JPH08303686A - Vacuum heat insulating panel and manufacture of it - Google Patents
Vacuum heat insulating panel and manufacture of itInfo
- Publication number
- JPH08303686A JPH08303686A JP7105893A JP10589395A JPH08303686A JP H08303686 A JPH08303686 A JP H08303686A JP 7105893 A JP7105893 A JP 7105893A JP 10589395 A JP10589395 A JP 10589395A JP H08303686 A JPH08303686 A JP H08303686A
- Authority
- JP
- Japan
- Prior art keywords
- heat insulating
- vacuum heat
- seal portion
- vacuum
- bag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/24—Structural elements or technologies for improving thermal insulation
- Y02A30/242—Slab shaped vacuum insulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B80/00—Architectural or constructional elements improving the thermal performance of buildings
- Y02B80/10—Insulation, e.g. vacuum or aerogel insulation
Landscapes
- Building Environments (AREA)
- Thermal Insulation (AREA)
- Refrigerator Housings (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は真空断熱パネルおよびそ
の製造方法に関する。さらに詳しくは、冷蔵庫、保冷庫
等の断熱箱体の断熱材として好適に使用することのでき
る貫通孔および/または切欠き部を有する真空断熱パネ
ルおよびその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum insulation panel and a method for manufacturing the same. More specifically, the present invention relates to a vacuum heat insulating panel having a through hole and / or a notch that can be suitably used as a heat insulating material for a heat insulating box such as a refrigerator or a cool box, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】従来より、シリカや珪酸カルシウム等の
無機微粉末を断熱基材とし、これをガスバリアー性フィ
ルムよりなる袋内に減圧状態で封入した真空断熱パネル
が知られている。この微粉末封入型の真空断熱パネル
は、断熱基材として微粉末を使用しているため端部の型
決まりが悪いうえ廃棄する際に発塵が激しく満足なもの
とは云えない。また、微粉末封入型の真空断熱パネルの
欠点を改良したものとして、断熱基材として発泡ポリウ
レタン成形体や珪酸カルシウム成形体等を用いた成形体
封入型の真空断熱パネルが知られている。2. Description of the Related Art Conventionally, there has been known a vacuum heat insulating panel in which an inorganic fine powder such as silica or calcium silicate is used as a heat insulating base material and this is enclosed in a bag made of a gas barrier film in a reduced pressure state. Since this fine powder-filled type vacuum heat insulating panel uses fine powder as a heat insulating base material, its end portion has a bad rule of shape and dust is not generated sufficiently when it is discarded. Further, as an improved one of the drawbacks of the fine powder-filled type vacuum heat insulating panel, there is known a molded body-enclosed vacuum heat insulating panel using a foamed polyurethane molded body, a calcium silicate molded body or the like as a heat insulating base material.
【0003】このような真空断熱パネルは、封入されて
いる断熱基材自体の低熱伝導率に加え、内部が減圧状態
にされていることにより断熱パネル内部での対流伝熱が
大幅に抑制され、この相乗効果により優れた断熱性能を
発揮する点に特徴がある。そして、従来より平板状のも
のを、冷蔵庫、保冷庫等の内壁と外壁とで形成される空
間内に配設して使用されている。しかしながら、この種
の真空断熱パネルは、上記相乗効果により優れた断熱性
能は発揮するものの、これには孔開け加工や切欠き加工
等の後加工ができないため、使用上の制約を受けてい
た。In such a vacuum heat insulating panel, in addition to the low thermal conductivity of the heat insulating base material itself enclosed, the depressurized state of the inside significantly suppresses convective heat transfer inside the heat insulating panel. It is characterized in that it exhibits excellent heat insulation performance due to this synergistic effect. Conventionally, a flat plate-shaped object has been used by arranging it in a space formed by an inner wall and an outer wall of a refrigerator, a cool box or the like. However, although this type of vacuum heat insulation panel exhibits excellent heat insulation performance due to the above synergistic effect, it cannot be subjected to post-processing such as punching and notching, and thus has been restricted in use.
【0004】冷蔵庫を例にとると、断熱壁面を貫通して
電気配線、冷媒ガス配管、温度調節用機器等が設けら
れ、また断熱壁面の端縁部近傍等にはドアヒンジ固定用
部材等が設けられている。このような配線、配管、機器
等を設ける部位には、孔開け加工や切欠き加工のできる
従来からの断熱板(例えば発泡ポリウレタン成形体や珪
酸カルシウム成形体)を使用することが考えられるが、
真空断熱パネルに比べると断熱性能が劣り、この断熱性
能の差異は、年単位の使用期間を勘案する無視できずそ
の経済的損失は甚大なものとなる。また、大面積の真空
断熱パネルと小面積の真空断熱パネルとを組み合わせ、
配線、配管、機器等を設ける部位では小面積の真空断熱
パネルを使用し、配線、配管、機器等を設ける部位を避
けて配設することも考えられるが、組み合わせ接合面に
隙間ができ、断熱性能を低下させてしまう。Taking a refrigerator as an example, an electric wire, a refrigerant gas pipe, a temperature adjusting device and the like are provided through the heat insulating wall surface, and a door hinge fixing member and the like are provided in the vicinity of the edge of the heat insulating wall surface. Has been. It is conceivable to use a conventional heat insulating plate (for example, a foamed polyurethane molded body or a calcium silicate molded body) capable of punching or notching at a portion where such wiring, piping, equipment, etc. are provided,
The heat insulation performance is inferior to that of the vacuum heat insulation panel, and this difference in heat insulation performance cannot be ignored in consideration of the period of use in units of years, and the economic loss thereof will be enormous. Also, combining a large area vacuum insulation panel with a small area vacuum insulation panel,
It is conceivable to use a small area vacuum insulation panel in the area where wiring, piping, equipment, etc. are installed, and to avoid the area where wiring, piping, equipment, etc. are installed, but there is a gap in the combined joint surface and heat insulation It will reduce the performance.
【0005】このような問題は、真空断熱パネルとし
て、その面内に配線、配管、機器等を通せる貫通孔部お
よび/またはその端縁に切欠き部を有するものを用い、
このような真空断熱パネルを配線、配管、機器等、およ
びドアヒンジ固定用部材等を設ける位置に合致させて配
設することにより解決することができる。しかしなが
ら、この目的に使用できる貫通孔部および/または切欠
き部を有する真空断熱パネル、およびこのような構造の
真空断熱パネルの製造方法は未だ開発されておらず、そ
の開発が強く望まれていた。Such a problem is caused by using a vacuum heat insulating panel having a through hole portion through which wiring, piping, equipment, etc. can be formed in the surface thereof and / or a notch portion at its edge,
It is possible to solve the problem by disposing such a vacuum heat insulating panel so as to match the position where the wiring, the pipe, the device, and the member for fixing the door hinge are provided. However, a vacuum heat insulating panel having through holes and / or notches that can be used for this purpose, and a method for manufacturing a vacuum heat insulating panel having such a structure have not yet been developed, and their development has been strongly desired. .
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の現状に鑑み、配線、配管、機器等を通せる
貫通孔部および/またはドアヒンジ固定用部材等を設け
ることのできる切欠き部を有する真空断熱パネル、およ
びその製造方法を提供することを目的とするものであ
る。SUMMARY OF THE INVENTION In view of the above-mentioned conventional state of the art, the present invention is capable of providing through holes and / or door hinge fixing members, etc., through which wiring, piping, equipment, etc. can pass. An object of the present invention is to provide a vacuum heat insulating panel having a cutout portion and a method for manufacturing the same.
【0007】[0007]
【課題を解決するための手段】しかして、本発明に係る
真空断熱パネルにおいては、断熱芯材がガスバリアー性
包装材よりなる袋の中に真空排気された状態で封入され
てなる真空断熱パネルにおいて、該真空断熱パネルが貫
通孔部および/または切欠き部を有し、かつ該貫通孔部
および/または切欠き部の内周部に沿ってガスバリアー
性包装材同士を融着したシール部が形成されてなる構成
の真空断熱パネルにすると云う手段を講じている。In the vacuum heat insulation panel according to the present invention, however, the heat insulation core material is enclosed in a bag made of a gas barrier packaging material in a vacuum-exhausted state. In the vacuum insulation panel, there is a through hole portion and / or a cutout portion, and a sealing portion in which gas barrier packaging materials are fused together along the inner peripheral portion of the through hole portion and / or the cutout portion. A means for forming a vacuum heat insulating panel having a structure in which the above is formed is taken.
【0008】また、本発明に係る真空断熱パネルの製造
方法においては、断熱芯材がガスバリアー性包装材より
なる袋の中に真空排気された状態で封入されてなる真空
断熱パネルであって、該真空断熱パネルは貫通孔部およ
び/または切欠き部を有し、かつ該貫通孔部および/ま
たは切欠き部の内周部に沿ってガスバリアー性包装材同
士を融着したシール部が形成された真空断熱パネルの製
造方法において、貫通孔および/または切欠きを設けた
平板状の断熱芯材を、ガスバリアー性包装材よりなる袋
の開口部より袋内に収納し、袋の開口部より袋内を真空
排気して所望の真空度に維持しつつ、貫通孔部および/
または切欠き部の内周部に沿ってガスバリアー性包装材
同士を融着したシール部(A)、および袋の開口部のガ
スバリアー性包装材同士を融着したシール部(B)を形
成させる製造方法にすると云う手段を講じている。Further, in the method of manufacturing a vacuum heat insulating panel according to the present invention, the heat insulating core material is a vacuum heat insulating panel which is enclosed in a bag made of a gas barrier packaging material in a vacuum-exhausted state, The vacuum heat insulating panel has a through hole and / or a notch, and a seal portion is formed along the inner periphery of the through hole and / or the notch by fusing gas barrier packaging materials together. In the method for manufacturing a vacuum heat insulating panel, a flat heat insulating core material having a through hole and / or a notch is housed in the bag through the opening of the bag made of a gas barrier packaging material. While evacuating the inside of the bag to maintain a desired degree of vacuum, the through hole and / or
Alternatively, a seal portion (A) in which the gas barrier packaging materials are fused to each other and an seal portion (B) in which the gas barrier packaging materials are fused to each other at the opening of the bag are formed along the inner peripheral portion of the cutout portion. The manufacturing method is adopted.
【0009】以下、本発明に係る真空断熱パネル、およ
び真空断熱パネルの製造方法を、実施態様例を示す図1
〜図4を参照しつつ詳細に説明するが、ここに例示の真
空断熱パネルや製造方法に限定されるものではない。The vacuum heat insulating panel and the method for manufacturing the vacuum heat insulating panel according to the present invention will be described below with reference to FIG.
4 will be described in detail with reference to FIGS. 4A to 4C, the present invention is not limited to the vacuum heat insulating panel and the manufacturing method illustrated here.
【0010】先ず、本発明に係る真空断熱パネルについ
て説明する。本発明の真空断熱パネルは、断熱芯材がガ
スバリアー性包装材よりなる袋の中に真空排気された状
態で封入された基本構造を有する。First, the vacuum heat insulating panel according to the present invention will be described. The vacuum heat insulating panel of the present invention has a basic structure in which a heat insulating core material is enclosed in a bag made of a gas barrier packaging material in a vacuum-exhausted state.
【0011】[断熱芯材]上記断熱芯材としては、貫通
孔および/または切欠きを予め設けた平板状の断熱芯材
が用いられ、その具体例を斜視図として図1に示す。図
1において、(1)は平板状の断熱芯材、(11)は断
熱芯材(1)に設けられた貫通孔、(12)は断熱芯材
(1)に端縁に設けられた切欠きを表す。[Adiabatic core material] As the adiabatic core material, a plate-shaped adiabatic core material provided with through holes and / or notches in advance is used, and a specific example thereof is shown in a perspective view in FIG. In FIG. 1, (1) is a plate-shaped heat insulating core material, (11) is a through hole provided in the heat insulating core material (1), and (12) is a cut provided at the edge of the heat insulating core material (1). Represents a lack.
【0012】ここに例示の断熱芯材例は、貫通孔および
切欠きが各々1個づつ設けられたものであるが、貫通孔
または切欠きの一方のみ、またはこれらが複数設けられ
たものであってもよい。そして、貫通孔および切欠き部
を設ける位置は、得ようとする真空断熱パネルの用途に
よって適宜決定され、また貫通孔および切欠き部の形
状、寸法は、これらの用途、即ち貫通孔を利用して貫通
させる配線、配管、機器等の断面形状、大きさ、および
切欠き部を利用して設置するドアヒンジ固定用部材等の
形状、大きさに応じて適宜決定することができる。貫通
孔の断面形状は、通常円、四角形、六角形等の多角形と
され、その寸法は、断熱芯材の厚さによっても異なる
が、直径もしくは一辺の長さを30〜100mm程度と
する。Although the example of the heat insulating core material illustrated here is provided with one through hole and one notch, only one of the through hole and the notch or a plurality of these are provided. May be. The positions where the through holes and the cutouts are provided are appropriately determined depending on the intended use of the vacuum heat insulating panel, and the shapes and dimensions of the through holes and the cutouts are determined according to these uses, that is, the through holes. It can be appropriately determined in accordance with the cross-sectional shape and size of the wiring, piping, equipment and the like to be penetrated through, and the shape and size of the door hinge fixing member and the like installed using the notch. The cross-sectional shape of the through hole is usually a polygon such as a circle, a quadrangle, or a hexagon, and its size is about 30 to 100 mm in diameter or one side, although it varies depending on the thickness of the heat insulating core.
【0013】この断熱芯材は、後記ガスバリアー性包装
材よりなる袋の中に収納可能な外形を有するものであれ
ば特に限定はなく、従来より知られている各種の断熱材
よりなる成形体を任意に使用することができる。その代
表例としては珪酸カルシウム成形体等の多孔質無機成形
体、発泡ポリウレタン成形体等の発泡樹脂成形体を挙げ
ることができる。The heat insulating core material is not particularly limited as long as it has an outer shape that can be stored in a bag made of a gas barrier packaging material described later, and a molded body made of various conventionally known heat insulating materials. Can be used arbitrarily. Typical examples thereof include porous inorganic moldings such as calcium silicate moldings and foamed resin moldings such as polyurethane foam moldings.
【0014】断熱芯材として上記のような多孔質無機成
形体や発泡樹脂成形体を用いると、その内部に形成され
ている連通多孔状の空間が容易に真空排気されることに
より、断熱芯材自体の低熱伝導率に加えて真空排気され
た空間の存在により対流伝熱が大幅に抑制され、全体と
して優れた断熱性能を発揮する。When the above-mentioned porous inorganic molded body or foamed resin molded body is used as the heat insulating core material, the communicating porous space formed therein can be easily evacuated to form a heat insulating core material. In addition to its own low thermal conductivity, the presence of a vacuum-exhausted space significantly suppresses convective heat transfer, resulting in excellent heat insulation performance as a whole.
【0015】上記断熱芯材の中では、低熱伝導率、軽量
性、機械的強度、成形性、耐久性、再利用性等を兼ね備
えている点から、珪酸カルシウムを50重量%以上含有
する珪酸カルシウム系組成物からなる成形体が好まし
く、珪酸カルシウム成形体が最も好ましい。珪酸カルシ
ウム成形体は、断熱材用として各種グレードのものが開
発されており見掛け密度が低く圧縮強度にも優れ、断熱
芯材として好適である。Among the above-mentioned heat insulating core materials, calcium silicate containing 50% by weight or more of calcium silicate from the viewpoint of having low thermal conductivity, light weight, mechanical strength, moldability, durability, reusability and the like. Molded bodies made of the system composition are preferable, and calcium silicate molded bodies are most preferable. Various grades of calcium silicate compacts have been developed for heat insulating materials, have a low apparent density and excellent compressive strength, and are suitable as heat insulating core materials.
【0016】上記珪酸カルシウム成形体は、通常、珪酸
質原料と石灰質原料とを水中に分散させ、加熱下に水熱
合成反応を行わせて珪酸カルシウム水和物の水性スラリ
ーを得、次いで、得られた水性スラリーを脱水成形した
後、乾燥または水蒸気養生後に乾燥を行う方法によって
製造されるが、使用できる珪酸カルシウム成形体は勿論
この方法で得られるものには限定されない。The above-mentioned calcium silicate compact is usually obtained by dispersing a siliceous raw material and a calcareous raw material in water and performing a hydrothermal synthesis reaction under heating to obtain an aqueous slurry of calcium silicate hydrate, and then obtaining It is produced by a method of dehydrating the obtained aqueous slurry, followed by drying or steam curing, but the calcium silicate compact that can be used is not limited to the one obtained by this method.
【0017】珪酸カルシウム成形体を製造する上記方法
においては、珪酸質原料は、非晶質または結晶質の何れ
であってもよく、珪酸質原料の具体例としては珪藻土、
珪石、石英などの天然品、シリコンダスト、湿式燐酸製
造プロセスで副生する珪弗化水素酸と水酸化アルミニウ
ムの反応で得られるシリカ等の工業副産物が挙げられ
る。また、石灰質原料の具体例としては生石灰、消石
灰、カーバイト滓等が挙げられ、これらは嵩高の石灰粒
子を含有する石灰乳に調製して使用されることが多い。
また、上記の水熱合成反応は、通常、固形分(珪酸質原
料と石灰質原料)に対する水の量を15重量倍以上と
し、飽和蒸気圧が10kg/cm2 以上の加熱条件下で
反応時間1〜5時間の条件で行い、この水熱合成反応に
より珪酸カルシウム水和物の水性スラリーが得られる。In the above method for producing a calcium silicate compact, the siliceous raw material may be either amorphous or crystalline, and specific examples of the siliceous raw material include diatomaceous earth,
Examples thereof include natural products such as silica stone and quartz, silicon dust, and industrial by-products such as silica obtained by the reaction of hydrosilicofluoric acid by-produced in the wet phosphoric acid production process and aluminum hydroxide. In addition, specific examples of calcareous raw materials include quick lime, slaked lime, and slag of slag, and these are often used by preparing lime milk containing bulky lime particles.
In the hydrothermal synthesis reaction, the amount of water is usually 15 times by weight or more relative to the solid content (silicic material and calcareous material), and the reaction time is 1 at a saturated vapor pressure of 10 kg / cm 2 or more. It is carried out under the condition of ˜5 hours, and this hydrothermal synthesis reaction gives an aqueous slurry of calcium silicate hydrate.
【0018】水性スラリーの脱水成形は、通常フイルタ
ープレス等を利用した脱水成形機でて行われ、その脱水
部の形状により平板や曲部を有する種々の形状の成形体
が得られる。この脱水成形体を直接、または水蒸気養生
後に乾燥することによって目的とする珪酸カルシウム成
形体が得られる。乾燥は、通常、150〜200℃の温
度にて5〜30時間行われ、乾燥前の水蒸気養生は、通
常、水熱合成反応の条件と同様の条件で行われる。Dehydration molding of the aqueous slurry is usually carried out by a dehydration molding machine utilizing a filter press or the like, and molded articles having various shapes having flat plates and curved portions can be obtained depending on the shape of the dehydration section. The desired calcium silicate compact can be obtained by drying the dehydrated compact directly or after steam curing. Drying is usually performed at a temperature of 150 to 200 ° C. for 5 to 30 hours, and steam curing before drying is usually performed under the same conditions as in the hydrothermal synthesis reaction.
【0019】上記方法で製造された珪酸カルシウム成形
体は、珪酸カルシウムの針状結晶が三次元的に絡合した
構造のものであり、高い比強度を有し断熱芯材として極
めて好適である。具体的には、見掛け密度が0.02〜
0.09g/cm3 のものが得られ、これらの圧縮強度
は2kg/cm2 以上、通常2〜6kg/cm2 であ
る。上記の針状結晶は、主として、トベルモライト、ゾ
ーノトライトまたはこれらが混在したものからなってい
る。結晶種の調整は、水熱合成反応におけるCaO/S
iO2 のモル比によってなされるが、通常このモル比は
0.8〜1.2の範囲とされ、モル比が大きくなるに従
ってゾーノトライトが優位に生成することがわかってい
る。The calcium silicate compact produced by the above method has a structure in which needle-like crystals of calcium silicate are three-dimensionally entangled, and has a high specific strength and is very suitable as a heat insulating core material. Specifically, the apparent density is 0.02 to
Are obtained as a 0.09 g / cm 3, these compression strength 2 kg / cm 2 or more, usually 2~6kg / cm 2. The needle crystals are mainly composed of tobermorite, zonotorite or a mixture thereof. The crystal seed is adjusted by CaO / S in the hydrothermal synthesis reaction.
Although made by the molar ratio of iO 2, typically this molar ratio is in the range of 0.8 to 1.2, Zonotoraito are found to predominantly generated according molar ratio increases.
【0020】断熱芯材として使用する発泡ポリウレタン
成形体は、従来より断熱材として用いられている通常の
発泡成形体が使用できる。断熱芯材の外形寸法の一例と
しては、縦および横が400mm、厚さが10mmの例
を挙げることができる。しかしながら、縦および横の長
さは、用途により例えば、150〜1000mmの広範
囲において適宜変更されるが、厚さは、通常10〜10
0mmの範囲とされる。As the foamed polyurethane molded body used as the heat insulating core material, a usual foamed molded body conventionally used as a heat insulating material can be used. An example of the outer dimensions of the heat insulating core material is 400 mm in length and width and 10 mm in thickness. However, the vertical and horizontal lengths are appropriately changed in a wide range of 150 to 1000 mm depending on the use, but the thickness is usually 10 to 10 mm.
The range is 0 mm.
【0021】[ガスバリアー性包装材よりなる袋]本発
明の真空断熱パネルは、上記断熱芯材が、ガスバリアー
性包装材よりなる袋の中に真空排気された状態で封入さ
れている。この真空断熱パネルを製造する際には、通
常、ガスバリアー性包装材よりなり上記平板状の断熱芯
材(1)を収納可能で真空排気用の開口部を有する袋が
使用され、その具体例を斜視図として図2に示す。図2
において、(2)はガスバリアー性包装材よりなる袋、
(21)は袋(2)の開口部、(22)および(23)
は袋(2)のシール部を表す。[Bag Made of Gas Barrier Packing Material] In the vacuum heat insulating panel of the present invention, the heat insulating core material is enclosed in a bag made of a gas barrier packing material in a vacuumed state. When manufacturing this vacuum heat insulation panel, a bag which is made of a gas barrier packaging material and which can accommodate the flat heat insulation core material (1) and has an opening for evacuation is usually used. Is shown in FIG. 2 as a perspective view. Figure 2
In (2), a bag made of a gas barrier packaging material,
(21) is the opening of the bag (2), (22) and (23)
Represents the seal of the bag (2).
【0022】本発明で使用する上記の袋(2)は、断熱
芯材(1)を収納する容器であるとともに、内部が真空
排気された後は、これを構成しているガスバリアー性包
装材のガス不透過性により、袋内部を真空もしくは高度
な減圧状態に維持する機能を果たすものである。従っ
て、袋(2)の開口部(21)には、断熱芯材(1)を
収納し袋内部を真空排気した後に断熱芯材を密封するた
めのシール部B(26)(後記図3参照)を形成可能な
部分を有する。The bag (2) used in the present invention is a container for accommodating the heat insulating core material (1) and, after the inside has been evacuated, a gas barrier packaging material that constitutes the bag. The gas impermeability of (1) serves to maintain the inside of the bag in a vacuum or highly depressurized state. Therefore, the opening portion (21) of the bag (2) contains the heat insulating core material (1), the inside of the bag is evacuated, and then the seal portion B (26) for sealing the heat insulating core material (see FIG. 3 described later). ) Can be formed.
【0023】袋(2)を構成するガスバリアー性包装材
としては、袋内部を真空もしくは高度な減圧状態に維持
するため、アルミニウム等よりなる金属箔、プラスチッ
クよりなる基体フィルムにアルミニウム等の金属または
珪素酸化物等のセラミックを蒸着した蒸着フイルム、お
よびプラスチックよりなる単層フィルムもしくは多層フ
ィルムを、単独あるいはこれらを組合わせた積層フィル
ムが使用される。As the gas barrier packaging material constituting the bag (2), in order to maintain the inside of the bag in a vacuum or highly depressurized state, a metal foil made of aluminum or the like, a base film made of plastic, or a metal such as aluminum or the like is used. A vapor-deposited film obtained by vapor-depositing ceramics such as silicon oxide, and a single-layer film or a multi-layer film made of plastic, either alone or in combination, are used.
【0024】これらのガスバリアー性包装材の中では、
ガスバリアー性に優れるほか可撓性にも優れ、断熱芯材
が袋内に真空排気された状態で封入される際に良好に密
着させることができる点から蒸着フイルム、またはプラ
スチックフィルムにアルミニウム箔をラミネートした積
層フィルムが最も好ましい。Among these gas barrier packaging materials,
In addition to being excellent in gas barrier properties, it is also excellent in flexibility and can be adhered well when the heat insulating core material is enclosed in the bag in a state of being evacuated, and therefore aluminum foil is deposited on the vapor deposition film or plastic film. Most preferred are laminated laminated films.
【0025】蒸着フイルムの基体フィルムやアルミニウ
ム箔をラミネートする基体フィルムとしては、ポリエチ
レンテレフタレート、ポリブチレンテレフタレート等の
芳香族ポリエステル、ポリエチレン、ポリプロピレン等
のポリオレフィン、オレフィン共重合体、ナイロン6、
ナイロン66等のポリアミド、ポリビニルアルコール、
アクリロニトリル・ブタジエン・スチレン共重合体、ア
クリロニトリル・スチレン共重合体、ポリメチルメタク
リレート、アクリル酸エステルとメチルメタクリル酸エ
ステル共重合体等、好ましくは、ポリエチレンテレフタ
レート、ポリブチレンテレフタレートから製造されるフ
ィルムが挙げられる。基体フィルムの表面には、金属や
セラミック蒸着層の形成に先立ってコロナ処理、アンカ
ーコート処理等の表面処理を施すこともできる。As the base film of the vapor deposition film or the base film to be laminated with the aluminum foil, aromatic polyester such as polyethylene terephthalate or polybutylene terephthalate, polyolefin such as polyethylene or polypropylene, olefin copolymer, nylon 6,
Polyamide such as nylon 66, polyvinyl alcohol,
Acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, polymethylmethacrylate, acrylic acid ester and methylmethacrylic acid ester copolymer, etc., preferably polyethylene terephthalate, a film produced from polybutylene terephthalate. . The surface of the substrate film may be subjected to surface treatment such as corona treatment or anchor coat treatment prior to the formation of the metal or ceramic vapor deposition layer.
【0026】蒸着フイルムにおける蒸着層の厚さは、蒸
着する金属もしくはセラミックの種類によって異なる
が、通常10〜300nm、好ましくは20〜200n
mとされる。蒸着層の厚さが薄すぎると十分なガスバリ
アーが得られず、厚すぎると蒸着フイルムの柔軟性が損
なわれ、蒸着層にクラックが生ずるので好ましくない。
蒸着層を形成するセラミックとしては、通常熱伝導率の
小さい無機酸化物が使用され、珪素、マグネシウム、マ
ンガン、ニッケル、クロム、インジウム、錫等の酸化
物、特に珪素酸化物が好ましい。The thickness of the vapor deposition layer in the vapor deposition film varies depending on the type of metal or ceramic to be vapor deposited, but is usually 10 to 300 nm, preferably 20 to 200 n.
m. If the thickness of the vapor deposition layer is too thin, a sufficient gas barrier cannot be obtained, and if it is too thick, the flexibility of the vapor deposition film is impaired and cracks occur in the vapor deposition layer, which is not preferable.
As the ceramic for forming the vapor-deposited layer, an inorganic oxide having a small thermal conductivity is usually used, and oxides of silicon, magnesium, manganese, nickel, chromium, indium, tin, etc., particularly silicon oxide is preferable.
【0027】プラスチックよりなる単層フィルム、多層
フィルムとしては、塩化ビニリデン系樹脂フィルム、塩
化ビニリデン樹脂コートフィルム、およびポリビニルア
ルコール系フィルム等が挙げられる。Examples of the monolayer film and multilayer film made of plastic include vinylidene chloride resin film, vinylidene chloride resin coated film, polyvinyl alcohol film and the like.
【0028】使用する袋(2)には、上記の各種ガスバ
リアー性包装材の少なくとも片面に熱溶着層を設けた積
層フィルムを用いるのがよい。そして熱溶着層をガスバ
リアー性包装材の片面に設けたときには、熱溶着層が袋
の内側(断熱材と接する側)になるようにして使用す
る。熱溶着層を設けた積層フィルムをこのように用いる
と、熱溶着法(ヒートシール法)によって容易に袋を形
成することができ、またこの袋内に断熱芯材を封入し真
空排気した後の排気口等の密封も熱溶着法によって容易
に行うことができる。As the bag (2) to be used, it is preferable to use a laminated film in which a heat-welding layer is provided on at least one surface of each of the above various gas barrier packaging materials. When the heat-welding layer is provided on one side of the gas barrier packaging material, the heat-welding layer is used inside the bag (on the side in contact with the heat insulating material). When the laminated film provided with the heat-welding layer is used in this way, a bag can be easily formed by the heat-sealing method (heat-sealing method), and a heat-insulating core material is sealed in the bag and then evacuated. The sealing of the exhaust port and the like can be easily performed by the heat welding method.
【0029】熱溶着層としては、加熱により溶着可能な
樹脂、具体的には100〜300℃程度の加熱により溶
融可能な樹脂が使用され、具体例としてはポリエチレ
ン、ポリプロピレン等のポリオレフィン樹脂、ナイロン
6、ナイロン66等のポリアミド樹脂、アクリロニトリ
ル・ブタジエン・スチレン共重合体、アクリロニトリル
・スチレン共重合体等のアクリロニトリル共重合体、ポ
リメチルメタクリレート、アクリル酸エステルとメチル
メタクリル酸エステル共重合体等が挙げられ、ポリオレ
フィン樹脂が好ましい。As the heat-welding layer, a resin that can be melted by heating, specifically, a resin that can be melted by heating at about 100 to 300 ° C. is used. Specific examples are polyolefin resins such as polyethylene and polypropylene, and nylon 6 , Polyamide resin such as nylon 66, acrylonitrile-butadiene-styrene copolymer, acrylonitrile copolymer such as acrylonitrile-styrene copolymer, polymethylmethacrylate, acrylic ester and methylmethacrylate ester copolymer, and the like, Polyolefin resins are preferred.
【0030】[真空断熱パネル]本発明の真空断熱パネ
ルは、貫通孔部および/または切欠き部を有し、かつ該
貫通孔部および/または切欠き部の内周部に沿ってガス
バリアー性包装材同士を融着したシール部が形成されて
なる点に構造上の大きな特徴を有する。[Vacuum Heat Insulation Panel] The vacuum heat insulation panel of the present invention has a through hole and / or a notch, and has a gas barrier property along the inner peripheral portion of the through hole and / or the notch. A major structural feature is that a seal portion formed by fusing the packaging materials together is formed.
【0031】本発明の真空断熱パネルの上記特徴的構造
を、図3および図4により説明する。図3は、図1に示
す断熱芯材(1)が図2に示すガスバリアー性包装材よ
りなる袋の中に真空排気された状態で封入されてなる真
空断熱パネルを示す平面略図である。また、図4は、図
3のX−X’断面略図である。The above characteristic structure of the vacuum heat insulating panel of the present invention will be described with reference to FIGS. 3 and 4. FIG. 3 is a schematic plan view showing a vacuum heat insulation panel in which the heat insulation core material (1) shown in FIG. 1 is enclosed in a bag made of the gas barrier packaging material shown in FIG. FIG. 4 is a schematic cross-sectional view taken along line XX ′ of FIG.
【0032】図3および図4において、(31)は貫通
孔部、(32)は切欠き部を表し、これらは各々断熱芯
材(1)の貫通孔(11)、切欠き(12)に対応して
形成されている。A(24)は貫通孔部(31)の内周
部に沿ってガスバリアー性包装材同士を融着したシール
部、A(25)は切欠き部(32)の内周部に沿ってガ
スバリアー性包装材同士を融着したシール部を表し、
(41)および(42)はシール部A(24)およびシ
ール部A(25)の内側のガスバリアー性包装材を各々
表す。また、B(26)は袋(2)の開口部を融着させ
シールして形成したシール部を表し、その他の符号は図
1および図2におけると同じである。3 and 4, (31) indicates a through hole portion, and (32) indicates a notch portion, which are respectively formed in the through hole (11) and the notch (12) of the heat insulating core material (1). Correspondingly formed. A (24) is a seal portion in which the gas barrier packaging materials are fused together along the inner peripheral portion of the through hole portion (31), and A (25) is gas along the inner peripheral portion of the cutout portion (32). Represents a seal part made by fusing barrier packaging materials together,
(41) and (42) represent the gas barrier packaging material inside the seal portion A (24) and the seal portion A (25), respectively. Further, B (26) represents a seal portion formed by fusing and sealing the opening of the bag (2), and other reference numerals are the same as those in FIGS. 1 and 2.
【0033】上記のシール部A(24)およびシール部
A(25)は、真空断熱パネルの貫通孔部(31)およ
び切欠き部(32)の内周部を密閉する機能を果たすも
のであり、これら各シール部の内側(41、42)が配
線、配管、機器等を通したり、ドアヒンジ固定用部材等
を設けるのに使用される。The seal portion A (24) and the seal portion A (25) have a function of sealing the inner peripheral portions of the through hole portion (31) and the cutout portion (32) of the vacuum heat insulating panel. The inside (41, 42) of each of these seal portions is used for passing wiring, piping, equipment, etc., and for providing a member for fixing a door hinge, etc.
【0034】ここに例示する貫通孔部(31)において
は、貫通孔部(31)の内周部に沿うシール部A(2
4)が所要の幅で環状に形成されているが、このシール
部A(24)はこのような形状に限られるものではな
く、貫通孔部(31)の内周部に沿い連続して形成され
ている限り、貫通孔部(31)内の全面に亘るものであ
ってもよい。切欠き部(32)についても同様であり、
図においてはシール部A(25)が所要の幅で逆コの字
状に形成されているが、切欠き部(32)の内周部に沿
い連続して形成されている限り、切欠き部(32)内の
全面に亘るものであってもよい。In the through hole portion (31) illustrated here, the seal portion A (2 along the inner peripheral portion of the through hole portion (31).
4) is formed in an annular shape with a required width, but the seal portion A (24) is not limited to such a shape and is continuously formed along the inner peripheral portion of the through hole portion (31). As long as it is provided, it may extend over the entire surface in the through hole portion (31). The same applies to the notch (32),
In the figure, the seal portion A (25) is formed in a reverse U shape with a required width, but as long as it is continuously formed along the inner peripheral portion of the cutout portion (32), the cutout portion is formed. It may be the entire surface within (32).
【0035】上記の説明からも理解できるように、貫通
孔部(31)とは、貫通孔を形成可能な部位を意味し、
切欠き部(32)とは切欠きを形成可能な部位を意味す
る。貫通孔部(31)に貫通孔を形成するには、シール
部A(24)の内側(41)を切り取ったり、ここにス
リットを設ければよい。また、切欠き部(32)に切欠
きを形成するには、シール部A(25)の内側(42)
を切り取ればよい。本発明の真空断熱パネルには、シー
ル部A(24)の内側(41)やシール部A(25)の
内側(42)にガスバリアー性包装材が残置されている
ものも含まれる。As can be understood from the above description, the through hole portion (31) means a portion where the through hole can be formed,
The notch portion (32) means a portion where the notch can be formed. To form a through hole in the through hole portion (31), the inside (41) of the seal portion A (24) may be cut off or a slit may be provided here. Further, in order to form the notch in the notch (32), the inside (42) of the seal portion A (25) is formed.
You can cut out. The vacuum heat insulating panel of the present invention also includes one in which the gas barrier packaging material is left inside the seal portion A (24) inside (41) and the seal portion A (25) inside (42).
【0036】次ぎに、本発明に係る真空断熱パネルの製
造方法について説明する。本発明の製造方法において
は、(a)貫通孔および/または切欠きを設けた平板状
の断熱芯材を、ガスバリアー性包装材よりなる袋の開口
部をより袋内に収納し(以下、「第1工程」とも云
う)、次いで、(b)袋の開口部より袋内を真空排気し
て所望の真空度に維持しつつ、貫通孔部および/または
切欠き部の内周部に沿ってガスバリアー性包装材同士を
融着したシール部(A)、および袋の開口部のガスバリ
アー性包装材同士を融着したシール部(B)を形成させ
る(以下、「第2工程」とも云う)ことが必要である。Next, a method for manufacturing the vacuum heat insulating panel according to the present invention will be described. In the production method of the present invention, (a) a plate-shaped heat insulating core material having a through hole and / or a notch is housed in a bag having an opening of a bag made of a gas barrier packaging material (hereinafter, (Also referred to as "first step"), and then (b) the inside of the bag is evacuated from the opening of the bag to maintain a desired degree of vacuum, and along the inner periphery of the through hole and / or the notch. To form a seal portion (A) in which the gas barrier packaging materials are fused together and a seal portion (B) in which the gas barrier packaging materials are fused together at the opening of the bag (hereinafter, also referred to as “second step”). Need to say).
【0037】以下、本発明の製造方法を、その実施態様
例を示す前記の図1〜図4を参照しつつ詳細に説明する
が、その要旨を超えない限り、ここに例示の方法に限定
されるものではない。本発明の製造方法においては、貫
通孔および/または切欠きを設けた平板状の断熱芯材と
しては、図1に示すものが使用でき、また、この断熱芯
材を収納するためのガスバリアー性包装材よりなる袋と
しては、図2に示すものを使用できる。Hereinafter, the manufacturing method of the present invention will be described in detail with reference to the above-mentioned FIGS. 1 to 4 showing an example of the embodiment, but as long as it does not exceed the gist, it is limited to the method exemplified here. Not something. In the manufacturing method of the present invention, the flat insulating core material having through holes and / or notches may be the one shown in FIG. 1, and the gas barrier property for accommodating the insulating core material may be used. The bag shown in FIG. 2 can be used as the bag made of the packaging material.
【0038】本発明の製造方法では、前記の断熱芯材
(1)およびガスバリアー性包装材よりなる袋(2)を
用い、先ず、袋(2)の開口部(21)より断熱芯材
(1)を袋(2)内に収納し(第1工程)、次ぎに、袋
(2)の開口部(21)より袋内を真空排気して所望の
真空度に維持しつつ、貫通孔部(31)の内周部に沿っ
てガスバリアー性包装材同士を融着したシール部A(2
4)、および/または切欠き部(32)の内周部に沿っ
てガスバリアー性包装材同士を融着したシール部A(2
5)、および袋の開口部のガスバリアー性包装材同士を
融着したシール部B(26)を形成させる(第2工程)
ことにより、図3に示すような構造を有する目的とする
真空断熱パネルが得られる。In the manufacturing method of the present invention, the bag (2) made of the heat insulating core material (1) and the gas barrier packaging material is used. First, the heat insulating core material (from the opening (21) of the bag (2) ( 1) is housed in the bag (2) (first step), and then the bag is evacuated from the opening (21) of the bag (2) to maintain a desired degree of vacuum while the through hole is formed. The seal part A (2) in which the gas barrier packaging materials are fused together along the inner peripheral part of (31)
4) and / or the seal portion A (2) in which the gas barrier packaging materials are fused together along the inner peripheral portion of the cutout portion (32).
5), and forming a seal portion B (26) in which the gas barrier packaging materials at the opening of the bag are fused (second step)
As a result, the desired vacuum heat insulating panel having the structure as shown in FIG. 3 is obtained.
【0039】上記の第2工程において、シール部A(2
4)、シール部A(25)、およびシール部B(26)
を形成させる順序には特に制限はない。例えば、(i)
シール部A(A(24)、A(25))を形成させた後
に、シール部シール部B(26)を形成させる、(i
i)シール部A(A(24)、A(25))とシール部
シール部B(26)を同時に形成させる、(iii)シ
ール部シール部B(26)を形成させた後に、シール部
A(A(24)、A(25))形成させる、ことがで
き、いずれの順序でも同様のものが得られる。In the above second step, the seal portion A (2
4), seal portion A (25), and seal portion B (26)
There is no particular limitation on the order of forming the. For example, (i)
After forming the seal portion A (A (24), A (25)), the seal portion seal portion B (26) is formed (i
i) The seal portion A (A (24), A (25)) and the seal portion seal portion B (26) are simultaneously formed. (iii) The seal portion seal portion B (26) is formed, and then the seal portion A is formed. (A (24), A (25)) can be formed, and the same thing can be obtained in any order.
【0040】第2工程におけるシール部A(24)、シ
ール部A(25)、およびシール部B(26)の形成
は、袋(2)の内部が真空排気されるのに伴い袋(2)
全体が断熱芯材(1)に密着するとともに、断熱芯材
(1)に設けられた貫通孔や切欠き、および袋の開口部
においては、その上下のガスバリアー性包装材同士が互
いに密着するので、ここを適宜の手段で融着させればよ
い。The formation of the seal portion A (24), the seal portion A (25), and the seal portion B (26) in the second step is performed as the inside of the bag (2) is vacuum-exhausted.
The whole is in close contact with the heat insulating core material (1), and the gas barrier packaging materials above and below the heat insulating core material (1) are in close contact with each other at the through holes and the notches provided in the heat insulating core material (1) and the opening of the bag. Therefore, it may be fused by an appropriate means.
【0041】なお、断熱芯材(1)として、比較的厚み
が大きく、特に寸法の小さい貫通孔(11)や切欠き
(12)を設けたものを使用するときには、袋内を真空
排気し所望の真空度に維持しても、貫通孔(11)や切
欠き(12)の内周に沿ってガスバリアー性包装材同士
を密着させにくいことがある。このような場合には、貫
通孔(11)や切欠き(12)の断面よりやや小さい断
面を有するアシストプラグを準備し、一方または両方か
らこのアシストプラグを押し付ける等の密着補助手段を
用いると、ガスバリアー性包装材同士を確実に密着させ
ることができる。When the heat insulating core material (1) having a through hole (11) and a notch (12) having a relatively large thickness and particularly small dimensions is used, the inside of the bag is evacuated to a desired value. Even if the vacuum degree is maintained, it may be difficult to bring the gas barrier packaging materials into close contact with each other along the inner periphery of the through hole (11) or the notch (12). In such a case, when an assisting plug having a cross section slightly smaller than the cross section of the through hole (11) or the notch (12) is prepared and a contacting assisting means such as pressing the assist plug from one or both is used, The gas barrier packaging materials can be reliably brought into close contact with each other.
【0042】上記各シール部を形成させるための融着手
段としては、従来より知られている各種の方法が使用で
きる。例えば、加熱ブロックを圧接する熱溶着法(ヒー
トシール法)、超音波振動を印加した治具を圧接する方
法、またガスバリアー性包装材に導体が存在せず誘電発
熱が可能な構成のものであれば高周波電場を印加した治
具を圧接する方法、等が採用できるが、一般的には熱溶
着法が簡便であり好ましい。As the fusing means for forming the above-mentioned respective seal portions, various conventionally known methods can be used. For example, a heat-welding method (heat-sealing method) in which a heating block is pressed, a method in which a jig to which ultrasonic vibration is applied is pressed in, and a structure in which a conductor does not exist in the gas barrier packaging material and dielectric heat can be generated. If so, a method of pressing a jig to which a high-frequency electric field is applied can be adopted, but in general, a thermal welding method is simple and preferable.
【0043】上記のシール部A(24)およびシール部
A(25)は、真空断熱パネルの貫通孔部(31)およ
び切欠き部(32)の内周部を密閉するために設けるも
のであり、これらシール部の内側(41、42)が配
線、配管、機器等を通したり、ドアヒンジ固定用部材等
を設けるのに使用される。The seal portion A (24) and the seal portion A (25) are provided to seal the inner peripheral portions of the through hole portion (31) and the cutout portion (32) of the vacuum heat insulating panel. The insides (41, 42) of these seals are used for passing wires, pipes, equipment, etc., or for providing members for fixing door hinges, etc.
【0044】ここに例示する貫通孔部(31)において
は、貫通孔部(31)の内周部に沿うシール部A(2
4)を所要の幅で環状に形成させているが、このシール
部A(24)はこのような形状に限られるものではな
く、貫通孔部(31)の内周部に沿い連続して形成させ
る限り、貫通孔部(31)内の全面に亘って形成させて
もよい。切欠き部(32)についても同様であり、図に
おいてはシール部A(25)が所要の幅で逆コの字状に
形成させているが、切欠き部(32)の内周部に沿い連
続して形成させる限り、切欠き部(32)内の全面に亘
って形成させてもよい。In the through hole portion (31) illustrated here, the seal portion A (2 along the inner peripheral portion of the through hole portion (31).
Although 4) is formed in an annular shape with a required width, the seal portion A (24) is not limited to such a shape and is continuously formed along the inner peripheral portion of the through hole portion (31). As long as it is provided, it may be formed over the entire surface in the through hole portion (31). The same applies to the cutout portion (32). In the figure, the seal portion A (25) is formed in a reverse U shape with a required width, but along the inner peripheral portion of the cutout portion (32). As long as it is formed continuously, it may be formed over the entire surface of the notch (32).
【0045】本発明の方法により得られる真空断熱パネ
ルにおいて、貫通孔部(31)とは、貫通孔を形成可能
な部位を意味し、切欠き部(32)とは切欠きを形成可
能な部位を意味する。In the vacuum heat insulation panel obtained by the method of the present invention, the through hole portion (31) means a portion where a through hole can be formed, and the notch portion (32) means a portion where a notch can be formed. Means
【0046】貫通孔部(31)に貫通孔を形成するに
は、前記第2工程の後で、シール部A(24)の内側
(41)を切り取ったり、ここにスリットを設ければよ
い。また、切欠き部(32)に切欠きを形成するには、
同じく前記第2工程の後で、シール部A(25)の内側
(42)を切り取ればよい。従って、本発明の方法によ
り得られる真空断熱パネルには、シール部A(24)の
内側(41)やシール部A(25)の内側(42)にガ
スバリアー性包装材が残置されているものも含まれる。In order to form the through hole in the through hole portion (31), after the second step, the inside (41) of the seal portion A (24) may be cut off or a slit may be provided therein. In addition, to form a notch in the notch (32),
Similarly, after the second step, the inside (42) of the seal portion A (25) may be cut off. Therefore, in the vacuum heat insulation panel obtained by the method of the present invention, the gas barrier packaging material is left inside the seal part A (24) inside (41) or the seal part A (25) inside (42). Is also included.
【0047】[0047]
【実施例】次に、本発明を、実施例により更に具体的に
説明するが、本発明は、その要旨を超えない限りこれら
の実施例の記載に限定されるものではない。なお、以下
の記載において、特に記載のない限り「%」は重量基準
を意味する。EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to the description of these examples unless it exceeds the gist. In the following description, “%” means weight basis unless otherwise specified.
【0048】製造例 [珪酸カルシウム成形体の製造]生石灰(CaO:9
6.2重量%)49.6重量部に温脱塩水496重量部
を加えて消和し、沈降容積が46mlの石灰乳を調製し
た。なお、沈降容積は、直径13mm、容積50mlの
円筒状容器に石灰乳50mlを静かに注入し、20分間
静置した後に測定した消石灰粒子沈降層の容積である。Production Example [Production of calcium silicate compact] Quick lime (CaO: 9)
49.6 parts by weight of warm demineralized water was added to 49.6 parts by weight (6.2% by weight) for slaked water to prepare lime milk having a sedimentation volume of 46 ml. The settling volume is the volume of the slaked lime particle settling layer measured after gently pouring 50 ml of lime milk into a cylindrical container having a diameter of 13 mm and a volume of 50 ml and allowing it to stand for 20 minutes.
【0049】上記石灰乳に平均粒径10μmの珪石(S
iO2:96.4重量%)50.4重量部を添加し(C
aO/SiO2の仕込みモル比は1.05)、さらに固
形分に対する総水量が35重量倍になるように脱塩水を
追加した懸濁液を得た。この懸濁液を容積10リッター
のオートクレーブに移し、ゲージ圧15kg/cm2 、
温度200℃の条件下で3時間攪拌しつつ反応させ、ゾ
ーノトライトを主成分とする珪酸カルシウム水和物の水
性スラリーを得た。The lime milk is mixed with silica stone (S
iO 2: 96.4 wt%) 50.4 parts by weight was added (C
A molar ratio of aO / SiO 2 charged was 1.05), and demineralized water was added so that the total amount of water with respect to the solid content was 35 weight times to obtain a suspension. The suspension was transferred to an autoclave having a volume of 10 liters, and a gauge pressure of 15 kg / cm 2 ,
The mixture was reacted under stirring at a temperature of 200 ° C. for 3 hours to obtain an aqueous slurry of calcium silicate hydrate containing zonotolite as a main component.
【0050】次に、得られた水性スラリー100重量部
に対し、強化用ガラス繊維1重量部とパルプ1重量部を
添加、混合した後、これを脱水成形機に供給して加圧脱
水成形を行い、縦200mm、横200mm、厚さ約2
0mmの平板状の成形体とし、これを150℃で8時間
乾燥して目的とする珪酸カルシウム成形体を得た。Next, to 100 parts by weight of the obtained aqueous slurry, 1 part by weight of reinforcing glass fiber and 1 part by weight of pulp were added and mixed, and this was supplied to a dehydration molding machine for pressure dehydration molding. 200mm in length, 200mm in width, thickness about 2
A 0 mm plate-shaped molded body was dried at 150 ° C. for 8 hours to obtain the desired calcium silicate molded body.
【0051】得られた成形体は、見掛け密度0.066
g/cm3 、圧縮強度2.8kg/cm2 であり、ま
た、この成形体は針状結晶の球状集合体から構成されて
おり、球の内部には針状結晶が存在するものと、針状結
晶が存在しないものとがあった。The obtained molded product has an apparent density of 0.066.
g / cm 3 and compressive strength 2.8 kg / cm 2 , and this molded body is composed of a spherical aggregate of needle-like crystals, and needle-like crystals are present inside the sphere. Some of the crystals were not present.
【0052】実施例1 断熱芯材(1)として、製造例で得られた珪酸カルシウ
ム成形体(縦200mm、横200mm、厚さ約20m
m)に直径50mmの貫通孔を穿設したものを準備し
た。また、ガスバリアー性包装材よりなる袋(2)とし
て、6ナイロン(30μ)/ポリエチレンテレフタレー
ト(16μ)/Al(9μ)/ポリエチレンテレフタレ
ート(16μ)/6ナイロン(30μ)の構成とされた
積層フィルムよりなり、上記を断熱芯材(1)を収納で
き、開口部(21)を残し3辺がシールされた図2に示
す形状の袋を準備した。Example 1 As a heat insulating core material (1), the calcium silicate compact (200 mm in length, 200 mm in width, about 20 m in thickness) obtained in the production example was prepared.
m) with a through hole having a diameter of 50 mm was prepared. Further, as the bag (2) made of a gas barrier packaging material, a laminated film composed of 6 nylon (30 μ) / polyethylene terephthalate (16 μ) / Al (9 μ) / polyethylene terephthalate (16 μ) / 6 nylon (30 μ) A bag having the shape shown in FIG. 2 in which the heat insulating core material (1) can be housed, and the three sides are sealed, leaving the opening (21), was prepared.
【0053】これらの断熱芯材(1)および袋(2)を
用い、断熱芯材(1)を袋(2)の真空排気用の開口部
(21)より内部に収納し、袋(2)内をゲージ圧で
0.02Torrとなるまで開口部(21)より真空排
気しつつ、貫通孔に位置するガスバリアー性包装材の部
分については貫通孔(11)の断面よりやや小さい断面
を有するアシストプラグを押し付けて確実に密着させ、
貫通孔部(31)の内周部に沿って熱溶着法により幅5
mm、内側直径30mmの連続したシール部A(24)
を形成させると同時に、袋(2)の開口部(21)にも
熱溶着法によりシール部B(26)を形成させることに
より、図3(図4)に示すものと類似の、貫通孔部(3
1)のみを有する真空断熱パネルを作成し、次いで、シ
ール部A(24)の内側の包装材を切り取った。なお、
得られた真空断熱パネルの、パネルの主要部分(貫通孔
の存在しない部分)の厚み方向の熱伝導率は0.009
5 Kcal/m・hr・℃ であった。Using these heat-insulating core material (1) and bag (2), the heat-insulating core material (1) is housed inside the vacuum exhaust opening (21) of the bag (2) to form the bag (2). While evacuating the interior from the opening (21) to a gauge pressure of 0.02 Torr, the gas barrier packaging material portion located in the through hole has a cross section that is slightly smaller than the cross section of the through hole (11). Press the plug to ensure a tight contact,
Along the inner circumference of the through hole portion (31), a width of 5
mm, continuous seal part A (24) with an inner diameter of 30 mm
At the same time as forming the seal portion B (26) by the heat welding method in the opening portion (21) of the bag (2), a through hole portion similar to that shown in FIG. 3 (FIG. 4) is formed. (3
A vacuum insulation panel having only 1) was prepared, and then the packaging material inside the seal part A (24) was cut off. In addition,
In the obtained vacuum heat insulating panel, the thermal conductivity in the thickness direction of the main part of the panel (the part where there is no through hole) is 0.009.
It was 5 Kcal / m · hr · ° C.
【0054】実施例2 実施例1に記載の例において、断熱芯材(1)として、
製造例で得られた珪酸カルシウム成形体(縦200m
m、横200mm、厚さ約20mm)の一端縁に縦・横
の長さがともに50mmである切欠部(12)を設けた
ものを使用したほかは、同例におけると同様にして、切
欠き部(32)の内周部に沿って熱溶着法により幅5m
mの連続したシール部A(25))形成させると同時
に、袋(2)の開口部(21)にも熱溶着法によりシー
ル部B(26)を形成させることにより、図3(図4)
に示すものと類似の、切欠き部(32)のみを有する真
空断熱パネルを作成し、次いで、シール部A(25)の
内側の包装材を切り取った。なお、得られた真空断熱パ
ネルの、パネルの主要部分(切欠き部の存在しない部
分)の厚み方向の熱伝導率は0.0095 Kcal/
m・hr・℃ であった。Example 2 In the example described in Example 1, as the heat insulating core material (1),
Calcium silicate compact (200 m in length) obtained in the production example
m, width 200 mm, thickness about 20 mm), except that a notch (12) having a length and width of 50 mm is provided on one edge of the notch as in the same example. 5m width along the inner circumference of the part (32) by heat welding
3 (FIG. 4) by simultaneously forming a continuous seal portion A (25) of m and also forming a seal portion B (26) in the opening portion (21) of the bag (2) by a heat welding method.
A vacuum insulation panel having only a notch (32) similar to that shown in (1) was prepared, and then the wrapping material inside the seal A (25) was cut off. In addition, in the obtained vacuum heat insulating panel, the thermal conductivity in the thickness direction of the main part of the panel (the part where the notch portion does not exist) was 0.0095 Kcal /
It was m · hr · ° C.
【0055】[0055]
【発明の効果】本発明によれば、パネルの面内に配線、
配管、機器等を通せる貫通孔部および/または端縁にド
アヒンジ固定用部材等を設け得る切欠き部を有する真空
断熱パネル、およびこの特定構造の真空断熱パネルの工
業的有利な製造方法が提供される。また、この真空断熱
パネルを、その貫通孔部および切欠き部を配線、配管、
機器等、およびドアヒンジ固定用部材等の設置部位に合
致させて使用することにより、断熱壁面における断熱性
能の低下を大幅に抑制できると云う優れた効果を奏す
る。According to the present invention, the wiring in the plane of the panel,
(EN) Provided are a vacuum heat insulating panel having a through hole through which piping, equipment, etc. can be passed and / or a notch in the edge of which a door hinge fixing member and the like can be provided, and an industrially advantageous manufacturing method of the vacuum heat insulating panel having this specific structure. To be done. In addition, this vacuum insulation panel, wiring, piping,
By using it in conformity with the installation site of the equipment and the door hinge fixing member, it is possible to significantly suppress the deterioration of the heat insulation performance on the heat insulation wall surface.
【図1】本発明で使用する断熱芯材の1例を示す斜視図
である。FIG. 1 is a perspective view showing an example of a heat insulating core material used in the present invention.
【図2】本発明で使用するガスバリアー性包装材よりな
る袋の1例を示す斜視図である。FIG. 2 is a perspective view showing an example of a bag made of a gas barrier packaging material used in the present invention.
【図3】本発明の真空断熱パネルの1例を示す平面略図
である。FIG. 3 is a schematic plan view showing an example of the vacuum heat insulating panel of the present invention.
【図4】図3に示す真空断熱パネルの、図3のX−X’
断面略図である。4 is a view of the vacuum insulation panel shown in FIG. 3, taken along line XX ′ in FIG. 3;
2 is a schematic sectional view.
1 :断熱芯材 11:断熱芯材に設けた貫通孔 12:断熱芯材に設けた切欠き 2 :ガスバリアー性包装材よりなる袋 21:袋2の開口部 22:袋2のシール部 23:袋2のシール部 24:貫通孔部に形成させたシール部 25:切欠き部に形成させたシール部 26:開口部に形成させたシール部 31:真空断熱パネルの貫通孔部 32:真空断熱パネルの切欠き部 41:シール部の内側(貫通孔部) 42:シール部の内側(切欠き部) 1: Heat insulation core material 11: Through hole provided in heat insulation core material 12: Notch provided in heat insulation core material 2: Bag made of gas barrier packaging material 21: Opening portion of bag 2 22: Sealing portion of bag 2 23 : Sealing part of bag 2 24: Sealing part formed in through hole part 25: Sealing part formed in cutout part 26: Sealing part formed in opening part 31: Through hole part of vacuum insulation panel 32: Vacuum Notch part of heat insulation panel 41: Inside of seal part (through hole part) 42: Inside of seal part (notch part)
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成7年8月29日[Submission date] August 29, 1995
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項7[Name of item to be corrected] Claim 7
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0008[Correction target item name] 0008
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0008】また、本発明に係る真空断熱パネルの製造
方法においては、断熱芯材がガスバリアー性包装材より
なる袋の中に真空排気された状態で封入されてなる真空
断熱パネルの製造方法において、貫通孔および/または
切欠きを設けた平板状の断熱芯材を、ガスバリアー性包
装材よりなる袋の開口部より袋内に収納し、該開口部よ
り袋内を真空排気して所望の真空度に維持しつつ、貫通
孔部および/または切欠き部の内周部に沿ってガスバリ
アー性包装材同士を融着したシール部(A)、および袋
の開口部のガスバリアー性包装材同士を融着したシール
部(B)を形成させる製造方法にすると云う手段を講じ
ている。Further, in the method for manufacturing a vacuum heat insulating panel according to the present invention, in the method for manufacturing a vacuum heat insulating panel, the heat insulating core material is enclosed in a bag made of a gas barrier packaging material while being evacuated. A flat heat insulating core material having through holes and / or notches is housed in the bag through the opening of the bag made of a gas barrier packaging material, and the inside of the bag is evacuated to a desired degree. A seal part (A) in which gas barrier packaging materials are fused together along the inner periphery of the through hole and / or the notch while maintaining the degree of vacuum, and the gas barrier packaging material at the opening of the bag. A manufacturing method is adopted in which a sealing part (B) is formed by fusing each other.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0012[Correction target item name] 0012
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0012】ここに例示の断熱芯材は、貫通孔および切
欠きが各々1個づつ設けられたものであるが、貫通孔ま
たは切欠きの一方のみ、またはこれらが複数設けられた
ものであってもよい。そして、貫通孔および切欠きを設
ける位置は、得ようとする真空断熱パネルの用途によっ
て適宜決定され、また貫通孔および切欠きの形状、寸法
は、これらの用途、即ち真空断熱パネルの貫通孔部を利
用して貫通させる配線、配管、機器等の断面形状、大き
さ、および切欠き部を利用して設置するドアヒンジ固定
用部材等の形状、大きさに応じて適宜決定することがで
きる。貫通孔の断面形状は、通常円形または四角形、六
角形等の多角形とされ、その寸法は、断熱芯材の厚さに
よっても異なるが、直径もしくは一辺の長さを30〜1
00mm程度とする。The heat insulating core material illustrated here is provided with one through hole and one notch, but only one of the through hole and the notch or a plurality of these are provided. Good. The positions where the through holes and the notches are provided are appropriately determined depending on the intended use of the vacuum heat insulating panel, and the shapes and dimensions of the through holes and the notches are used for these purposes, that is, the through hole portion of the vacuum heat insulating panel. Can be appropriately determined according to the cross-sectional shape and size of wiring, piping, equipment and the like to be penetrated by utilizing the above, and the shape and size of the door hinge fixing member and the like to be installed utilizing the notch. The cross-sectional shape of the through-hole is usually a circle or a polygon such as a quadrangle or a hexagon, and its size varies depending on the thickness of the heat insulating core material, but the diameter or the length of one side is 30 to 1.
It is about 00 mm.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0039[Correction target item name] 0039
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0039】上記の第2工程において、シール部A(2
4)、シール部A(25)、およびシール部B(26)
を形成させる順序には特に制限はない。例えば、(i)
シール部A(A(24)、A(25))を形成させた後
に、シール部B(26)を形成させる、(ii)シール
部A(A(24)、A(25))とシール部B(26)
を同時に形成させる、(iii)シール部B(26)を
形成させた後に、シール部A(A(24)、A(2
5))を形成させる、ことができ、いずれの順序でも同
様のものが得られる。In the above second step, the seal portion A (2
4), seal portion A (25), and seal portion B (26)
There is no particular limitation on the order of forming the. For example, (i)
(Ii) The seal portion A (A (24), A (25)) and the seal portion are formed after forming the seal portion A (A (24), A (25)). B (26)
(Iii) After forming the seal portion B (26), the seal portions A (A (24), A (2) are formed simultaneously.
5)) can be formed and the same is obtained in either order.
Claims (15)
る袋の中に真空排気された状態で封入されてなる真空断
熱パネルにおいて、該真空断熱パネルが貫通孔部および
/または切欠き部を有し、かつ該貫通孔部および/また
は切欠き部の内周部に沿ってガスバリアー性包装材同士
を融着したシール部が形成されてなることを特徴とする
真空断熱パネル。1. A vacuum heat insulation panel in which a heat insulation core material is enclosed in a bag made of a gas barrier packaging material in a state of being evacuated, wherein the vacuum heat insulation panel has through holes and / or notches. A vacuum heat-insulating panel, characterized in that a seal portion is formed by fusing gas barrier packaging materials together along the inner peripheral portion of the through hole portion and / or the cutout portion.
ットが形成されてなることを特徴とする請求項1記載の
真空断熱パネル。2. The vacuum heat insulating panel according to claim 1, wherein a cutout or a slit is formed inside the seal portion.
を特徴とする請求項1または請求項2記載の真空断熱パ
ネル。3. The vacuum heat insulation panel according to claim 1, wherein the heat insulation core material is a porous inorganic molded body.
形体であることを特徴とする請求項1または請求項2記
載の真空断熱パネル。4. The vacuum heat insulation panel according to claim 1, wherein the heat insulation core material is a foamed resin molding having open cells.
0%以上含む組成物からなる成形体であることを特徴と
する請求項3記載の真空断熱パネル。5. The porous inorganic molded body contains calcium silicate in an amount of 5
The vacuum heat insulation panel according to claim 3, which is a molded product made of a composition containing 0% or more.
体であることを特徴とする請求項4記載の真空断熱パネ
ル。6. The vacuum heat insulation panel according to claim 4, wherein the foamed resin molded body is a foamed polyurethane molded body.
る袋の中に真空排気された状態で封入されてなる真空断
熱パネルであって、該真空断熱パネルは貫通孔部および
/または切欠き部を有し、かつ該貫通孔部および/また
は切欠き部の内周部に沿ってガスバリアー性包装材同士
を融着したシール部が形成された真空断熱パネルの製造
方法において、貫通孔および/または切欠きを設けた平
板状の断熱芯材を、ガスバリアー性包装材よりなる袋の
開口部をより袋内に収納し、袋の開口部より袋内を真空
排気して所望の真空度に維持しつつ、貫通孔部および/
または切欠き部の内周部に沿ってガスバリアー性包装材
同士を融着したシール部(A)、および袋の開口部のガ
スバリアー性包装材同士を融着したシール部(B)を形
成させることを特徴とする真空断熱パネルの製造方法。7. A vacuum insulation panel in which a heat insulation core material is enclosed in a bag made of a gas barrier packaging material in a state of being evacuated, wherein the vacuum insulation panel has through holes and / or notches. And a through hole and / or a notched portion along the inner peripheral portion of the gas barrier packaging material is sealed to form a seal portion, the method for manufacturing a vacuum insulation panel, the through hole and A flat heat insulating core material with a cutout is stored in the bag opening made of a gas barrier packaging material in the bag, and the bag is evacuated from the bag opening to a desired degree of vacuum. Through hole and / or
Alternatively, a seal portion (A) in which the gas barrier packaging materials are fused to each other and an seal portion (B) in which the gas barrier packaging materials are fused to each other at the opening of the bag are formed along the inner peripheral portion of the cutout portion. A method for manufacturing a vacuum heat insulating panel, comprising:
ル部(B)を形成させることを特徴とする請求項7記載
の真空断熱パネルの製造方法。8. The method for manufacturing a vacuum heat insulating panel according to claim 7, wherein the seal portion (A) is formed and then the seal portion (B) is formed.
に形成させることを特徴とする請求項7記載の真空断熱
パネルの製造方法。9. The method for manufacturing a vacuum heat insulating panel according to claim 7, wherein the seal portion (A) and the seal portion (B) are formed at the same time.
ル部(A)を形成させることを特徴とする請求項7記載
の真空断熱パネルの製造方法。10. The method for manufacturing a vacuum heat insulating panel according to claim 7, wherein the seal portion (B) is formed and then the seal portion (A) is formed.
ル部(A)の内側に切り抜きまたはスリットを形成させ
ることを特徴とする請求項7〜請求項10のいずれか1
項記載の真空断熱パネルの製造方法。11. The method according to claim 7, wherein after forming the seal portion (A), a cutout or a slit is formed inside the seal portion (A).
A method for manufacturing a vacuum insulation panel according to the item.
を特徴とする請求項7〜請求項11のいずれか1項記載
の真空断熱パネルの製造方法。12. The method for manufacturing a vacuum heat insulating panel according to claim 7, wherein the heat insulating core material is a porous inorganic molded body.
成形体であることを特徴とする請求項7〜請求項11の
いずれか1項記載の真空断熱パネルの製造方法。13. The method for manufacturing a vacuum heat insulation panel according to claim 7, wherein the heat insulation core material is a foamed resin molding having open cells.
0%以上含む組成物からなる成形体であることを特徴と
する請求項12記載の真空断熱パネルの製造方法。14. A porous inorganic molded body containing calcium silicate 5
The method for producing a vacuum heat insulating panel according to claim 12, wherein the vacuum heat insulating panel is a molded product made of a composition containing 0% or more.
体であることを特徴とする請求項13記載の真空断熱パ
ネルの製造方法。15. The method for manufacturing a vacuum heat insulating panel according to claim 13, wherein the foamed resin molded body is a foamed polyurethane molded body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7105893A JPH08303686A (en) | 1995-04-28 | 1995-04-28 | Vacuum heat insulating panel and manufacture of it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7105893A JPH08303686A (en) | 1995-04-28 | 1995-04-28 | Vacuum heat insulating panel and manufacture of it |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08303686A true JPH08303686A (en) | 1996-11-22 |
Family
ID=14419595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7105893A Pending JPH08303686A (en) | 1995-04-28 | 1995-04-28 | Vacuum heat insulating panel and manufacture of it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08303686A (en) |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002167882A (en) * | 2000-08-03 | 2002-06-11 | Va Q Tec Ag | Heat insulating element wrapped up with air tight foil and vacuumized, and its manufacturing method |
WO2004001149A3 (en) * | 2002-06-24 | 2004-03-04 | Sager Ag | Vacuum insulation panel, method for the heat insulation of objects and auxiliary agent therefor |
WO2006009146A1 (en) * | 2004-07-20 | 2006-01-26 | Kurashiki Boseki Kabushiki Kaisha | Vacuum heat insulation material |
WO2006046520A1 (en) * | 2004-10-28 | 2006-05-04 | Matsushita Electric Industrial Co., Ltd. | Building member and building |
JP2007138976A (en) * | 2005-11-15 | 2007-06-07 | Nisshinbo Ind Inc | Vacuum heat insulating material and its manufacturing method |
JP2007155135A (en) * | 2005-04-27 | 2007-06-21 | Nisshinbo Ind Inc | Vacuum insulation material and manufacturing method thereof |
JP2007321925A (en) * | 2006-06-02 | 2007-12-13 | Asahi Fiber Glass Co Ltd | Vacuum heat insulating material and its manufacturing method |
JP2008121757A (en) * | 2006-11-10 | 2008-05-29 | Sharp Corp | Vacuum insulation material and refrigerator |
JP2008196572A (en) * | 2007-02-13 | 2008-08-28 | Sharp Corp | Vacuum heat insulating material and refrigerator |
US7833605B2 (en) | 2002-12-05 | 2010-11-16 | Panasonic Corporation | Vacuum heat insulator |
JP2011117664A (en) * | 2009-12-03 | 2011-06-16 | Toshiba Corp | Refrigerator |
JP2011141071A (en) * | 2010-01-06 | 2011-07-21 | Techno Associe Co Ltd | Heat insulating structure and beverage dispenser including the same |
EP1566264B2 (en) † | 2004-02-18 | 2011-11-23 | SCHWENK Dämmtechnik GmbH & Co KG | Heat insulating panel |
CN102278571A (en) * | 2008-12-26 | 2011-12-14 | 三菱电机株式会社 | Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material |
JP2011255519A (en) * | 2010-06-04 | 2011-12-22 | Toyota Boshoku Corp | Heat-insulating interior material and manufacturing method of the same |
CN102588709A (en) * | 2012-03-30 | 2012-07-18 | 周介明 | Air-permeable anchored vacuum heat-insulation plate and manufacturing method thereof |
CN103669617A (en) * | 2012-09-14 | 2014-03-26 | 昆山蓝胜建材有限公司 | Vacuum thermal insulated panel and manufacturing method thereof and special punching equipment adopted in manufacturing method |
CN103790246A (en) * | 2012-10-30 | 2014-05-14 | 昆山蓝胜建材有限公司 | Building vacuum insulated panel and manufacture method thereof |
EP2910880A1 (en) * | 2014-02-24 | 2015-08-26 | Whirlpool Corporation | A folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels |
US9689604B2 (en) | 2014-02-24 | 2017-06-27 | Whirlpool Corporation | Multi-section core vacuum insulation panels with hybrid barrier film envelope |
US9752818B2 (en) | 2015-12-22 | 2017-09-05 | Whirlpool Corporation | Umbilical for pass through in vacuum insulated refrigerator structures |
US9835369B2 (en) | 2012-04-02 | 2017-12-05 | Whirlpool Corporation | Vacuum insulated structure tubular cabinet construction |
US9833942B2 (en) | 2012-04-11 | 2017-12-05 | Whirlpool Corporation | Method to create vacuum insulated cabinets for refrigerators |
US9840042B2 (en) | 2015-12-22 | 2017-12-12 | Whirlpool Corporation | Adhesively secured vacuum insulated panels for refrigerators |
US10018406B2 (en) | 2015-12-28 | 2018-07-10 | Whirlpool Corporation | Multi-layer gas barrier materials for vacuum insulated structure |
US10030905B2 (en) | 2015-12-29 | 2018-07-24 | Whirlpool Corporation | Method of fabricating a vacuum insulated appliance structure |
US10041724B2 (en) | 2015-12-08 | 2018-08-07 | Whirlpool Corporation | Methods for dispensing and compacting insulation materials into a vacuum sealed structure |
US10052819B2 (en) | 2014-02-24 | 2018-08-21 | Whirlpool Corporation | Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture |
JP2018141630A (en) * | 2018-06-26 | 2018-09-13 | 東芝ライフスタイル株式会社 | refrigerator |
WO2018230343A1 (en) * | 2017-06-16 | 2018-12-20 | パナソニックIpマネジメント株式会社 | Thermal insulation sheet and multilayer thermal insulation sheet using same |
US10161669B2 (en) | 2015-03-05 | 2018-12-25 | Whirlpool Corporation | Attachment arrangement for vacuum insulated door |
US10222116B2 (en) | 2015-12-08 | 2019-03-05 | Whirlpool Corporation | Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system |
US10345031B2 (en) | 2015-07-01 | 2019-07-09 | Whirlpool Corporation | Split hybrid insulation structure for an appliance |
US10365030B2 (en) | 2015-03-02 | 2019-07-30 | Whirlpool Corporation | 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness |
US10422569B2 (en) | 2015-12-21 | 2019-09-24 | Whirlpool Corporation | Vacuum insulated door construction |
US10422573B2 (en) | 2015-12-08 | 2019-09-24 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US10429125B2 (en) | 2015-12-08 | 2019-10-01 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US10598424B2 (en) | 2016-12-02 | 2020-03-24 | Whirlpool Corporation | Hinge support assembly |
US10610985B2 (en) | 2015-12-28 | 2020-04-07 | Whirlpool Corporation | Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure |
US10712080B2 (en) | 2016-04-15 | 2020-07-14 | Whirlpool Corporation | Vacuum insulated refrigerator cabinet |
US10731915B2 (en) | 2015-03-11 | 2020-08-04 | Whirlpool Corporation | Self-contained pantry box system for insertion into an appliance |
US10807298B2 (en) | 2015-12-29 | 2020-10-20 | Whirlpool Corporation | Molded gas barrier parts for vacuum insulated structure |
US10907888B2 (en) | 2018-06-25 | 2021-02-02 | Whirlpool Corporation | Hybrid pigmented hot stitched color liner system |
CN112303383A (en) * | 2019-08-02 | 2021-02-02 | 松下真空节能新材料(重庆)有限公司 | Manufacturing device of vacuum insulation panel, vacuum insulation panel and manufacturing method thereof |
CN112681541A (en) * | 2020-11-25 | 2021-04-20 | 王晶 | EPS fire prevention heated board |
US11009284B2 (en) | 2016-04-15 | 2021-05-18 | Whirlpool Corporation | Vacuum insulated refrigerator structure with three dimensional characteristics |
US11052579B2 (en) | 2015-12-08 | 2021-07-06 | Whirlpool Corporation | Method for preparing a densified insulation material for use in appliance insulated structure |
US11247369B2 (en) | 2015-12-30 | 2022-02-15 | Whirlpool Corporation | Method of fabricating 3D vacuum insulated refrigerator structure having core material |
US11320193B2 (en) | 2016-07-26 | 2022-05-03 | Whirlpool Corporation | Vacuum insulated structure trim breaker |
US11391506B2 (en) | 2016-08-18 | 2022-07-19 | Whirlpool Corporation | Machine compartment for a vacuum insulated structure |
-
1995
- 1995-04-28 JP JP7105893A patent/JPH08303686A/en active Pending
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002167882A (en) * | 2000-08-03 | 2002-06-11 | Va Q Tec Ag | Heat insulating element wrapped up with air tight foil and vacuumized, and its manufacturing method |
WO2004001149A3 (en) * | 2002-06-24 | 2004-03-04 | Sager Ag | Vacuum insulation panel, method for the heat insulation of objects and auxiliary agent therefor |
US8790477B2 (en) | 2002-12-05 | 2014-07-29 | Panasonic Corporation | Manufacturing method for a vaccum heat insulator |
US7833605B2 (en) | 2002-12-05 | 2010-11-16 | Panasonic Corporation | Vacuum heat insulator |
EP1566264B2 (en) † | 2004-02-18 | 2011-11-23 | SCHWENK Dämmtechnik GmbH & Co KG | Heat insulating panel |
US7947347B2 (en) | 2004-07-20 | 2011-05-24 | Kurashiki Bosek Kabushiki Kaisha | Vacuum heat insulator |
WO2006009146A1 (en) * | 2004-07-20 | 2006-01-26 | Kurashiki Boseki Kabushiki Kaisha | Vacuum heat insulation material |
WO2006046520A1 (en) * | 2004-10-28 | 2006-05-04 | Matsushita Electric Industrial Co., Ltd. | Building member and building |
US7805901B2 (en) | 2004-10-28 | 2010-10-05 | Panasonic Corporation | Construction material and building |
JP2007155135A (en) * | 2005-04-27 | 2007-06-21 | Nisshinbo Ind Inc | Vacuum insulation material and manufacturing method thereof |
JP2007138976A (en) * | 2005-11-15 | 2007-06-07 | Nisshinbo Ind Inc | Vacuum heat insulating material and its manufacturing method |
JP2007321925A (en) * | 2006-06-02 | 2007-12-13 | Asahi Fiber Glass Co Ltd | Vacuum heat insulating material and its manufacturing method |
JP2008121757A (en) * | 2006-11-10 | 2008-05-29 | Sharp Corp | Vacuum insulation material and refrigerator |
JP2008196572A (en) * | 2007-02-13 | 2008-08-28 | Sharp Corp | Vacuum heat insulating material and refrigerator |
CN102278571A (en) * | 2008-12-26 | 2011-12-14 | 三菱电机株式会社 | Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material |
JP2011117664A (en) * | 2009-12-03 | 2011-06-16 | Toshiba Corp | Refrigerator |
JP2011141071A (en) * | 2010-01-06 | 2011-07-21 | Techno Associe Co Ltd | Heat insulating structure and beverage dispenser including the same |
JP2011255519A (en) * | 2010-06-04 | 2011-12-22 | Toyota Boshoku Corp | Heat-insulating interior material and manufacturing method of the same |
CN102588709A (en) * | 2012-03-30 | 2012-07-18 | 周介明 | Air-permeable anchored vacuum heat-insulation plate and manufacturing method thereof |
US10746458B2 (en) | 2012-04-02 | 2020-08-18 | Whirlpool Corporation | Method of making a folded vacuum insulated structure |
US9835369B2 (en) | 2012-04-02 | 2017-12-05 | Whirlpool Corporation | Vacuum insulated structure tubular cabinet construction |
US10697697B2 (en) | 2012-04-02 | 2020-06-30 | Whirlpool Corporation | Vacuum insulated door structure and method for the creation thereof |
US10663217B2 (en) | 2012-04-02 | 2020-05-26 | Whirlpool Corporation | Vacuum insulated structure tubular cabinet construction |
US9885516B2 (en) | 2012-04-02 | 2018-02-06 | Whirlpool Corporation | Vacuum insulated door structure and method for the creation thereof |
US9874394B2 (en) | 2012-04-02 | 2018-01-23 | Whirlpool Corporation | Method of making a folded vacuum insulated structure |
US9833942B2 (en) | 2012-04-11 | 2017-12-05 | Whirlpool Corporation | Method to create vacuum insulated cabinets for refrigerators |
US10350817B2 (en) | 2012-04-11 | 2019-07-16 | Whirlpool Corporation | Method to create vacuum insulated cabinets for refrigerators |
CN103669617B (en) * | 2012-09-14 | 2016-09-28 | 昆山蓝胜建材有限公司 | The manufacture method of vacuum heat-insulating plate and punching special equipment used |
CN103669617A (en) * | 2012-09-14 | 2014-03-26 | 昆山蓝胜建材有限公司 | Vacuum thermal insulated panel and manufacturing method thereof and special punching equipment adopted in manufacturing method |
CN103790246A (en) * | 2012-10-30 | 2014-05-14 | 昆山蓝胜建材有限公司 | Building vacuum insulated panel and manufacture method thereof |
US9689604B2 (en) | 2014-02-24 | 2017-06-27 | Whirlpool Corporation | Multi-section core vacuum insulation panels with hybrid barrier film envelope |
EP2910880A1 (en) * | 2014-02-24 | 2015-08-26 | Whirlpool Corporation | A folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels |
US10052819B2 (en) | 2014-02-24 | 2018-08-21 | Whirlpool Corporation | Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture |
US9599392B2 (en) | 2014-02-24 | 2017-03-21 | Whirlpool Corporation | Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels |
US10105931B2 (en) | 2014-02-24 | 2018-10-23 | Whirlpool Corporation | Multi-section core vacuum insulation panels with hybrid barrier film envelope |
US10365030B2 (en) | 2015-03-02 | 2019-07-30 | Whirlpool Corporation | 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness |
US11713916B2 (en) | 2015-03-05 | 2023-08-01 | Whirlpool Corporation | Attachment arrangement for vacuum insulated door |
US11243021B2 (en) | 2015-03-05 | 2022-02-08 | Whirlpool Corporation | Attachment arrangement for vacuum insulated door |
US10161669B2 (en) | 2015-03-05 | 2018-12-25 | Whirlpool Corporation | Attachment arrangement for vacuum insulated door |
US10731915B2 (en) | 2015-03-11 | 2020-08-04 | Whirlpool Corporation | Self-contained pantry box system for insertion into an appliance |
US10345031B2 (en) | 2015-07-01 | 2019-07-09 | Whirlpool Corporation | Split hybrid insulation structure for an appliance |
US10041724B2 (en) | 2015-12-08 | 2018-08-07 | Whirlpool Corporation | Methods for dispensing and compacting insulation materials into a vacuum sealed structure |
US11009288B2 (en) | 2015-12-08 | 2021-05-18 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US10222116B2 (en) | 2015-12-08 | 2019-03-05 | Whirlpool Corporation | Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system |
US10422573B2 (en) | 2015-12-08 | 2019-09-24 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US10429125B2 (en) | 2015-12-08 | 2019-10-01 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US11691318B2 (en) | 2015-12-08 | 2023-07-04 | Whirlpool Corporation | Method for preparing a densified insulation material for use in appliance insulated structure |
US11052579B2 (en) | 2015-12-08 | 2021-07-06 | Whirlpool Corporation | Method for preparing a densified insulation material for use in appliance insulated structure |
US10422569B2 (en) | 2015-12-21 | 2019-09-24 | Whirlpool Corporation | Vacuum insulated door construction |
US10914505B2 (en) | 2015-12-21 | 2021-02-09 | Whirlpool Corporation | Vacuum insulated door construction |
US9752818B2 (en) | 2015-12-22 | 2017-09-05 | Whirlpool Corporation | Umbilical for pass through in vacuum insulated refrigerator structures |
US9840042B2 (en) | 2015-12-22 | 2017-12-12 | Whirlpool Corporation | Adhesively secured vacuum insulated panels for refrigerators |
US10610985B2 (en) | 2015-12-28 | 2020-04-07 | Whirlpool Corporation | Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure |
US10514198B2 (en) | 2015-12-28 | 2019-12-24 | Whirlpool Corporation | Multi-layer gas barrier materials for vacuum insulated structure |
US10018406B2 (en) | 2015-12-28 | 2018-07-10 | Whirlpool Corporation | Multi-layer gas barrier materials for vacuum insulated structure |
US10807298B2 (en) | 2015-12-29 | 2020-10-20 | Whirlpool Corporation | Molded gas barrier parts for vacuum insulated structure |
US10030905B2 (en) | 2015-12-29 | 2018-07-24 | Whirlpool Corporation | Method of fabricating a vacuum insulated appliance structure |
US11577446B2 (en) | 2015-12-29 | 2023-02-14 | Whirlpool Corporation | Molded gas barrier parts for vacuum insulated structure |
US11247369B2 (en) | 2015-12-30 | 2022-02-15 | Whirlpool Corporation | Method of fabricating 3D vacuum insulated refrigerator structure having core material |
US11752669B2 (en) | 2015-12-30 | 2023-09-12 | Whirlpool Corporation | Method of fabricating 3D vacuum insulated refrigerator structure having core material |
US11609037B2 (en) | 2016-04-15 | 2023-03-21 | Whirlpool Corporation | Vacuum insulated refrigerator structure with three dimensional characteristics |
US10712080B2 (en) | 2016-04-15 | 2020-07-14 | Whirlpool Corporation | Vacuum insulated refrigerator cabinet |
US11009284B2 (en) | 2016-04-15 | 2021-05-18 | Whirlpool Corporation | Vacuum insulated refrigerator structure with three dimensional characteristics |
US11320193B2 (en) | 2016-07-26 | 2022-05-03 | Whirlpool Corporation | Vacuum insulated structure trim breaker |
US11391506B2 (en) | 2016-08-18 | 2022-07-19 | Whirlpool Corporation | Machine compartment for a vacuum insulated structure |
US10598424B2 (en) | 2016-12-02 | 2020-03-24 | Whirlpool Corporation | Hinge support assembly |
WO2018230343A1 (en) * | 2017-06-16 | 2018-12-20 | パナソニックIpマネジメント株式会社 | Thermal insulation sheet and multilayer thermal insulation sheet using same |
US10907888B2 (en) | 2018-06-25 | 2021-02-02 | Whirlpool Corporation | Hybrid pigmented hot stitched color liner system |
JP2018141630A (en) * | 2018-06-26 | 2018-09-13 | 東芝ライフスタイル株式会社 | refrigerator |
CN112303383A (en) * | 2019-08-02 | 2021-02-02 | 松下真空节能新材料(重庆)有限公司 | Manufacturing device of vacuum insulation panel, vacuum insulation panel and manufacturing method thereof |
CN112681541B (en) * | 2020-11-25 | 2022-04-01 | 山东群雄科技发展有限公司 | EPS fire prevention heated board |
CN112681541A (en) * | 2020-11-25 | 2021-04-20 | 王晶 | EPS fire prevention heated board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08303686A (en) | Vacuum heat insulating panel and manufacture of it | |
JPH08312880A (en) | Vacuum heat insulating panel and its manufacture | |
US5866228A (en) | Vacuum heat-insulator | |
CA1242564A (en) | Precipitated silica insulation | |
US5084320A (en) | Evacuated thermal insulation | |
JP2518972B2 (en) | Heat-insulating molded article, method for producing the same, and storage, packaging and transportation containers comprising the same, and heat-insulating material for refrigeration and freezer | |
US20040180176A1 (en) | Vaccum insulation article | |
JPS6116730B2 (en) | ||
TW201623592A (en) | Fireproof construction and method for using same | |
JP2004011708A (en) | Vacuum heat insulating material, its manufacturing method, and thermal insulation box using vacuum heat insulating material | |
EP0682206B1 (en) | Vacuum heat-insulator | |
JP2599515B2 (en) | Insulating molded body, method for producing the same, container made of the molded body, and heat insulating material in refrigerator and freezer | |
JPH08291892A (en) | Lamination layer type vacuum heat insulating panel | |
JP3793113B2 (en) | Vacuum heat insulating material, manufacturing method thereof, and heat insulating box using vacuum heat insulating material | |
JP2008215492A (en) | Vacuum heat insulation material | |
JP2000291881A (en) | Decompressed heat insulating body and manufacture thereof | |
JPH11182781A (en) | Vacuum heat insulating material | |
KR101452211B1 (en) | Core material for vacuum insulator and vacuum insulator using the same | |
JP2008215538A (en) | Vacuum heat insulation material | |
KR100359738B1 (en) | Vacuum thermal insulator using inorganic core materials | |
JP2002317897A (en) | Vacuum heat insulation material, heat insulated container, refrigerator, and rice cooker | |
JPH0563715B2 (en) | ||
JPH08312878A (en) | Vacuum heat insulating material | |
JPH1044290A (en) | Vacuum heat insulation material | |
JPH10160091A (en) | Vacuum insulation material |