JPH0832436A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0832436A
JPH0832436A JP6161816A JP16181694A JPH0832436A JP H0832436 A JPH0832436 A JP H0832436A JP 6161816 A JP6161816 A JP 6161816A JP 16181694 A JP16181694 A JP 16181694A JP H0832436 A JPH0832436 A JP H0832436A
Authority
JP
Japan
Prior art keywords
current
circuit
signal
load
type mosfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6161816A
Other languages
Japanese (ja)
Inventor
Hisayuki Higuchi
久幸 樋口
Masaru Tachibana
大 橘
Keijiro Uehara
敬二郎 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6161816A priority Critical patent/JPH0832436A/en
Publication of JPH0832436A publication Critical patent/JPH0832436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To attain high speed operation with low power consumption by employing a current mirror type circuit for a load circuit and providing a clamp circuit to keep an output signal amplitude constant even when a current is changed during the operation. CONSTITUTION:P-channel MOSFETs MP1, MP2 in current mirror connection are provided in a load circuit of an emitter coupled logic circuit selecting a current based on an input signal voltage to process the signal and a clamp circuit controlling an output signal amplitude is provided. Furthermore, a function selecting any of plural currents as a switched current during the circuit operation is provided. That is, a larger current is supplied for a period of signal processing and a smaller current is supplied for a period not directly relating to the signal processing or a circuit whose operating speed requires no faster speed. Thus, the logic circuit operated at a high speed with low power consumption is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高速に情報処理を行う半
導体集積回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit which processes information at high speed.

【0002】[0002]

【従来の技術】高速動作の求められる半導体集積回路で
はエミッタカップル論理回路(以下ECL回路という)
が用いられている。ECL回路は半導体回路の中で最も
高速の動作をする。しかし、この回路は一定の電流を流
し続け、この一定電流を入力信号で切り替えて信号を検
出したり論理をとる回路である。このように一定の電流
を流し続けることが不可欠の動作はECL回路では負荷
に抵抗を用いていることによる。
2. Description of the Related Art In a semiconductor integrated circuit required to operate at high speed, an emitter couple logic circuit (hereinafter referred to as an ECL circuit)
Is used. The ECL circuit operates at the highest speed among semiconductor circuits. However, this circuit is a circuit that continues to flow a constant current and switches the constant current with an input signal to detect a signal or take a logic. The operation in which it is essential to keep the constant current flowing is because the ECL circuit uses a resistor as a load.

【0003】すなわち、電流値を変えるとその値に対応
する信号振幅を発生するように負荷の抵抗値を設定する
ので、電流値と負荷抵抗との積が一定であることが必要
である。消費電力は信号の処理を必要とするか否かにか
かわらず一定である。このため、高集積の回路では消費
電力を下げるためにこの一定電流の電流値を小さくする
ことが行われている。電流値が小さくなると負荷の充放
電時間が増して、高速動作の特徴が失われる。すでに、
負荷の大きい回路には電流を多く配分して負荷の充放電
に要する時間を軽減することが行われている。しかし、
この方法では、電流値を大きくした回路には大きい電流
が流れ続けることになり、大幅な消費電力の低減は達成
されない。
That is, when the current value is changed, the resistance value of the load is set so that a signal amplitude corresponding to the value is generated. Therefore, it is necessary that the product of the current value and the load resistance is constant. Power consumption is constant whether or not signal processing is required. Therefore, in highly integrated circuits, the current value of this constant current is reduced in order to reduce power consumption. As the current value decreases, the load charging / discharging time increases, and the characteristics of high-speed operation are lost. Already
A large amount of current is distributed to a circuit with a large load to reduce the time required to charge and discharge the load. But,
According to this method, a large current continues to flow in the circuit having a large current value, and a significant reduction in power consumption cannot be achieved.

【0004】バイポーラ差動増幅器にP型MOSFET
のカレントミラー回路を用いた回路は、すでに、報告さ
れている(NTT R&D Vol.41 pp.105
7−1056)。しかし、この回路には本発明の主要構
成要素である信号を制限するクランプ機能や回路動作中
に電流を変化させる機能はない。
P-type MOSFET for bipolar differential amplifier
A circuit using the current mirror circuit has been already reported (NTT R & D Vol.41 pp.105.
7-1056). However, this circuit does not have a clamp function for limiting a signal, which is a main component of the present invention, or a function for changing a current during circuit operation.

【0005】また、CMOS回路では信号の検出にP型
MOSFETをカレントミラー接続したソースカップル
型の差動増幅器が用いられている。この回路には信号を
処理する必要のないときには電流を遮断する機能を備え
たものもある。しかし、本発明の主要な構成要素である
信号の振幅を制限する機能や信号処理を行わないときに
もわずかに電流を流しつづける機能は含まれていない。
Further, in a CMOS circuit, a source-coupled differential amplifier in which a P-type MOSFET is connected in a current mirror is used for signal detection. Some of these circuits have the ability to interrupt the current when it is not necessary to process the signal. However, it does not include the function of limiting the amplitude of a signal, which is a main component of the present invention, and the function of keeping a slight amount of current flowing even when no signal processing is performed.

【0006】[0006]

【発明が解決しようとする課題】上述のように一定の電
流を流し続けることが不可欠の動作はECL回路では負
荷に抵抗を用いていることによっている。電流値を変え
るとその値に対応する信号振幅を発生するように負荷の
抵抗値を設定するので、電流値と負荷抵抗との積が一定
であることが必要である。すなわち、信号振幅を一定に
保持するためにはECL回路に流す電流値と抵抗値とを
精度よく製作することが求められ、製作が難しいと考え
られている。
The operation in which it is essential to keep a constant current flowing as described above is based on the use of a resistor as a load in the ECL circuit. Since the resistance value of the load is set so that a signal amplitude corresponding to the current value is generated when the current value is changed, it is necessary that the product of the current value and the load resistance is constant. That is, in order to keep the signal amplitude constant, it is required to manufacture the current value and the resistance value flowing in the ECL circuit with high accuracy, and it is considered that the manufacturing is difficult.

【0007】また、従来のECL回路で抵抗値を可変と
して電流を切り替えることも可能であるが、この方法で
は抵抗値の切り替え時刻と電流の切り替え時刻を一致さ
せるタイミング設計が必要となる。
Although it is possible to switch the current by changing the resistance value in the conventional ECL circuit, this method requires a timing design for making the switching time of the resistance value and the switching time of the current coincide with each other.

【0008】また、出力の信号振幅を制限しない従来の
カレントミラー負荷回路を備えた差動増幅器を論理回路
に適用しようとするとコレクタ電位が下がりすぎてバイ
ポーラトランジスタが飽和動作領域に入り、動作速度が
低下すること、また、信号振幅が大きくなって負荷容量
の充放電に要する時間が増加する。
Further, when an attempt is made to apply a differential amplifier having a conventional current mirror load circuit that does not limit the output signal amplitude to a logic circuit, the collector potential drops too much, the bipolar transistor enters the saturated operation region, and the operation speed is increased. In addition, the signal amplitude decreases and the time required for charging and discharging the load capacitance increases.

【0009】また、ECL回路は回路の占有面積が大き
い欠点もある。CMO論理回路に匹敵する占有面積を実
現することも課題の一つである。
Further, the ECL circuit has a drawback that the area occupied by the circuit is large. Achieving an occupation area comparable to that of a CMO logic circuit is also a problem.

【0010】[0010]

【課題を解決するための手段】本発明はこのようなEC
L回路の欠点を負荷回路にカレントミラー型の回路を用
い、かつクランプ回路を設け、動作中に電流を変化させ
ても出力信号振幅を一定に保持することでタイミング設
計を不要とした。
The present invention provides such an EC
The disadvantage of the L circuit is that the current mirror type circuit is used as the load circuit, the clamp circuit is provided, and the output signal amplitude is held constant even if the current is changed during the operation, thereby eliminating the need for timing design.

【0011】回路の占有面積の低減はデバイスの分離領
域を削減するSOI技術を用いて削減する。
The reduction of the circuit occupation area is achieved by using the SOI technique for reducing the isolation region of the device.

【0012】[0012]

【作用】本発明の回路によれば、信号処理をしている期
間は大きい電流を流し、信号処理に直接関与していない
期間や動作速度が遅くてもよい回路には小さい電流を流
すことが可能となり、低消費電力で、かつ、高速動作を
する論理回路を実現できた。
According to the circuit of the present invention, a large current can be made to flow during signal processing, and a small current can be made to flow in a circuit not directly involved in signal processing or a circuit whose operating speed may be slow. This enabled the realization of a logic circuit with low power consumption and high speed operation.

【0013】[0013]

【実施例】図1には本発明の回路図を示す。Q1〜Q3
はバイポーラトランジスタで、Q1〜Q3のエミッタは
電圧Vcsが供給されるN型MOSFET MN1のド
レイン端子33に接続され所定の電流Ics(図示せず)
が供給される。IN1,IN2は信号入力端子でVRE
Fは入力信号の参照電圧である。IN1,IN2のいず
れかがVREFの電圧を超えると電流Icsは端子31
に流れるようになる。
1 is a circuit diagram of the present invention. Q1 to Q3
Is a bipolar transistor, the emitters of Q1 to Q3 are connected to the drain terminal 33 of the N-type MOSFET MN1 to which the voltage Vcs is supplied, and a predetermined current Ics (not shown)
Is supplied. IN1 and IN2 are signal input terminals and VRE
F is the reference voltage of the input signal. When either IN1 or IN2 exceeds the voltage of VREF, the current Ics becomes the terminal 31.
Comes to flow.

【0014】端子31にはダイオード接続されたP型M
OSFET MP1があり、電流Icsを流す。このと
き、端子31の電位は電流Icsを流すに必要なゲート
電位となっている。P型MOSFET MP2にも電流
Icsと等しい電流が流れる。しかし、Q3は遮断状態
にあるのでMP2から供給される電流は端子OUTの電
位を引き上げるためにあてられ、端子OUTの電位は接
地電位まで引き上げられる。すなわち、この入力状態で
は出力電位は接地電位となる。
A P-type M diode-connected to the terminal 31
There is an OSFET MP1, and a current Ics flows. At this time, the potential of the terminal 31 is the gate potential required to flow the current Ics. A current equal to the current Ics also flows through the P-type MOSFET MP2. However, since Q3 is in the cutoff state, the current supplied from MP2 is applied to raise the potential of the terminal OUT, and the potential of the terminal OUT is raised to the ground potential. That is, in this input state, the output potential becomes the ground potential.

【0015】Q3が遮断状態にあり、出力端子OUTか
ら電流が引き抜かれなければ、この出力電位はMN1に
よって供給される電流に依存しない。この状態からIN
1,IN2の両電位ともに参照電位VREFより低くな
るとQ1,Q2は遮断状態となり、MP1には電流が流
れなくなる。このため、ゲート電圧も小さくなって、M
P2も遮断状態となる。一方、Q3は導通して出力端子
OUTから電流を引き抜き電位を引き下げる。
This output potential is independent of the current supplied by MN1 unless Q3 is in the cutoff state and no current is drawn from the output terminal OUT. IN from this state
When both potentials of 1 and IN2 become lower than the reference potential VREF, Q1 and Q2 are cut off, and no current flows to MP1. For this reason, the gate voltage also decreases, and M
P2 is also in the cutoff state. On the other hand, Q3 conducts to draw a current from the output terminal OUT and drop the potential.

【0016】端子OUTの電位はダイオードD1によっ
てクランプされ出力信号の低レベルが決まる。この状態
でも出力の低レベルはダイオードの順方向電圧で決まっ
ていて、MN1の電流には依存しない。
The potential of the terminal OUT is clamped by the diode D1 and the low level of the output signal is determined. Even in this state, the low level of the output is determined by the forward voltage of the diode and does not depend on the current of MN1.

【0017】以上の動作から明らかなように図1の回路
はMN1によって供給される電流では信号振幅は変化し
ないことがわかる。すなわち、供給電流は出力信号が切
り替わったときに出力端子の寄生容量を充放電するため
のもので、この動作が終了した後には大量の電流を流す
必要のないことがわかる。また、電流によって信号の低
レベルが変化した従来のECL回路にくらべ電流が変化
しても信号の低レベルは変化しないので電流の設定を厳
密に行う必要はない。むしろ、この特徴を活かして、信
号が変化する期間にはやや多い電流を供給することで動
作速度の向上を達成できる。
As is apparent from the above operation, the circuit of FIG. 1 shows that the signal amplitude does not change with the current supplied by MN1. That is, it can be seen that the supply current is for charging and discharging the parasitic capacitance of the output terminal when the output signal is switched, and it is not necessary to flow a large amount of current after this operation is completed. Further, since the low level of the signal does not change even if the current changes as compared with the conventional ECL circuit in which the low level of the signal changes due to the current, it is not necessary to set the current strictly. Rather, taking advantage of this feature, it is possible to improve the operating speed by supplying a slightly larger current during the period when the signal changes.

【0018】負荷が大きいときには、図2の回路図に示
すように、エミッタフォロワのトランジスタQ4をつけ
加えると動作速度が改善される。この回路のMN2はQ
4に所定の電流を供給するためのデバイスであってMN
1と同様に電流が切り替えられる。
When the load is large, the operating speed is improved by adding the transistor Q4 of the emitter follower as shown in the circuit diagram of FIG. MN2 of this circuit is Q
4 is a device for supplying a predetermined current to the MN
The current is switched as in 1.

【0019】ECL回路はNOR,ORの論理出力が得
られるためにCMOS回路のNAND回路やNOR回路に比
べて実効的に高速動作であるといわれている。図1,図
2の回路ではOR出力しか得られない。これに対して
は、図3の回路を用いることでNOR出力の回路を構成
することができる。このようにするとECL回路に比べ
2倍のデバイスが必要となるが信号は並列に処理される
のでECL回路と同等の動作速度が得られる。また、図
2の回路ではエミッタフォロワ回路を備えているのでワ
イヤードOR論理機能も備えており、論理能力はECL
回路と同等である。
The ECL circuit is said to operate effectively at a higher speed than the NAND circuit or the NOR circuit of the CMOS circuit because it can obtain the logical outputs of NOR and OR. In the circuits of FIGS. 1 and 2, only the OR output can be obtained. On the other hand, the circuit of FIG. 3 can be used to form a NOR output circuit. This requires twice as many devices as the ECL circuit, but since the signals are processed in parallel, an operating speed equivalent to that of the ECL circuit can be obtained. Further, since the circuit of FIG. 2 is provided with the emitter follower circuit, it is also provided with the wired OR logic function, and the logic capability is ECL.
It is equivalent to a circuit.

【0020】この回路を従来のECL回路に適用するこ
とで消費電力は約1/4になった。デバイス数は約30
%増加したが信号の配線領域が大きいために全体の増加
は10%程度にとどまった。
By applying this circuit to the conventional ECL circuit, the power consumption is reduced to about 1/4. About 30 devices
%, But the overall increase was only about 10% due to the large signal wiring area.

【0021】図4は本発明の回路を製作するに好適なデ
バイスの構造とその配置を示す図である。バイポーラト
ランジスタは左半分にP型MOSFETは右半分に、ま
た、断面構造を上部に、平面構造を下部に示している。
バイポーラトランジスタ間やP型MOSFETとの間の
分離領域12を削減するために酸化膜2上に設けたシリ
コン膜3(SOI:Silicon on Insulator)にデバイス
を製作している。これによって素子間の分離領域12が
削減され、かつ、コレクタ3および15やドレイン21
に付く寄生容量が減って一層の高速化が達成された。以
下、図5に示す製作工程に従った断面図を用いて説明す
る。
FIG. 4 is a view showing the structure of a device and its arrangement suitable for manufacturing the circuit of the present invention. The bipolar transistor is shown in the left half, the P-type MOSFET is shown in the right half, the sectional structure is shown in the upper part, and the planar structure is shown in the lower part.
A device is manufactured on a silicon film 3 (SOI: Silicon on Insulator) provided on the oxide film 2 in order to reduce the isolation region 12 between the bipolar transistors and the P-type MOSFET. As a result, the isolation region 12 between elements is reduced, and the collectors 3 and 15 and the drain 21 are removed.
The parasitic capacitance attached to the device has been reduced and the speed has been further increased. Hereinafter, description will be given with reference to sectional views according to the manufacturing process shown in FIG.

【0022】図5(a)はSOI基板を示す。1はシリ
コン基板で、その上に酸化膜2が約400nmの厚さで
形成されている。さらに、その上にシリコン単結晶の膜
3が約200nmの厚さに形成されている。この構造の
SOI基板は貼りあわせ法やイオン打ち込み法で作られ
ていて入手できる。
FIG. 5A shows an SOI substrate. A silicon substrate 1 has an oxide film 2 formed thereon with a thickness of about 400 nm. Further, a silicon single crystal film 3 is formed thereon with a thickness of about 200 nm. The SOI substrate having this structure is available by being manufactured by a bonding method or an ion implantation method.

【0023】図5(b)はデバイス間の分離溝12を形
成したのち、P型MOSFET領域には約5nmの酸化
膜4を形成し、全面に多結晶シリコン膜(波ハッチング
で表示)および酸化膜(白抜きで表示)を被着し、ゲー
ト領域5,ベース領域6の両膜を残す加工を行ったとき
の断面構造を示している。
In FIG. 5B, after forming the isolation trench 12 between devices, an oxide film 4 of about 5 nm is formed in the P-type MOSFET region, and a polycrystalline silicon film (shown by wave hatching) and oxidation are formed on the entire surface. A cross-sectional structure is shown when a film (indicated by a white space) is deposited and processing for leaving both films of the gate region 5 and the base region 6 is performed.

【0024】図5(c)は多結晶シリコン膜の側壁に酸
化膜を自己整合法で形成し、バイポーラトランジスタ領
域には選択的にコレクタ9およびベース5,エミッタ7
を形成し、P型MOSFET領域にはドレイン21,ソ
ース24の両領域を形成したときの構造を示している。
いずれの領域も多結晶シリコン膜5,6およびその側壁
酸化膜をイオン打ち込みのマスクにした自己整合で形成
されている。また、P型MOSFETのソース24には
拡散自己整合で形成したN型領域27が設けられてい
る。これらの自己整合法は集積回路の製作に用いられて
いる技術であるので説明を省略する。
In FIG. 5C, an oxide film is formed on the side wall of the polycrystalline silicon film by the self-alignment method, and the collector 9 and the base 5 and the emitter 7 are selectively formed in the bipolar transistor region.
And the drain 21 and the source 24 are both formed in the P-type MOSFET region.
Both regions are formed by self-alignment using the polycrystalline silicon films 5 and 6 and their side wall oxide films as ion implantation masks. Further, the source 24 of the P-type MOSFET is provided with an N-type region 27 formed by diffusion self-alignment. Since these self-alignment methods are techniques used for manufacturing integrated circuits, description thereof will be omitted.

【0025】図5(c)の構造に電極取付け孔を設け、
電極4,8,22,26を形成して図4のデバイス構造
ができあがる。
An electrode mounting hole is provided in the structure of FIG.
The electrodes 4, 8, 22, and 26 are formed to complete the device structure shown in FIG.

【0026】図4の構造のデバイスは次の特徴を持って
いる。
The device having the structure shown in FIG. 4 has the following characteristics.

【0027】(1)バイポーラトランジスタのコレクタが
ベースと自己整合で形成され、また、最近の微細加工で
は多結晶シリコン膜の幅は0.2 ミクロン以下に加工で
きるのでエミッタ領域からコレクタの高濃度領域までの
距離を0.3 ミクロン以下といった極めて小さい値に精
度よく形成でき、コレクタ抵抗を小さくできる。また、
薄いSOI基板上に形成しているのでコレクタの寄生容
量が小さくなる。さらには、ベースの領域が最小加工寸
法で形成されるため、ベースの寄生容量も小さくでき
る。ベース電極となる多結晶シリコンの幅が狭いために
増加するベース抵抗は多結晶シリコン膜をシリサイド化
したり、多結晶シリコン膜とシリサイド膜の多層構造と
することで下げることができる。最善の構造はこの多結
晶シリコン膜とシリサイド膜の多層構造膜といえる。
(1) Since the collector of the bipolar transistor is formed in self-alignment with the base, and the width of the polycrystalline silicon film can be processed to 0.2 μm or less in recent microfabrication, the high concentration region from the emitter region to the collector is formed. Can be accurately formed to a very small value such as 0.3 micron or less, and collector resistance can be reduced. Also,
Since it is formed on a thin SOI substrate, the parasitic capacitance of the collector becomes small. Furthermore, since the base region is formed with the minimum processing size, the parasitic capacitance of the base can be reduced. The increase in base resistance due to the narrow width of the polycrystalline silicon serving as the base electrode can be reduced by siliciding the polycrystalline silicon film or forming a multi-layer structure of the polycrystalline silicon film and the silicide film. It can be said that the best structure is a multi-layered film of the polycrystalline silicon film and the silicide film.

【0028】(2)P型MOSFETのソース領域が拡散
自己整合で作られ基板がソース電極に接続されているの
でSOI構造においても従来のMOSFETと変わらぬ
電気的特性の制御性が得られる。また、この構造ではド
レイン,ソースの寄生容量が減少してP型MOSFET
の高周波特性が改善される。
(2) Since the source region of the P-type MOSFET is formed by diffusion self-alignment and the substrate is connected to the source electrode, the controllability of electrical characteristics which is the same as that of the conventional MOSFET can be obtained even in the SOI structure. In addition, in this structure, the parasitic capacitance of the drain and source is reduced, and
The high frequency characteristics of are improved.

【0029】(3)薄いSOI基板上にデバイスを形成し
ているためにデバイス間の分離が完全となり、電源配線
等の電位の影響を受けなくなり、また、α線等の外部雑
音の影響も軽減されより安定に動作するようになった。
また、分離領域を狭くすることで分離に要する面積が削
減され、集積度の向上,占有面積を削減できた。
(3) Since the devices are formed on a thin SOI substrate, the separation between the devices is complete, the influence of the potential of the power supply wiring and the like is eliminated, and the influence of external noise such as α rays is also reduced. It became more stable.
Further, by narrowing the isolation region, the area required for isolation was reduced, and the integration degree was improved and the occupied area was reduced.

【0030】図6は図4に示した構造のバイポーラトラ
ンジスタのベースおよびエミッタ両領域の深さを増して
酸化膜2に到達させた構造を示す。この構造にデバイス
を製作するとベース領域とエミッタ領域とが接触する面
積がエミッタ領域の側壁のみとなるのでエミッタ・ベー
ス間の容量が極めて小さくなる。また、コレクタ・ベー
ス間の容量も削減できた。
FIG. 6 shows a structure in which the depth of both the base and emitter regions of the bipolar transistor having the structure shown in FIG. 4 is increased to reach the oxide film 2. When a device is manufactured in this structure, the contact area between the base region and the emitter region is limited to the side wall of the emitter region, so that the capacitance between the emitter and the base becomes extremely small. Also, the capacity between the collector and the base was reduced.

【0031】以上の実施例ではNPNバイポーラトラン
ジスタとP型MOSFETとの組合せ回路について述べ
たが、PNPバイポーラトランジスタとN型MOSFE
Tとの組合せ回路も同様の特性を示す。また、バイポー
ラトランジスタをMOSFETで置き換えても同様の効果が得
られる。バイポーラトランジスタをN型MOSFETで
置き換えると、さらに、デバイスの分離が容易となるの
でSOI技術を適用しなくても面積の増加を軽減でき
る。
In the above embodiments, the combination circuit of the NPN bipolar transistor and the P-type MOSFET has been described, but the PNP bipolar transistor and the N-type MOSFE are described.
The combinational circuit with T shows similar characteristics. Also, the same effect can be obtained by replacing the bipolar transistor with a MOSFET. Replacing the bipolar transistor with an N-type MOSFET further facilitates device isolation, so that an increase in area can be reduced without applying SOI technology.

【0032】[0032]

【発明の効果】高速動作の要求される回路にはカレント
ミラー回路を負荷にもつECL回路を用い、かつ、高速
動作に必要な期間は電流値を大きくすることで高速動作
を達成し、回路動作に影響しない期間は電流値を下げる
ことでその分消費電力は低減された。
An ECL circuit having a current mirror circuit as a load is used for a circuit requiring high-speed operation, and high-speed operation is achieved by increasing the current value during a period required for high-speed operation. The power consumption was reduced correspondingly by lowering the current value during the period that does not affect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す回路図。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】本発明の第二の実施例を示す回路図。FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

【図3】本発明の第三の実施例を示す回路図。FIG. 3 is a circuit diagram showing a third embodiment of the present invention.

【図4】本発明の論理回路に好適なバイポーラトランジ
スタおよびP型MOSFETの構造を示す説明図。
FIG. 4 is an explanatory diagram showing structures of a bipolar transistor and a P-type MOSFET suitable for the logic circuit of the present invention.

【図5】本発明の論理回路に好適なバイポーラトランジ
スタおよびP型MOSFETを主要製作工程の断面図。
FIG. 5 is a sectional view of a main manufacturing process of a bipolar transistor and a P-type MOSFET suitable for the logic circuit of the present invention.

【図6】本発明の論理回路に好適なバイポーラトランジ
スタおよびP型MOSFETの他の構造を示す説明図。
FIG. 6 is an explanatory diagram showing another structure of a bipolar transistor and a P-type MOSFET suitable for the logic circuit of the present invention.

【符号の説明】[Explanation of symbols]

Q1〜Q3…バイポーラトランジスタ、D1…ダイオー
ド、MP1,MP2…P型MOSFET、MN1…N型
MOSFET。
Q1-Q3 ... Bipolar transistor, D1 ... Diode, MP1, MP2 ... P-type MOSFET, MN1 ... N-type MOSFET.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H03K 17/567 19/086 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H03K 17/567 19/086

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】入力信号電圧で電流を切り替えて信号を処
理する論理回路の負荷にカレントミラー接続されたP型
MOSFETが設けられており、かつ、切り替える電流
の値が回路動作中に複数値の電流値に切り替えることを
特徴とする半導体集積回路。
1. A P-type MOSFET connected in a current mirror to a load of a logic circuit that switches a current with an input signal voltage to process a signal, and the value of the switched current has a plurality of values during circuit operation. A semiconductor integrated circuit characterized by switching to a current value.
【請求項2】入力信号電圧で電流を切り替えて信号を処
理する論理回路の負荷にカレントミラー接続されたP型
MOSFETが設けられており、かつ、出力の信号振幅
を制限する機能を備え、かつ、切り替える電流の値が回
路動作中に複数値の電流値に切り替えることを特徴とす
る半導体集積回路。
2. A P-type MOSFET current-mirror connected to a load of a logic circuit that processes a signal by switching a current with an input signal voltage, and has a function of limiting an output signal amplitude, and A semiconductor integrated circuit characterized in that the value of the current to be switched is switched to a plurality of current values during circuit operation.
JP6161816A 1994-07-14 1994-07-14 Semiconductor integrated circuit Pending JPH0832436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6161816A JPH0832436A (en) 1994-07-14 1994-07-14 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6161816A JPH0832436A (en) 1994-07-14 1994-07-14 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0832436A true JPH0832436A (en) 1996-02-02

Family

ID=15742461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6161816A Pending JPH0832436A (en) 1994-07-14 1994-07-14 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0832436A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104530A (en) * 1996-05-28 2000-08-15 Mitsui Chemicals, Inc. Transparent laminates and optical filters for displays using same
US7740946B2 (en) 2005-02-17 2010-06-22 Asahi Glass Company, Limited Electroconductive laminate, and electromagnetic wave shielding film for plasma display and protective plate for plasma display
US8040062B2 (en) 2004-11-30 2011-10-18 Asahi Glass Company, Limited Electroconductive laminate, and electromagnetic wave shielding film and protective plate for plasma display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104530A (en) * 1996-05-28 2000-08-15 Mitsui Chemicals, Inc. Transparent laminates and optical filters for displays using same
US8040062B2 (en) 2004-11-30 2011-10-18 Asahi Glass Company, Limited Electroconductive laminate, and electromagnetic wave shielding film and protective plate for plasma display
US7740946B2 (en) 2005-02-17 2010-06-22 Asahi Glass Company, Limited Electroconductive laminate, and electromagnetic wave shielding film for plasma display and protective plate for plasma display

Similar Documents

Publication Publication Date Title
JP3085130B2 (en) Driver circuit
US4425516A (en) Buffer circuit and integrated semiconductor circuit structure formed of bipolar and CMOS transistor elements
JPS626369B2 (en)
JPH0357267A (en) Vdmos/logic integrated circuit with vertical depletion mos transistor and zener diode
EP0431290B1 (en) MOS switching circuit having gate enhanced lateral bipolar transistor
JPH0490215A (en) Bicmos logic gate circuit
JP2003332456A (en) Divided resistance circuit and semiconductor device
US4546327A (en) Analog signal power amplifier circuit
JPH03171309A (en) Reference potential generating circuit
US6720818B1 (en) Method and apparatus for maximizing an amplitude of an output signal of a differential multiplexer
JPH0832436A (en) Semiconductor integrated circuit
JP4091785B2 (en) Semiconductor circuit
KR0165986B1 (en) Bicmos logic circuit
US5682120A (en) Differential amplifier circuit using lateral-type bipolar transistors with back gates
JP3152340B2 (en) Analog switch circuit
JP2714996B2 (en) Semiconductor integrated circuit device
JPH0535927B2 (en)
JPH03227118A (en) Semiconductor logic circuit
JPS61174814A (en) Ecl output circuit
JP2926746B2 (en) Semiconductor amplifier circuit
JP2671304B2 (en) Logic circuit
KR0149780B1 (en) Mos transistor logic circuit having bipolar effect
JP2901542B2 (en) Semiconductor integrated circuit
JPS6193655A (en) Semiconductor device
JPH0681033B2 (en) Semiconductor integrated circuit