JPH0828320A - Fuel supply control device for internal combustion engine at starting - Google Patents

Fuel supply control device for internal combustion engine at starting

Info

Publication number
JPH0828320A
JPH0828320A JP16352694A JP16352694A JPH0828320A JP H0828320 A JPH0828320 A JP H0828320A JP 16352694 A JP16352694 A JP 16352694A JP 16352694 A JP16352694 A JP 16352694A JP H0828320 A JPH0828320 A JP H0828320A
Authority
JP
Japan
Prior art keywords
fuel supply
starting
time
fuel
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16352694A
Other languages
Japanese (ja)
Inventor
Yutaka Kanbara
豊 神原
Keita Yoshizawa
敬太 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP16352694A priority Critical patent/JPH0828320A/en
Publication of JPH0828320A publication Critical patent/JPH0828320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve characteristics of exhaust by estimating a fuel amount remaining in an internal combustion engine at starting,and correcting the fuel supply rate. CONSTITUTION:When electromotive force VO2, of an oxygen sensor 19 is within a specified range at the time of starting, it is judged not to be activated, while when the force is out of the specified range, it is judged to be activated. In the case that it is activated, a decreasing correction factor K of a reference fuel supply rate TCS is set according to a water temperature, such that it is incrased as the time is short from lowering of an engine 11 to re-starting, cylinder residual fuel exists, and a water temperature is low. A fuel supply rate at the starting time TCS is set by multiplying TCS by K.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の始動時の燃
料供給量を制御する技術に関し、特に、始動時に機関に
残留する燃料量を推定して燃料供給量を補正するように
した技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for controlling the fuel supply amount at the time of starting an internal combustion engine, and more particularly to a technique for estimating the fuel amount remaining in the engine at the time of starting and correcting the fuel supply amount. Regarding

【0002】[0002]

【従来の技術】燃料供給量を電子制御する内燃機関にお
いては、始動時に燃料供給量を増量補正して混合比を濃
化することにより始動性を高めることが行われており、
その場合の燃料増量補正係数は、機関温度が低く燃料の
霧化が悪い低温時ほど大きくなるように設定されてい
る。
2. Description of the Related Art In an internal combustion engine in which the fuel supply amount is electronically controlled, the startability is improved by increasing the fuel supply amount at the time of start-up to increase the mixture ratio.
In this case, the fuel increase correction coefficient is set to be larger as the engine temperature is lower and the atomization of the fuel is lower and the temperature is lower.

【0003】このため、一般的には、水温センサ等によ
って機関温度状態を検出し、低温時ほど始動時燃料増量
補正を多く設定することが行われている。
For this reason, in general, a water temperature sensor or the like is used to detect the engine temperature state, and a larger amount of fuel increase correction at startup is set as the temperature gets lower.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うに機関温度のみに基づく一般的な始動時の燃料増量補
正方式では、機関温度が十分上昇しきっていないうちに
機関を停止し、その後すぐに再始動したような場合に
は、吸気通路壁に付着した液状の燃料 (いわゆる壁流燃
料) がシリンダに流入して残留した状態で再始動され、
該残留燃料を考慮することなく通常の低温始動時に見合
った増量補正が行われることとなり、空燃比が過剰にリ
ッチ状態となって排気性状が悪化してしまい、特にHC
の排出量が増大してしまうことがあった。
However, in the general fuel increase correction method at the time of starting based on only the engine temperature as described above, the engine is stopped before the engine temperature has risen sufficiently and then restarted immediately thereafter. In the case of a start-up, the liquid fuel (so-called wall-flow fuel) adhering to the wall of the intake passage flows into the cylinder and restarts when it remains.
The increase correction corresponding to the normal cold start is performed without considering the residual fuel, the air-fuel ratio becomes excessively rich, and the exhaust property deteriorates.
The emission amount of was sometimes increased.

【0005】このため、機関停止から再始動するまでの
経過時間を計測し、該経過時間が短い場合には、再始動
時の燃料供給量を減量補正するようにしたものがあり、
これによって、シリンダ内の残留壁流燃料による空燃比
のリッチ化を防止できる。しかし、この方式では、制御
のソフトウエアが複雑となり、ROM,RAMの容量を
多く取り、また、タイマを使用しなければならないなど
の問題があった。
For this reason, there is a system in which the elapsed time from the stop of the engine to the restart is measured, and when the elapsed time is short, the fuel supply amount at the restart is reduced and corrected.
This can prevent the air-fuel ratio from becoming rich due to the residual wall-flow fuel in the cylinder. However, this method has problems that the control software becomes complicated, a large amount of ROM and RAM is required, and a timer must be used.

【0006】本発明は、このような従来の問題点に鑑み
なされたもので、既存の酸素センサの出力状態に基づい
て再始動時の残留燃料状態を推定し、以て再始動時の燃
料供給量の増量補正制御を行うようにした内燃機関の始
動時燃料供給制御装置を提供することを目的とする。
The present invention has been made in view of the above conventional problems, and estimates the residual fuel state at the time of restart based on the output state of the existing oxygen sensor, and thereby supplies the fuel at the time of restart. It is an object of the present invention to provide a starting fuel supply control device for an internal combustion engine, which is configured to perform an increase correction control of the amount.

【0007】[0007]

【課題を解決するための手段】このため、本発明に係る
内燃機関の始動時燃料供給制御装置は、図1に示すよう
に、排気中酸素濃度の検出を介して機関に供給される混
合気の空燃比を検出する酸素センサを備えた内燃機関の
始動時燃料供給制御装置において、機関の始動時におけ
る前記酸素センサの活性度を該酸素センサの起電力によ
り判定する活性度判定手段と、前記酸素センサの活性度
が高いと判定されたときは、活性度が低いと判定された
ときより始動時の燃料供給量を減量補正する始動時燃料
供給量補正手段と、を含んで構成したことを特徴とす
る。
Therefore, as shown in FIG. 1, the starting fuel supply control device for an internal combustion engine according to the present invention, as shown in FIG. 1, supplies the air-fuel mixture supplied to the engine through detection of the oxygen concentration in the exhaust gas. In an internal combustion engine starting fuel supply control device having an oxygen sensor for detecting the air-fuel ratio, an activity determining means for determining the activity of the oxygen sensor at the time of engine startup by the electromotive force of the oxygen sensor, When it is determined that the oxygen sensor has a high activity, a start-time fuel supply amount correction unit that corrects the fuel supply amount at the time of starting is reduced compared to when the oxygen sensor is determined to have a low activity. Characterize.

【0008】また、前記活性度判定手段は、例えば、前
記酸素センサの起電力が所定範囲内に落ちついていると
きに活性化されておらず、前記空燃比変化に応じて所定
範囲より小側と大側とに変化するときに活性化されてい
ると判定する。また、機関温度検出手段を含んで構成さ
れ、始動時の燃料供給量の基本値が始動時の機関温度が
低いほど大きく設定され、前記始動時燃料供給量補正手
段は、酸素センサの活性度が低いと判定されたときは機
関温度が低いときほど減量補正量を大きく設定する構成
としてもよい。
The activity determining means is not activated, for example, when the electromotive force of the oxygen sensor is settled within a predetermined range, and is smaller than the predetermined range in accordance with the change in the air-fuel ratio. When it changes to the large side, it is determined to be activated. Further, the engine temperature detection means is included, and the basic value of the fuel supply amount at the time of starting is set to be larger as the engine temperature at the time of starting is lower. When it is determined that the temperature is low, the reduction correction amount may be set larger as the engine temperature is lower.

【0009】[0009]

【作用】機関停止後、短時間で再始動したような場合に
は、シリンダ内に残留している壁流燃料量が多いが、酸
素センサは排気による加熱で活性化されている。酸素セ
ンサは活性化すると、起電力がリッチ時には大きく、リ
ーン時には小さく振れるが、活性化していないときは、
リッチ,リーン時ともに中間の値に落ちついている。そ
こで、かかる酸素センサの起電力に基づいて活性化され
ているか否かを判別し、活性化されていないときは、通
常の低温始動時に見合って増量された燃料供給量に設定
するが、活性化されているときは停止後再始動時までの
経過時間が短く、したがってシリンダ内の残留燃料量が
多いと判断して、その分燃料供給量を減量補正する。
When the engine is restarted in a short time after being stopped, the amount of wall-flow fuel remaining in the cylinder is large, but the oxygen sensor is activated by heating by exhaust gas. When the oxygen sensor is activated, the electromotive force is large when rich, and swings slightly when lean, but when not activated,
It is settled in the middle value at both rich and lean. Therefore, it is determined whether or not the oxygen sensor is activated based on the electromotive force of the oxygen sensor, and when it is not activated, the fuel supply amount is set to be increased in proportion to the normal low temperature start. If so, it is determined that the elapsed time from the stop to the restart is short, and therefore the residual fuel amount in the cylinder is large, and the fuel supply amount is reduced and corrected accordingly.

【0010】具体的には前記酸素センサの特性に応じて
起電力が所定範囲内に落ちついているときには活性化し
ておらず、所定範囲より大側又は小側に変化するときに
は活性化していると判定することができる。また、始動
時の燃料供給量は、基本的には燃料気化性の低い低温時
ほど大きく設定しておき、機関停止後再始動までの時間
が短い再始動時には、低温時ほどシリンダ内の残留燃料
量が多いとの判断で減量補正量を大きく設定することに
より、トータルとして過不足のない燃料供給量を得るこ
とができる。
Specifically, it is determined that the electromotive force is not activated when the electromotive force falls within a predetermined range according to the characteristics of the oxygen sensor, and is activated when the electromotive force changes to a larger side or a smaller side than the predetermined range. can do. In addition, the fuel supply amount at the time of starting is basically set to be larger when the temperature is low, at which fuel vaporization is low. By setting the reduction correction amount to be large on the basis of the determination that the amount is large, it is possible to obtain a total fuel supply amount that is sufficient.

【0011】[0011]

【実施例】以下に本発明の実施例を図に基づいて説明す
る。一実施例の構成を示す図2において、機関11の吸気
通路12には吸入空気流量Qを検出する吸入空気流量検出
手段としてのエアフローメータ13及びアクセルペダルと
連動して吸入空気流量Qを制御する絞り弁14が設けら
れ、下流のマニホールド部分には気筒毎に燃料供給手段
としての電磁式の燃料噴射弁15が設けられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 2 showing the configuration of an embodiment, an intake air flow rate Q is controlled in an intake passage 12 of an engine 11 in conjunction with an air flow meter 13 as an intake air flow rate detecting means for detecting the intake air flow rate Q and an accelerator pedal. A throttle valve 14 is provided, and an electromagnetic fuel injection valve 15 as fuel supply means is provided for each cylinder in the downstream manifold portion.

【0012】燃料噴射弁15は、マイクロコンピュータを
内蔵したコントロールユニット16からの噴射パルス信号
によって開弁駆動し、図示しない燃料ポンプから圧送さ
れてプレッシャレギュレータにより所定圧力に制御され
た燃料を噴射供給する。更に、機関11の冷却ジャケット
内の冷却水温度Twを検出する水温センサ17が設けられ
ると共に、排気通路18の排気中酸素濃度を検出すること
によって吸入混合気の空燃比を検出する酸素センサ19が
設けられ、更に下流側の排気中のCO,HCの酸化とN
X の還元を行って浄化する三元触媒20が設けられる。
The fuel injection valve 15 is opened and driven by an injection pulse signal from a control unit 16 having a built-in microcomputer, and is fuel-fed by a fuel pump (not shown) to be injected and supplied at a predetermined pressure by a pressure regulator. . Further, a water temperature sensor 17 for detecting the cooling water temperature Tw in the cooling jacket of the engine 11 is provided, and an oxygen sensor 19 for detecting the air-fuel ratio of the intake air-fuel mixture by detecting the oxygen concentration in the exhaust gas of the exhaust passage 18. Oxidation of CO and HC in the exhaust gas and N
The three-way catalyst 20 for purifying performing the reduction of O X is provided.

【0013】また、図示しないディストリビュータに
は、クランク角センサ21が内蔵されており、該クランク
角センサ21から機関回転と同期して出力されるクランク
単位角信号をコントロールユニット16が一定時間カウン
トして、又は、クランク基準角信号の周期を計測して機
関回転速度Nを検出する。コントロールユニット16に
は、前記信号の他、イグニッションスイッチ22,スター
トスイッチ23からの信号なども入力され、後述する始動
時の燃料供給制御に用いられる。
A crank angle sensor 21 is built in the distributor (not shown), and the control unit 16 counts a crank unit angle signal output from the crank angle sensor 21 in synchronization with the engine rotation for a certain period of time. Alternatively, the engine rotation speed N is detected by measuring the cycle of the crank reference angle signal. In addition to the above signals, signals from the ignition switch 22 and the start switch 23 are also input to the control unit 16, which are used for fuel supply control at the time of starting, which will be described later.

【0014】次に、前記コントロールユニット16による
本発明に係る始動時の燃料供給制御ルーチンを図3のフ
ローチャートに従って説明する。ステップ1では、イグ
ニッションスイッチがONされたか否かを検出して始動
時か否かを判定し、ONと判定されるとステップ2へ進
む。ステップ2では、酸素センサ19の起電力VO2 を読
み込む。
Next, the fuel supply control routine at the time of starting according to the present invention by the control unit 16 will be described with reference to the flowchart of FIG. In step 1, it is determined whether or not the ignition switch is turned on to determine whether or not the engine is starting. If it is determined to be on, the process proceeds to step 2. In step 2, the electromotive force VO 2 of the oxygen sensor 19 is read.

【0015】ステップ3で、前記起電力VO2 が所定範
囲例えば200mmV〜400mmVの範囲にあるか否かを判定して
酸素センサ19が活性化しているか否かを判定する。ここ
で、機関停止後、再始動までの時間が短く排気熱で加熱
された酸素センサが高温に保持されているときにはセン
サ素子が活性状態に保持され、このとき図4に示すよう
に空燃比のリッチ・リーンに応じて起電力VO2 が前記
所定範囲より大側と小側とに外れるが、機関停止後から
再始動までの時間が十分長く酸素センサが冷却されて低
温となっているときにはセンサ素子が活性化されておら
ず、同図に示すように空燃比のリッチ・リーン変化によ
っても起電力が所定範囲(200mmV 〜400mmV) 内に落ちつ
いている。そこで、かかる活性化の有無の判定により、
機関停止後、再始動までの経過時間を推定でき、それに
よって再始動時のシリンダ内の残留燃料の有無を判定で
きるのである。
In step 3, it is determined whether the electromotive force VO 2 is within a predetermined range, for example, 200 mmV to 400 mmV, and it is determined whether the oxygen sensor 19 is activated. Here, when the oxygen sensor heated by the exhaust gas heat is kept at a high temperature for a short time until the engine is restarted after the engine is stopped, the sensor element is kept in the active state. At this time, as shown in FIG. The electromotive force VO 2 deviates to a larger side or a smaller side than the predetermined range according to rich / lean, but when the oxygen sensor is cooled and has a low temperature for a sufficiently long time from the engine stop to the restart, the sensor is detected. The element is not activated, and as shown in the figure, the electromotive force remains within the predetermined range (200 mmV to 400 mmV) due to the rich / lean change of the air-fuel ratio. Therefore, by judging the presence or absence of such activation,
After the engine is stopped, the time elapsed until the engine is restarted can be estimated, and the presence or absence of residual fuel in the cylinder at the time of restarting can be determined by this.

【0016】ステップ3の判定で、起電力が所定範囲内
にあり、酸素センサ19が活性化していないと判定された
ときは、機関停止後から十分に時間経過した通常の始動
時と判断してステップ4で再始動フラグFを0にセット
した後ステップ6へ進むが、起電力が所定範囲から外
れ、酸素センサ19が活性化していると判定されたとき
は、機関停止後からの経過時間が短い再始動時と判定し
て、ステップ5へ進み再始動フラグFを1にセットした
後、ステップ6へ進む。
When it is determined in step 3 that the electromotive force is within the predetermined range and the oxygen sensor 19 is not activated, it is determined that the engine has started normally after a sufficient time has elapsed since the engine was stopped. After the restart flag F is set to 0 in step 4, the process proceeds to step 6, but when it is determined that the electromotive force is out of the predetermined range and the oxygen sensor 19 is activated, the elapsed time after the engine is stopped It is determined that the engine is restarting for a short time, the process proceeds to step 5, the restart flag F is set to 1, and then the process proceeds to step 6.

【0017】ステップ6でスタートスイッチ23がONさ
れる、つまり始動されるのを待ち、ONとされてからス
テップ7へ進む。ステップ7では、前記再始動フラグF
の値を判定し、1である機関停止してから短時間での再
始動時はステップ8へ進み、前回運転によりシリンダ内
に残留している燃料を考慮して再始動時の燃料供給量を
減量補正するための減量補正係数Kを再始動時の水温に
応じて設定する。ここで、再始動時の機関温度が低温で
あるほど機関停止時の壁流燃料量が多く、かつ、停止後
から再始動までの蒸発量も少ないためシリンダ内の残留
燃料量が多くなっていると推定できるので、それに見合
って前記減量補正係数Kは小さい (減量率が大きい) 値
に設定されている。
In step 6, the start switch 23 is turned on, that is, waits until it is started, and after it is turned on, the process proceeds to step 7. In step 7, the restart flag F
When the engine restarts in a short time after the engine is stopped, which is 1, the process proceeds to step 8, and the fuel supply amount at the time of restart is considered in consideration of the fuel remaining in the cylinder due to the previous operation. The weight reduction correction coefficient K for weight reduction correction is set according to the water temperature at restart. Here, as the engine temperature at restart is lower, the amount of wall flow fuel when the engine is stopped is larger, and the amount of evaporation from after stop to restart is also smaller, so the amount of residual fuel in the cylinder is larger. Therefore, the weight reduction correction coefficient K is set to a small value (a large weight reduction rate) correspondingly.

【0018】また、前記再始動フラグFの値が0である
通常の始動時は、停止から再始動までの時間が十分長
く、シリンダ内の残留燃料量は気化され吸気系を介して
殆ど無くなっていると推定できるので、該残留燃料量に
よる減量補正は行わないので、ステップ9へ進み、前記
減量補正係数Kを1にセットする。ステップ10では、始
動時の基本燃料供給量TCS0 を演算する。このTCS
0は、例えば、水温が低いときほど燃料の気化性が低い
ため増量して設定されている。
Further, at the time of normal starting when the value of the restart flag F is 0, the time from stop to restart is sufficiently long, the residual fuel amount in the cylinder is vaporized and almost disappears through the intake system. Since it can be estimated that the amount of residual fuel is reduced, the amount of reduction correction based on the residual fuel amount is not performed. Therefore, the process proceeds to step 9, and the reduction correction coefficient K is set to 1. In step 10, the basic fuel supply amount TCS 0 at the time of starting is calculated. This TCS
For example, 0 is set by increasing the fuel vaporization property as the water temperature is lower, because the fuel vaporization property is lower.

【0019】ステップ11では、前記基本燃料供給量TC
0 に、前記減量補正係数Kを乗算して始動時の燃料供
給量TCSを設定する。このようにして設定された量T
CSの燃料が、燃料噴射弁15から噴射供給される。この
ようにすれば、機関温度が上昇しきらないうちに機関を
停止し、その後すぐに再始動したような場合に、シリン
ダ内に前回運転時の燃料が残留していても、再始動時に
該残留燃料量に見合った燃料供給量の減量補正が行われ
るので、新たに噴射される燃料とシリンダに残留してい
る燃料とのトータルで過不足のない燃料量に設定するこ
とができ、空燃比の過剰リッチ化による排気性状の悪化
特にHC排出量の増大を抑制できる。
In step 11, the basic fuel supply amount TC
S 0 is multiplied by the reduction correction coefficient K to set the fuel supply amount TCS at the time of starting. The amount T set in this way
The fuel of CS is injected and supplied from the fuel injection valve 15. By doing this, when the engine is stopped before the engine temperature has risen completely and restarted immediately thereafter, even if the fuel from the previous operation remains in the cylinder, Since the amount of fuel supply is reduced to match the amount of residual fuel, the total amount of newly injected fuel and the fuel remaining in the cylinders can be set to a sufficient amount, and the air-fuel ratio can be adjusted. It is possible to suppress the deterioration of the exhaust property due to the excessive enrichment of the exhaust gas, especially the increase of the HC emission amount.

【0020】[0020]

【発明の効果】以上説明してきたように本発明によれ
ば、既存の酸素センサの起電力特性、具体的には起電力
が所定範囲内にあるか否か等に基づいて複雑なソフトウ
エアやタイマ等を要することなく、機関停止後から再始
動されるまでの経過時間,延いてはシリンダに残留する
燃料の有無を推定でき、それによってシリンダに燃料が
残留していると推定された場合には、再始動時の燃料供
給量を減量補正する構成としたため、再始動時の空燃比
の過剰リッチ化を防止でき、排気性状特にHC排出量の
増大を防止できる。
As described above, according to the present invention, a complicated software or an existing oxygen sensor can be operated based on the electromotive force characteristics, specifically whether or not the electromotive force is within a predetermined range. Without the need of a timer, etc., the elapsed time from engine stop to restart, and hence the presence or absence of fuel remaining in the cylinder, can be estimated, and if it is estimated that fuel remains in the cylinder Since the fuel supply amount at the time of restart is corrected to be reduced, it is possible to prevent the air-fuel ratio from becoming excessively rich at the time of restart, and it is possible to prevent an increase in the exhaust property, particularly the HC emission amount.

【0021】また、始動時の基本燃料供給量を燃料気化
性の低い低温時ほど大きく設定し、酸素センサが活性化
されている機関停止から再始動までの経過時間が短いと
きには、低温時ほどシリンダ内の残留燃料量が多いため
減量補正量を大きく設定することにより、トータルとし
て過不足のない燃料供給量を得ることができる。
Further, when the basic fuel supply amount at the time of starting is set to be large as the temperature is low when the fuel vaporization is low, and the elapsed time from engine stop to restart when the oxygen sensor is activated is short, the cylinder is operated at a lower temperature. Since there is a large amount of residual fuel in the inside, by setting a large reduction correction amount, it is possible to obtain a total fuel supply amount that is sufficient.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の構成・機能を示すブロック図。FIG. 1 is a block diagram showing the configuration and functions of the present invention.

【図2】 本発明の一実施例のシステム構成を示す図。FIG. 2 is a diagram showing a system configuration of an embodiment of the present invention.

【図3】 同上実施例の始動時の燃料供給制御ルーチン
を示すフローチャート。
FIG. 3 is a flowchart showing a fuel supply control routine at the time of starting according to the embodiment.

【図4】 酸素センサの起電力特性図。FIG. 4 is an electromotive force characteristic diagram of the oxygen sensor.

【符号の説明】[Explanation of symbols]

11 機関 15 燃料噴射弁 16 コントロールユニット 17 水温センサ 19 酸素センサ 23 スタートスイッチ 11 Engine 15 Fuel injection valve 16 Control unit 17 Water temperature sensor 19 Oxygen sensor 23 Start switch

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】排気中酸素濃度の検出を介して機関に供給
される混合気の空燃比を検出する酸素センサを備えた内
燃機関の始動時燃料供給制御装置において、 機関の始動時における前記酸素センサの活性度を該酸素
センサの起電力により判定する活性度判定手段と、 前記酸素センサの活性度が高いと判定されたときは、活
性度が低いと判定されたときより始動時の燃料供給量を
減量補正する始動時燃料供給量補正手段と、 を含んで構成したことを特徴とする内燃機関の始動時燃
料供給制御装置。
1. A start-up fuel supply control apparatus for an internal combustion engine, comprising an oxygen sensor for detecting an air-fuel ratio of an air-fuel mixture supplied to the engine through detection of an oxygen concentration in exhaust gas, wherein the oxygen is provided at the time of starting the engine. Activity determining means for determining the activity of the sensor based on the electromotive force of the oxygen sensor; and when the activity of the oxygen sensor is determined to be high, the fuel supply at the time of starting is determined to be lower than when the activity of the oxygen sensor is determined to be low. A starting-time fuel supply control device for an internal combustion engine, comprising: a starting-time fuel supply amount correcting means for correcting the amount to be reduced.
【請求項2】前記活性度判定手段は、前記酸素センサの
起電力が所定範囲内に落ちついているときに活性化され
ておらず、前記空燃比変化に応じて所定範囲より小側と
大側とに変化するときに活性化されていると判定するこ
とを特徴とする請求項1に記載の内燃機関の始動時燃料
供給制御装置。
2. The activity determining means is not activated when the electromotive force of the oxygen sensor is within a predetermined range, and is smaller and larger than the predetermined range depending on the change in the air-fuel ratio. The startup fuel supply control device for an internal combustion engine according to claim 1, wherein it is determined that the fuel supply is activated when it changes to and.
【請求項3】機関温度検出手段を含んで構成され、始動
時の燃料供給量の基本値が始動時の機関温度が低いほど
大きく設定され、前記始動時燃料供給量補正手段は、酸
素センサの活性度が低いと判定されたときは機関温度が
低いときほど減量補正量を大きく設定するものであるこ
とを特徴とする請求項1又は請求項2に記載の内燃機関
の始動時燃料供給制御装置。
3. An engine temperature detecting means is included, and the basic value of the fuel supply amount at the time of starting is set to be larger as the engine temperature at the time of starting is lower, and the starting time fuel supply amount correcting means is an oxygen sensor. 3. The startup fuel supply control device for an internal combustion engine according to claim 1 or 2, wherein when it is determined that the activity is low, the reduction correction amount is set to be larger as the engine temperature is lower. .
JP16352694A 1994-07-15 1994-07-15 Fuel supply control device for internal combustion engine at starting Pending JPH0828320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16352694A JPH0828320A (en) 1994-07-15 1994-07-15 Fuel supply control device for internal combustion engine at starting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16352694A JPH0828320A (en) 1994-07-15 1994-07-15 Fuel supply control device for internal combustion engine at starting

Publications (1)

Publication Number Publication Date
JPH0828320A true JPH0828320A (en) 1996-01-30

Family

ID=15775552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16352694A Pending JPH0828320A (en) 1994-07-15 1994-07-15 Fuel supply control device for internal combustion engine at starting

Country Status (1)

Country Link
JP (1) JPH0828320A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198352A (en) * 2006-01-30 2007-08-09 Hitachi Ltd Fuel injection control device for internal combustion engine
US7481200B2 (en) 2002-07-12 2009-01-27 Cummins Engine Company, Inc. Start-up control of internal combustion engines
JP2010138919A (en) * 2010-03-23 2010-06-24 Hitachi Automotive Systems Ltd Fuel injection control device for internal combustion engine
JP2011220271A (en) * 2010-04-13 2011-11-04 Suzuki Motor Corp Air-fuel ratio controller of internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7481200B2 (en) 2002-07-12 2009-01-27 Cummins Engine Company, Inc. Start-up control of internal combustion engines
US8166942B2 (en) 2002-07-12 2012-05-01 Cummins Inc. Start-up control of internal combustion engines
JP2007198352A (en) * 2006-01-30 2007-08-09 Hitachi Ltd Fuel injection control device for internal combustion engine
JP2010138919A (en) * 2010-03-23 2010-06-24 Hitachi Automotive Systems Ltd Fuel injection control device for internal combustion engine
JP2011220271A (en) * 2010-04-13 2011-11-04 Suzuki Motor Corp Air-fuel ratio controller of internal combustion engine

Similar Documents

Publication Publication Date Title
JP4366706B2 (en) Fuel property determination device for internal combustion engine
JP3340330B2 (en) Deterioration diagnostic device for oxygen sensor in engine
KR0147916B1 (en) Device for detecting type of internal combustion engine fuel
JPS6256339B2 (en)
JP2785707B2 (en) Exhaust gas purification device for internal combustion engine
JPH0828320A (en) Fuel supply control device for internal combustion engine at starting
JP3203440B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP2000310140A (en) Air-fuel ratio control device for internal combustion engine
JPH09184443A (en) Heater control device for air-fuel ratio sensor in downstream of catalyst
JP2000130221A (en) Fuel injection control device of internal combustion engine
JP2003193895A (en) Control device for internal combustion engine
JPS611841A (en) Fuel injection device for internal-combustion engine
JP4061676B2 (en) Self-diagnosis device for secondary air supply device of internal combustion engine
JP2510170B2 (en) Air-fuel ratio control device
JP2551378Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP3123357B2 (en) Air-fuel ratio control device for internal combustion engine
JPH09324691A (en) Fuel control unit for combustion engine
JPS6360217B2 (en)
JP2003138929A (en) Abnormality diagnosis device of catalyst early warm-up control system for internal combustion engine
JPH07238854A (en) Fuel feeding control device of internal combustion engine
JPH08291709A (en) Catalyst activation sensing device for internal combustion engine
JP2001082215A (en) Electronic control fuel injection device for internal combustion engine
JPH08284651A (en) Catalyst temperature estimating device for internal combustion engine
JPH0886250A (en) Exhaust recirculation control device for internal combustion engine
JP2003314259A (en) Exhaust emission control device for internal combustion engine