23 described above.
The operation control is continuously performed, and the strainer 10 and the piping system are cleaned until the TOD value X of the cleaning liquid is evaluated to be 200 ppm or less from the measurement value of the turbidity meter 23.
【0036】濁度計23の計測値が 2回連続して、洗浄
液のTOD値Xを 200ppm以下であると透過光出力電
圧値Zに基づいて計測した時点で、ストレーナ10及び
配管系の洗浄が終了したと判断する。また、この方法は
濁度計23による濁度評価の信頼性を安定させる。When the TOD value X of the cleaning liquid is 200 ppm or less when the measured value of the turbidimeter 23 is continuously measured, the strainer 10 and the piping system are cleaned at the time when the measured value is based on the transmitted light output voltage value Z. Judge that it is finished. Further, this method stabilizes the reliability of the turbidity evaluation by the turbidimeter 23.
【0037】上記配管内濁度評価装置39によれば、次
の作用・効果がある。第1バイパス仕切弁21及び第2
バイパス仕切弁22を開弁して製品液導入配管16内の
洗浄液をバイパス配管20内へ導き、次に、この第1バ
イパス仕切弁21及び第2バイパス仕切弁22を閉弁し
てバイパス配管20内の洗浄液を静止状態とし、この静
止状態となった洗浄液の濁度を濁度計23が計測するの
で、静止状態の洗浄液には気泡が存在せず、従って、濁
度計23は、気泡の影響を受けることなく、洗浄液の濁
度を正確に計測し評価できる。According to the in-pipe turbidity evaluation device 39, the following actions and effects are obtained. First bypass gate valve 21 and second
The bypass sluice valve 22 is opened to introduce the cleaning liquid in the product liquid introduction pipe 16 into the bypass pipe 20, and then the first bypass sluice valve 21 and the second bypass sluice valve 22 are closed to bypass the bypass pipe 20. Since the washing liquid inside is made stationary and the turbidity meter 23 measures the turbidity of the washing liquid in this stationary state, there are no bubbles in the washing liquid in the stationary state. The turbidity of the cleaning solution can be accurately measured and evaluated without being affected.
【0038】図6に示すバルブ制御において、第1バイ
パス仕切弁21及び第2バイパス仕切弁22並びにメイ
ン仕切弁19を同時に閉弁して一定時間経過させると、
製品液導入配管16及びバイパス配管20の内圧が上昇
して、製品液導入配管16にはウォ−タハンマ現象によ
る異音が発生する。本実施例では、第1バイパス仕切弁
21及び第2バイパス仕切弁22並びにメイン仕切弁1
9は、少なくとも一方が常に開弁状態となるよう制御さ
れるので、製品液導入配管16の内圧が上昇せず、従っ
て、この製品液導入配管に上記異音の発生を防止でき
る。In the valve control shown in FIG. 6, when the first bypass sluice valve 21, the second bypass sluice valve 22 and the main sluice valve 19 are closed at the same time for a certain period of time,
The internal pressures of the product liquid introducing pipe 16 and the bypass pipe 20 rise, and abnormal noise is generated in the product liquid introducing pipe 16 due to the water hammer phenomenon. In this embodiment, the first bypass sluice valve 21, the second bypass sluice valve 22 and the main sluice valve 1
No. 9 is controlled so that at least one of them is always opened, so that the internal pressure of the product liquid introducing pipe 16 does not rise, so that the abnormal noise can be prevented from occurring in the product liquid introducing pipe.
【0039】更に、濁度計23における投光用光センサ
40及び受光用光センサ41の計測面45に空気供給ノ
ズル44から空気が常時吹きかけられて、この計測面4
5が清浄状態に保たれるので、濁度計23の計測精度を
より一層正確にすることができる。Further, air is constantly blown from the air supply nozzle 44 onto the measurement surfaces 45 of the light projecting light sensor 40 and the light receiving light sensor 41 in the turbidity meter 23, and the measurement surface 4
Since 5 is kept in a clean state, the measurement accuracy of the turbidity meter 23 can be made more accurate.
【0040】尚、空気供給ノズル44は投光用センサ4
0及び受光用センサ41の計測面45に空気を吹きかけ
るものを述べたが、空気以外の気体を吹きかけても良
い。The air supply nozzle 44 is used as the light projecting sensor 4
Although the case where the air is blown onto the measurement surface 45 of the 0 and the light receiving sensor 41 is described, a gas other than the air may be blown.
【0041】[0041]
【発明の効果】以上のように、本発明に係る配管内濁度
評価装置によれば、配管に異音を発生させることなく、
配管内を流れる流体の濁度を正確に計測できる。As described above, according to the in-pipe turbidity evaluation apparatus of the present invention, there is no abnormal noise in the pipe,
The turbidity of the fluid flowing in the pipe can be measured accurately.
【図1】図1は、本発明に係る配管内濁度評価装置の一
実施例が適用されたストレーナ洗浄装置を示す管路図で
ある。FIG. 1 is a pipeline diagram showing a strainer cleaning device to which an embodiment of an in-pipe turbidity evaluation device according to the present invention is applied.
【図2】図2は、図1のII-II 線に沿う概略断面図であ
る。FIG. 2 is a schematic cross-sectional view taken along the line II-II in FIG.
【図3】図3は、図1のストレーナ洗浄装置の一部を破
断状態で示す部分側面図である。FIG. 3 is a partial side view showing a part of the strainer cleaning device of FIG. 1 in a broken state.
【図4】図4は、図1のストレーナ洗浄装置の作動を示
すフローチャートである。FIG. 4 is a flowchart showing the operation of the strainer cleaning device of FIG.
【図5】図5(A)は、図1の濁度計を示す平面図であ
り、図5(B)は、図5(A)の VB矢視図である。5 (A) is a plan view showing the turbidimeter of FIG. 1, and FIG. 5 (B) is a VB arrow view of FIG. 5 (A).
【図6】図6は、図1の仕切弁の制御パターンを示すタ
イムチャートである。6 is a time chart showing a control pattern of the gate valve of FIG.
【図7】図7は、ストレーナへ導かれる各製品液を洗浄
した洗浄液についての特性値を示す図表である。FIG. 7 is a chart showing characteristic values of a cleaning liquid obtained by cleaning each product liquid introduced to a strainer.
【図8】図8は、液種Iに関する濁度計の透過光出力電
圧とTOD値との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the transmitted light output voltage of the turbidimeter and the TOD value for liquid type I.
【図9】図9は、液種Eに関する濁度計の透過光出力電
圧とTOD値との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the transmitted light output voltage of a turbidimeter and the TOD value for liquid type E.
16 製品液導入配管 19 メイン仕切弁 20 バイパス配管 21 第1バイパス仕切弁 22 第2バイパス仕切弁 23 濁度計 40 投光用光センサ 41 受光用光センサ 43 防塵カバー 44 空気供給ノズル 45 計測面 16 Product Liquid Introducing Pipe 19 Main Gate Valve 20 Bypass Pipe 21 First Bypass Gate Valve 22 Second Bypass Gate Valve 23 Turbidimeter 40 Optical Sensor for Projecting Light 41 Optical Sensor for Receiving 43 Dust Cover 44 Air Supply Nozzle 45 Measuring Surface
───────────────────────────────────────────────────── フロントページの続き (72)発明者 畑中 繁視 東京都墨田区文花2−1−3 花王株式会 社研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeru Hatanaka 2-1-3 Bunka, Sumida-ku, Tokyo Kao Corporation Stock Research Institute
Claims (2)
が接続され、このバイパス配管に濁度計及びバイパス仕
切弁が直列配置され、上記メイン配管のうち上記バイパ
ス配管に迂回された部分にメイン仕切弁が配置されて、
上記バイパス仕切弁を開弁し閉弁した後の静止状態の流
体につき上記濁度計にて濁度を計測するとともに、 上記メイン仕切弁及びバイパス仕切弁は、少なくとも一
方が常に開弁状態に制御されることを特徴とする配管内
濁度評価装置。1. A bypass pipe is connected to a main pipe through which a fluid flows, and a turbidity meter and a bypass sluice valve are arranged in series in the bypass pipe, and a main sluice valve is provided in a portion of the main pipe bypassed by the bypass pipe. Is placed,
Measure the turbidity of the fluid in a stationary state after opening and closing the bypass sluice valve with the turbidity meter, and at least one of the main sluice valve and the bypass sluice valve is always controlled to be in the open state. An apparatus for evaluating turbidity in a pipe, which is characterized in that:
吹きかけられて、上記計測面が清浄状態に保持される請
求項1に記載の配管内濁度評価装置。2. The in-pipe turbidity evaluation device according to claim 1, wherein the measuring surface of the turbidimeter is constantly sprayed with a cleaning fluid to keep the measuring surface in a clean state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16452095A JP3211196B2 (en) | 1995-06-08 | 1995-06-08 | Pipe turbidity evaluation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16452095A JP3211196B2 (en) | 1995-06-08 | 1995-06-08 | Pipe turbidity evaluation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08334463A true JPH08334463A (en) | 1996-12-17 |
JP3211196B2 JP3211196B2 (en) | 2001-09-25 |
Family
ID=15794731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16452095A Expired - Lifetime JP3211196B2 (en) | 1995-06-08 | 1995-06-08 | Pipe turbidity evaluation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3211196B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001090727A1 (en) * | 2000-05-22 | 2001-11-29 | C. Uyemura & Co., Ltd. | Automatic analyzing/controlling device for electroless composite plating solution |
JP2002047575A (en) * | 2000-05-22 | 2002-02-15 | C Uyemura & Co Ltd | Automatic analyser and controller of electroless composite plating liquid |
JP2004045405A (en) * | 2003-07-04 | 2004-02-12 | Sanyo Electric Co Ltd | Calibration method and filtration method using the same |
JP2020121754A (en) * | 2019-01-30 | 2020-08-13 | トキコシステムソリューションズ株式会社 | Fuel supply system |
-
1995
- 1995-06-08 JP JP16452095A patent/JP3211196B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001090727A1 (en) * | 2000-05-22 | 2001-11-29 | C. Uyemura & Co., Ltd. | Automatic analyzing/controlling device for electroless composite plating solution |
JP2002047575A (en) * | 2000-05-22 | 2002-02-15 | C Uyemura & Co Ltd | Automatic analyser and controller of electroless composite plating liquid |
JP4654534B2 (en) * | 2000-05-22 | 2011-03-23 | 上村工業株式会社 | Automatic analysis and management equipment for electroless composite nickel plating solution |
JP2004045405A (en) * | 2003-07-04 | 2004-02-12 | Sanyo Electric Co Ltd | Calibration method and filtration method using the same |
JP2020121754A (en) * | 2019-01-30 | 2020-08-13 | トキコシステムソリューションズ株式会社 | Fuel supply system |
Also Published As
Publication number | Publication date |
---|---|
JP3211196B2 (en) | 2001-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5331177A (en) | Turbidity sensor with analog to digital conversion capability | |
US5864140A (en) | Apparatus for measuring characteristics of a liquid | |
US4874243A (en) | Apparatus for continuously measuring the turbidity of a fluid | |
US5334536A (en) | Apparatus for the photometric determination of gas concentrations | |
US3691391A (en) | Optical testing apparatus comprising means for flowing liquids in free fall condition at constant flow rate | |
JPH08334463A (en) | Pipe inside turbidity evaluation device | |
JP6225522B2 (en) | Water quality measuring device | |
JPS60162940A (en) | Method and device for determining time of completion of liquid renewal process | |
JPH06281565A (en) | Absorbance type analyzer | |
US6734021B1 (en) | Method and apparatus for measuring organic carbon content | |
JP4284077B2 (en) | Water quality meter | |
JPS647831B2 (en) | ||
US5237856A (en) | Bubble emission volume quantifier | |
JP4486742B2 (en) | Liquid concentration meter | |
JPH07181130A (en) | Washer for turbidimeter | |
JPH0587725A (en) | Grain size distribution measuring device | |
JP2000258411A (en) | Stool with urine inspection function | |
JPH1048134A (en) | Process turbidimeter | |
JPH07294510A (en) | Automatic water quality monitor apparatus | |
EP0519689A2 (en) | Leak detection by observing bubbles in a liquid pool | |
KR100247907B1 (en) | Apparatus for cleaning of semiconductor wafer | |
JPS6033391Y2 (en) | Wiper device for oil concentration meter | |
WO2021166292A1 (en) | Method for analyzing water quality | |
JPS5858442A (en) | Organic contamination turbidimeter | |
JPH07328559A (en) | Method for detecting finish of washing process of washing machine and washing machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010626 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |