JPH08279630A - Manufacture of josephson-junction device - Google Patents
Manufacture of josephson-junction deviceInfo
- Publication number
- JPH08279630A JPH08279630A JP7079225A JP7922595A JPH08279630A JP H08279630 A JPH08279630 A JP H08279630A JP 7079225 A JP7079225 A JP 7079225A JP 7922595 A JP7922595 A JP 7922595A JP H08279630 A JPH08279630 A JP H08279630A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- oxide
- josephson junction
- superconducting
- superconducting layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 229910052786 argon Inorganic materials 0.000 claims abstract description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 10
- -1 argon ions Chemical class 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 238000010030 laminating Methods 0.000 claims description 9
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 98
- 229910021521 yttrium barium copper oxide Inorganic materials 0.000 description 17
- 239000002887 superconductor Substances 0.000 description 15
- 230000004888 barrier function Effects 0.000 description 10
- 239000010408 film Substances 0.000 description 6
- 238000005304 joining Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 229910002826 PrBa Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000005428 wave function Effects 0.000 description 2
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は超電導素子の製造方法
に係り、特に酸化物超電導体を用いたジョセフソン接合
素子の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a superconducting element, and more particularly to a method for manufacturing a Josephson junction element using an oxide superconductor.
【0002】[0002]
【従来の技術】酸化物高温超電導体を用いた電子デバイ
スでは、ジョセフソン接合を用いて作製する素子がほと
んどである。近年、酸化物高温超電導薄膜を用いて実現
されたジョセフソン接合には、人工粒界を用いた接合,
ステップエッジ型接合,ランプエッジ型接合,積層型接
合等が挙げられる。超電導トランジスタを含む超電導デ
バイスにジョセフソン接合を用いる場合、大きな超電導
エネルギーギャップを有する接合が望まれる。これは、
大きな超電導エネルギーギャップを有する接合では応用
上で特性向上が予想されるからである。酸化物高温超電
導体は金属系低温超電導体に比べて大きな超電導エネル
ギーギャップを有するため、酸化物高温超電導体を用い
たジョセフソン接合素子の開発が期待されている。しか
し、現在作製することのできるいずれの接合も超電導体
−常伝導体−超電導体(S−N−S)の特長をもつ接合
であり、この接合では小さな超電導エネルギーギャップ
しか理論的には得られず、実際に報告されている超電導
エネルギーギャップもそれほど大きくない。2. Description of the Related Art Most of electronic devices using high-temperature oxide superconductors are manufactured by using Josephson junctions. In recent years, Josephson junctions realized by using oxide high-temperature superconducting thin films are joined using artificial grain boundaries.
Step edge type joining, ramp edge type joining, laminated type joining and the like can be mentioned. When using a Josephson junction in a superconducting device including a superconducting transistor, a junction having a large superconducting energy gap is desired. this is,
This is because a junction having a large superconducting energy gap is expected to have improved characteristics in application. Since oxide high-temperature superconductors have a larger superconducting energy gap than metal-based low-temperature superconductors, the development of Josephson junction devices using oxide high-temperature superconductors is expected. However, any of the junctions that can be produced at present is a junction having the characteristics of superconductor-normal conductor-superconductor (S-N-S). In this junction, only a small superconducting energy gap can be theoretically obtained. In fact, the reported superconducting energy gap is not so large.
【0003】超電導エネルギーギャップは接合の臨界電
流(Ic)と接合抵抗(Rn)の積に比例することが知
られている。一般に超電導−絶縁体−超電導(S−I−
S)の構造を持つ接合は高いIcRn積を有すること、
即ち大きな超電導エネルギーギャップを持つために開発
への期待がもたれている。前述の人工粒界を用いた接合
やステップエッジ型接合ではバリア層に結晶粒界(これ
は常伝導層となる)を用いてるため本質的にS−I−S
接合を製作することができない。これに対して、ランプ
エッジ型接合,積層型接合ではバリア材料を任意に選択
でき、S−I−S接合の実現の可能性はあるが、実際に
はS−N−S接合よりも更にバリア層の膜厚を数Å程度
の厚さに小さくする必要があり、現在までS−I−S接
合の報告例はまだない。It is known that the superconducting energy gap is proportional to the product of the junction critical current (Ic) and the junction resistance (Rn). Generally, superconductivity-insulator-superconductivity (S-I-
The junction having the structure of S) has a high IcRn product,
That is, there is a high expectation for development because it has a large superconducting energy gap. In the above-mentioned joining using the artificial grain boundary or the step edge type joining, since the grain boundary (which becomes the normal conducting layer) is used in the barrier layer, it is essentially S-I-S.
Cannot make a joint. On the other hand, in the ramp edge type junction and the laminated type junction, the barrier material can be arbitrarily selected, and there is a possibility of realizing the S-I-S junction, but in reality, the barrier material is more barrier than the S-N-S junction. It is necessary to reduce the film thickness of the layer to a thickness of several Å, and there are no reports of S-I-S junctions up to now.
【0004】[0004]
【発明が解決しようとする課題】バリア層に常電導体特
性を示す物質を使用した場合には前記したように接合の
IcRn積が低くなる。これは電気抵抗の低いバリア層
と超電導体の界面では、超電導体の内部でオーダーパラ
メーターが著しく減少するためである(J.Yoshida et a
l, Jpn.J.Appl.Phys.,31 1771(1992) )。When a material having a normal conductor characteristic is used for the barrier layer, the IcRn product of the junction becomes low as described above. This is because the order parameter is significantly reduced inside the superconductor at the interface between the barrier layer with low electrical resistance and the superconductor (J. Yoshida et a
l, Jpn.J.Appl.Phys., 31 1771 (1992)).
【0005】図4は超電導体のオーダーパラメーター
(△)を示し、(a)はS−N−S接合、(b)はS−
I−N−S接合におけるシミュレーション結果を示す線
図である。図(a)においてはS(YBCO(YbBa
2 Cu3 O7-X 系酸化物超電導体))とN(貴金属)の
界面でS(YBCO)の△が急激に減少している。この
図でΦ0 は波動函数を示している。これに対し図(b)
においてはS(YBCO)とN(貴金属)の間には絶縁
体Iが形成されているためにS(YBCO)内部の△の
変化は殆どなく波動函数Φ0 も殆ど変動しないことがわ
かる。FIG. 4 shows the order parameter (Δ) of a superconductor, (a) is an S-N-S junction, and (b) is an S-.
It is a diagram which shows the simulation result in I-N-S junction. In the figure (a), S (YBCO (YbBa
Δ of S (YBCO) sharply decreases at the interface between 2 Cu 3 O 7-X oxide superconductor) and N (noble metal). In this figure, Φ 0 is the wave function. On the other hand, figure (b)
In, since the insulator I is formed between S (YBCO) and N (noble metal), it can be seen that there is almost no change in Δ inside S (YBCO) and the wave function Φ 0 hardly changes.
【0006】超電導体と常伝導体界面では常伝導体中に
ある準粒子が超電導層に流れ込み、超電導体のオーダー
パラメーター(△)を減少させているのに対し、S−I
−N−S接合では常伝導層からの準粒子の流れ込みを絶
縁層が遮断しているため、超電導体中のオーダーパラメ
ーターの減少があまりないと考えられる。オーダーパラ
メーターとIcRn積は比例関係にあるのでオーダーパ
ラメーターが変化しないことは接合のIcRnが大きい
ことを意味している。At the interface between the superconductor and the normal conductor, the quasi-particles in the normal conductor flow into the superconducting layer to reduce the order parameter (Δ) of the superconductor, while the SI
In the -NS junction, the insulating layer blocks the inflow of quasi-particles from the normal conductive layer, so it is considered that the order parameter in the superconductor does not decrease so much. Since the order parameter and the IcRn product are in a proportional relationship, the fact that the order parameter does not change means that the IcRn of the junction is large.
【0007】この発明は上述の点に鑑みてなされ、その
目的はジョセフソン接合素子にS−I−N接合を形成す
ることにより、製造容易で超電導エネルギーギャップの
大きなジョセフソン接合素子を提供することにある。The present invention has been made in view of the above points, and an object thereof is to provide a Josephson junction element which is easy to manufacture and has a large superconducting energy gap by forming an SI junction in the Josephson junction element. It is in.
【0008】[0008]
【課題を解決するための手段】上述の目的は第一の発明
によれば基板上に第一の酸化物超電導層と酸化物常電導
層と第二の酸化物超電導層とを順次積層してなるジョセ
フソン接合素子の製造方法において、前記第一の酸化物
超電導層を積層した後、該第一の酸化物超電導層の表面
にアルゴンイオンを照射して第一の酸化物超電導層の表
面を絶縁層化し、次いで前記酸化物常電導層と前記第二
の酸化物超電導層とを積層するとすることにより達成さ
れる。According to the first aspect of the present invention, the above object is achieved by sequentially laminating a first oxide superconducting layer, an oxide normal conducting layer and a second oxide superconducting layer on a substrate. In the method for manufacturing a Josephson junction element, after laminating the first oxide superconducting layer, the surface of the first oxide superconducting layer is irradiated with argon ions on the surface of the first oxide superconducting layer. This is achieved by forming an insulating layer and then stacking the oxide normal-conducting layer and the second oxide superconducting layer.
【0009】第二の発明によれば基板上に第一の酸化物
超電導層と酸化物常電導層と第二の酸化物超電導層とを
順次積層してなるジョセフソン接合素子の製造方法にお
いて、前記第一の酸化物超電導層と前記酸化物常電導層
とを積層した後、該酸化物常電導層の表面にアルゴンイ
オンを照射して酸化物常電導層の表面を絶縁層化し、次
いで前記第二の酸化物超電導層を積層するとすることに
より達成される。According to a second aspect of the present invention, in a method for manufacturing a Josephson junction device, which comprises sequentially stacking a first oxide superconducting layer, an oxide normal conducting layer and a second oxide superconducting layer on a substrate, After laminating the first oxide superconducting layer and the oxide normal conducting layer, the surface of the oxide normal conducting layer is irradiated with argon ions to make the surface of the oxide normal conducting layer an insulating layer, and then the above This is achieved by stacking a second oxide superconducting layer.
【0010】第三の発明によれば基板上に第一の酸化物
超電導層と酸化物常電導層と第二の酸化物超電導層とを
順次積層してなるジョセフソン接合素子の製造方法にお
いて、前記第一の酸化物超電導層を積層した後、該第一
の酸化物超電導層の表面にアルゴンイオンを照射して第
一の酸化物超電導層の表面を絶縁層化し、次いで前記酸
化物常電導層を積層した後、該酸化物常電導層の表面に
アルゴンイオンを照射して酸化物常電導層の表面を絶縁
層化し、次いで第二の酸化物超電導層を積層するとする
ことにより達成される。According to a third aspect of the present invention, in a method for manufacturing a Josephson junction device, which comprises sequentially laminating a first oxide superconducting layer, an oxide normal conducting layer and a second oxide superconducting layer on a substrate, After laminating the first oxide superconducting layer, the surface of the first oxide superconducting layer is irradiated with argon ions to make the surface of the first oxide superconducting layer an insulating layer, and then the oxide normal conducting layer is formed. After laminating the layers, it is achieved by irradiating the surface of the oxide normal-conducting layer with argon ions to make the surface of the oxide normal-conducting layer an insulating layer, and then laminating a second oxide superconducting layer. .
【0011】[0011]
【作用】YBCO酸化物超電導体やPBCO(PrBa
2 Cu3 O7-y )酸化物常電導体にArイオンを照射す
ると、酸素が脱離して表面に絶縁層が形成される。絶縁
層は後工程である酸化物超電導層や酸化物常電導層の積
層に際して酸素処理されることになるがこの際に絶縁層
は超電導層や常電導層に回復しようとする。しかしなが
ら酸化物超電導層や酸化物常電導層の成膜条件のもとで
は前記の回復は少なく絶縁層がそのまま残される。[Function] YBCO oxide superconductor and PBCO (PrBa)
When the 2 Cu 3 O 7-y ) oxide normal conductor is irradiated with Ar ions, oxygen is released and an insulating layer is formed on the surface. The insulating layer is subjected to oxygen treatment in the later step of laminating the oxide superconducting layer and the oxide normal conducting layer. At this time, the insulating layer tries to recover to the superconducting layer or the normal conducting layer. However, under the film forming conditions of the oxide superconducting layer and the oxide normal conducting layer, the recovery is small and the insulating layer is left as it is.
【0012】第一の発明によるときはSINSジョセフ
ソン接合素子が得られる。第二の発明によればSNIS
ジョセフソン接合素子が得られる。第三の発明によれば
SINISジョセフソン接合素子が得られる。According to the first invention, a SINS Josephson junction device is obtained. According to the second invention, SNIS
A Josephson junction device is obtained. According to the third invention, a SINIS Josephson junction element can be obtained.
【0013】[0013]
実施例1 図1は本発明の実施例に係るランプエッジ型のジョセフ
ソン接合素子を示し、図(a)はS−I−N−Sジョセ
フソン接合素子、図(b)はS−I−N−I−Sジョセ
フソン接合素子の断面図である。Example 1 FIG. 1 shows a lamp-edge type Josephson junction element according to an example of the present invention, FIG. 1A is an SINS Josephson junction element, and FIG. It is sectional drawing of a NIS Josephson junction element.
【0014】図2は本発明の実施例に係るランプエッジ
型のジョセフソン接合素子の製造工程を示す断面図であ
る。本実施例では、まずSrTiO3 (100)(以下
STOと記述する)単結晶基板10の上にYBCO層1
1を100nm厚さに堆積させ、その上にSTO層15
を300nm厚さに堆積させた(図2(a))。この時
STO層15は上部と下部のYBCO層の間のショート
を防ぐ層間絶縁層となる。2つの層の堆積はrfスパッ
タリング装置を用いて、基板温度700℃、スパッタ圧
力0.5Pa(Ar/O2=1)で行った。作製した薄
膜はすべてc軸配向である。その後この2層膜を500
VのArイオンミリングで斜めに基板まで削った(図2
(b))。この時、斜めに削ったYBCO層11の表面
は、同様な条件で作製した膜の測定で約103 Ω・cm
の抵抗率を持つ絶縁層12が形成されていることが判明
している。次にこの絶縁層12の上にPrBa2 Cu3
O7-y 層13(PBCO層13)を30nm厚さ,YB
CO層14を100nm厚さに同一チャンバー内で連続
堆積させた(図2(c))。PBCO層13、YBCO
層14の成膜中には実質的には酸素アニールとなるが、
この条件(700℃,Ar/O2=1,0.5Pa,2
0分)では絶縁層が回復しないことを確認している。最
後に1μm幅のブリッジを有するように通常のフォトリ
ソグラフィーを用いた微細加工を施し、素子を完成させ
た(図2(d))。上述の行程はS−I−N−S接合を
作成する工程であるが、S−I−N−I−S接合を作製
する場合には、PBCO層13を堆積した後、Arのプ
ラズマをスパッタリング装置中に発生させてPBCO層
13の表面を絶縁層化し、その後にYBCO層14を堆
積させて形成することができる。FIG. 2 is a sectional view showing a manufacturing process of a lamp edge type Josephson junction element according to an embodiment of the present invention. In this embodiment, first, a YBCO layer 1 is formed on a SrTiO 3 (100) (hereinafter referred to as STO) single crystal substrate 10.
1 is deposited to a thickness of 100 nm, and the STO layer 15 is formed thereon.
Was deposited to a thickness of 300 nm (FIG. 2 (a)). At this time, the STO layer 15 serves as an interlayer insulating layer that prevents a short circuit between the upper and lower YBCO layers. The two layers were deposited using an rf sputtering device at a substrate temperature of 700 ° C. and a sputtering pressure of 0.5 Pa (Ar / O 2 = 1). The produced thin films are all c-axis oriented. Then, this two-layer film is
The substrate was diagonally cut by V Ar ion milling (Fig. 2).
(B)). At this time, the surface of the YBCO layer 11 that was diagonally cut was about 10 3 Ω · cm in the measurement of the film prepared under the same conditions.
It is known that the insulating layer 12 having the resistivity of is formed. Next, PrBa 2 Cu 3 is formed on the insulating layer 12.
O 7-y layer 13 (PBCO layer 13) with a thickness of 30 nm, YB
The CO layer 14 was continuously deposited to a thickness of 100 nm in the same chamber (FIG. 2 (c)). PBCO layer 13, YBCO
While the layer 14 is being formed, oxygen annealing is substantially performed.
This condition (700 ° C, Ar / O2 = 1, 0.5 Pa, 2
It has been confirmed that the insulating layer does not recover at 0 minutes). Finally, microfabrication using ordinary photolithography was performed so as to have a bridge with a width of 1 μm, and the device was completed (FIG. 2D). The above process is a step of forming an S-I-N-S junction. However, when forming an S-I-N-I-S junction, Ar plasma is sputtered after depositing the PBCO layer 13. The surface of the PBCO layer 13 may be generated in the device to form an insulating layer, and then the YBCO layer 14 may be deposited to form the layer.
【0015】このようにして作製した接合素子はジョセ
フソン接合素子として動作した。表1には測定温度4.
2KでのS−N−S、S−I−N−S、S−I−N−I
−Sジョセフソン接合素子のN層厚さが30nmの時の
IcRn積の値を示した。The junction element thus manufactured operated as a Josephson junction element. Table 1 shows the measured temperature of 4.
S-N-S, S-I-N-S, S-I-N-I at 2K
The value of IcRn product when the N layer thickness of the -S Josephson junction element is 30 nm is shown.
【0016】[0016]
【表1】 S−N−Sジョセフソン接合素子はPBCO層とYBC
O層の堆積前にチャンバー中に酸素を導入して、1時間
アニールして絶縁層化した部分を消去してもとの超電導
層や常電導層とした。[Table 1] The S-N-S Josephson junction element has a PBCO layer and a YBC.
Oxygen was introduced into the chamber before the deposition of the O layer, and annealing was carried out for 1 hour to erase the insulating layer, thereby forming the original superconducting layer or normal conducting layer.
【0017】S−N−Sジョセフソン接合素子、S−I
−N−Sジョセフソン接合素子、S−I−N−I−Sジ
ョセフソン接合素子の順にIcRn積は大きくなってい
ることがわかる。IcRn積は下記の式で表される。 ここで、△1 と△2 は二つの超電導界面でのオーダーパ
ラメーターの大きさである。この式からもS−I−N−
I−Sジョセフソン接合素子の方がS−I−N−Sジョ
セフソン接合素子よりもIcRn積が大きいことが理解
できる。 実施例2 図3はこの発明の異なる実施例に係る積層型のジョセフ
ソン接合素子を示し、図(a)は全体断面図、図(b)
は図(a)の要部拡大したS−I−N−Sジョセフソン
接合素子を示す断面図、図(c)は図(a)の要部拡大
したS−I−N−I−Sジョセフソン接合素子を示す断
面図である。基板は実施例1と同様にSTO(100)
基板20を用い、超電導体には下部電極YBCO21,
上部電極YBCO23、バリア層にはPBCO22をそ
れぞれ選んだ。積層型の場合は成膜温度を650℃とし
て、全てa軸配向膜を使用した。積層型の場合は、下部
電極YBCO21を堆積した後、チャンバー中にArプ
ラズマを立てることで絶縁層24Aを形成した。その後
はバリア層PBCO22、上部電極YBCO23を連続
成膜してS−I−N−Sジョセフソン接合素子を作製し
た。あるいはバリア層PBCO22を堆積した後再び、
Arプラズマを立てて絶縁層24Bを形成し、上部電極
YBCO23を堆積させてS−I−N−I−Sジョセフ
ソン接合素子を作製した。得られた素子を測定した結
果、実施例1と同様の結果が得られた。S-N-S Josephson Junction Element, S-I
It can be seen that the IcRn product increases in the order of the -N-S Josephson junction device and the S-I-N-I-S Josephson junction device. The IcRn product is represented by the following formula. Where Δ 1 and Δ 2 are the order parameter magnitudes at the two superconducting interfaces. From this formula, S-I-N-
It can be seen that the I-R Josephson junction device has a larger IcRn product than the S-I-N-S Josephson junction device. Embodiment 2 FIG. 3 shows a stacked type Josephson junction element according to another embodiment of the present invention, FIG.
3A is a cross-sectional view showing an enlarged S-I-N-S Josephson junction element of FIG. 1A, and FIG. 3C is an enlarged S-I-N-I-S Joseph part of FIG. It is sectional drawing which shows a Son junction element. The substrate was STO (100) as in Example 1.
The substrate 20 is used, and the lower electrode YBCO 21,
The upper electrode YBCO23 and the barrier layer PBCO22 were selected. In the case of the laminated type, the film formation temperature was set to 650 ° C., and the a-axis alignment film was used for all. In the case of the laminated type, the insulating layer 24A was formed by depositing the lower electrode YBCO 21 and then raising Ar plasma in the chamber. After that, a barrier layer PBCO22 and an upper electrode YBCO23 were continuously formed to fabricate an SINS Josephson junction element. Alternatively, after depositing the barrier layer PBCO22 again,
An insulating layer 24B was formed by standing Ar plasma, and an upper electrode YBCO 23 was deposited to manufacture an S-I-N-I-S Josephson junction device. As a result of measuring the obtained device, the same result as in Example 1 was obtained.
【0018】[0018]
【発明の効果】この発明によれば、酸化物超電導層と酸
化物常電導層のうちの一方の酸化物層表面にアルゴンイ
オンを照射して絶縁層化し、次いで他方の酸化物層を積
層するので、絶縁層は他方の酸化物層を積層する際に超
電導層や常電導層に回復することがなく絶縁層がそのま
ま残存して、高いIcRn積を有するSINS接合やS
NIS接合やSINIS接合のジョセフソン接合素子が
容易に得られる。According to the present invention, the surface of one of the oxide superconducting layer and the oxide normal conducting layer is irradiated with argon ions to form an insulating layer, and then the other oxide layer is laminated. Therefore, the insulating layer does not recover to the superconducting layer or the normal conducting layer when the other oxide layer is laminated, the insulating layer remains as it is, and the SINS junction or the SINS junction having a high IcRn product is obtained.
A Josephson junction element of NIS junction or SINIS junction can be easily obtained.
【図1】本発明の実施例に係るランプエッジ型のジョセ
フソン接合素子を示し、図(a)はS−I−N−Sジョ
セフソン接合素子、図(b)はS−I−N−I−Sジョ
セフソン接合素子の断面図1 shows a ramp-edge type Josephson junction device according to an embodiment of the present invention, FIG. 1 (a) is an SI-N-S Josephson junction device, and FIG. 1 (b) is an SI-N- Sectional view of the IS Josephson junction device
【図2】本発明の実施例に係るランプエッジ型のジョセ
フソン接合素子の製造工程を示す断面図FIG. 2 is a sectional view showing a manufacturing process of a ramp-edge type Josephson junction element according to an embodiment of the present invention.
【図3】この発明の異なる実施例に係る積層型のジョセ
フソン接合素子を示し、図(a)は全体断面図、図
(b)は図(a)の要部拡大したS−I−N−Sジョセ
フソン接合素子を示す断面図、図(c)は図(a)の要
部拡大したS−I−N−I−Sジョセフソン接合素子を
示す断面図3A and 3B show stacked Josephson junction devices according to different embodiments of the present invention. FIG. 3A is an overall cross-sectional view, and FIG. 3B is an enlarged S-I-N part of FIG. -S Josephson junction element cross-sectional view, FIG. 6C is a cross-sectional view showing the SI-NI-IS Josephson junction element in which the main part of FIG.
【図4】超電導体のオーダーパラメーター(△)を示
し、図(a)はS−N−S接合,図(b)はS−I−N
−S接合にけるシミュレーション結果を示す線図4A and 4B show order parameters (Δ) of a superconductor, FIG. 4A is an S-N-S junction, and FIG.
-Schematic of simulation results for S-junction
10 STO(100)基板 11 YBCO層 12 絶縁層 12A 絶縁層 13 PBCO層 14 YBCO層 15 STO層 20 STO(100)基板 21 下部電極YBCO 22 バリア層PBCO 23 上部電極YBCO 24A 絶縁層 24B 絶縁層 10 STO (100) Substrate 11 YBCO Layer 12 Insulating Layer 12A Insulating Layer 13 PBCO Layer 14 YBCO Layer 15 STO Layer 20 STO (100) Substrate 21 Lower Electrode YBCO 22 Barrier Layer PBCO 23 Upper Electrode YBCO 24A Insulating Layer 24B Insulating Layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 太秀 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 上條 洋 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Taehide Yamaguchi 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. (72) Inventor Hiroshi Kamijo 1 Nitta, Tanabe-ku, Kawasaki-ku, Kanagawa Prefecture No. 1 within Fuji Electric Co., Ltd.
Claims (3)
電導層と第二の酸化物超電導層とを順次積層してなるジ
ョセフソン接合素子の製造方法において、前記第一の酸
化物超電導層を積層した後、該第一の酸化物超電導層の
表面にアルゴンイオンを照射して第一の酸化物超電導層
の表面を絶縁層化し、次いで前記酸化物常電導層と前記
第二の酸化物超電導層とを積層することを特徴とするジ
ョセフソン接合素子の製造方法。1. A method of manufacturing a Josephson junction device comprising a first oxide superconducting layer, an oxide normal conducting layer and a second oxide superconducting layer which are sequentially laminated on a substrate, wherein the first oxidation is performed. First superconducting layer, the surface of the first oxide superconducting layer is irradiated with argon ions to form an insulating layer on the surface of the first oxide superconducting layer, and then the normal oxide conducting layer and the second superconducting layer are formed. A method for manufacturing a Josephson junction device, comprising: stacking the oxide superconducting layer of 1.
電導層と第二の酸化物超電導層とを順次積層してなるジ
ョセフソン接合素子の製造方法において、前記第一の酸
化物超電導層と前記酸化物常電導層とを積層した後、該
酸化物常電導層の表面にアルゴンイオンを照射して酸化
物常電導層の表面を絶縁層化し、次いで前記第二の酸化
物超電導層を積層することを特徴とするジョセフソン接
合素子の製造方法。2. A method for manufacturing a Josephson junction device, which comprises sequentially stacking a first oxide superconducting layer, an oxide normal conducting layer, and a second oxide superconducting layer on a substrate. Object superconducting layer and the oxide normal conducting layer are laminated, the surface of the oxide normal conducting layer is irradiated with argon ions to make the surface of the oxide normal conducting layer an insulating layer, and then the second oxide. A method for manufacturing a Josephson junction device, which comprises laminating superconducting layers.
電導層と第二の酸化物超電導層とを順次積層してなるジ
ョセフソン接合素子の製造方法において、前記第一の酸
化物超電導層を積層した後、該第一の酸化物超電導層の
表面にアルゴンイオンを照射して第一の酸化物超電導層
の表面を絶縁層化し、次いで前記酸化物常電導層を積層
した後、該酸化物常電導層の表面にアルゴンイオンを照
射して酸化物常電導層の表面を絶縁層化し、次いで第二
の酸化物超電導層を積層することを特徴とするジョセフ
ソン接合素子の製造方法。3. A method for manufacturing a Josephson junction device, which comprises sequentially stacking a first oxide superconducting layer, an oxide normal conducting layer and a second oxide superconducting layer on a substrate. Object superconducting layer is laminated, the surface of the first oxide superconducting layer is irradiated with argon ions to make the surface of the first oxide superconducting layer an insulating layer, and then the oxide normal conducting layer is laminated. The production of a Josephson junction device characterized in that the surface of the oxide normal conducting layer is irradiated with argon ions to make the surface of the oxide normal conducting layer an insulating layer, and then a second oxide superconducting layer is laminated. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7079225A JPH08279630A (en) | 1995-04-05 | 1995-04-05 | Manufacture of josephson-junction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7079225A JPH08279630A (en) | 1995-04-05 | 1995-04-05 | Manufacture of josephson-junction device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08279630A true JPH08279630A (en) | 1996-10-22 |
Family
ID=13683973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7079225A Pending JPH08279630A (en) | 1995-04-05 | 1995-04-05 | Manufacture of josephson-junction device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08279630A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100267974B1 (en) * | 1997-09-02 | 2000-10-16 | 구자홍 | method for fabricating josephson junction device operating on high temperature |
KR100267228B1 (en) * | 1997-10-10 | 2000-10-16 | 구자홍 | Fabricating method of josephson junction device operating at high temperature |
US6541789B1 (en) | 1998-09-01 | 2003-04-01 | Nec Corporation | High temperature superconductor Josephson junction element and manufacturing method for the same |
US10910545B2 (en) | 2016-12-30 | 2021-02-02 | Teknologian Tutkimuskeskus Vtt Oy | Superconductive junction, superconducting apparatus, method of manufacturing superconducting junction and control method of superconducting junction |
-
1995
- 1995-04-05 JP JP7079225A patent/JPH08279630A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100267974B1 (en) * | 1997-09-02 | 2000-10-16 | 구자홍 | method for fabricating josephson junction device operating on high temperature |
KR100267228B1 (en) * | 1997-10-10 | 2000-10-16 | 구자홍 | Fabricating method of josephson junction device operating at high temperature |
US6541789B1 (en) | 1998-09-01 | 2003-04-01 | Nec Corporation | High temperature superconductor Josephson junction element and manufacturing method for the same |
US10910545B2 (en) | 2016-12-30 | 2021-02-02 | Teknologian Tutkimuskeskus Vtt Oy | Superconductive junction, superconducting apparatus, method of manufacturing superconducting junction and control method of superconducting junction |
US11581473B2 (en) | 2016-12-30 | 2023-02-14 | Teknologian Tutkimuskeskus Vtt Oy | Superconductive junction, superconducting apparatus, method of manufacturing superconducting junction and control method of superconducting junction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2798361B2 (en) | Superconducting field effect device having grain boundary channel and method of manufacturing the same | |
WO1994007270A1 (en) | Improved barrier layers for oxide superconductor devices and circuits | |
JP2963614B2 (en) | Method for manufacturing oxide superconductor junction element | |
JPH08279630A (en) | Manufacture of josephson-junction device | |
JPH03228384A (en) | Superconducting element | |
JPH104223A (en) | Oxide superconducting josephson element | |
JPH0714079B2 (en) | Oxide superconducting three-terminal device | |
JP2682136B2 (en) | Method of manufacturing Josephson device | |
JP2989943B2 (en) | Superconducting integrated circuit manufacturing method | |
JP2861235B2 (en) | Superconducting element | |
JP3076503B2 (en) | Superconducting element and method of manufacturing the same | |
Lee et al. | Co-doped-YBCO SNS junctions for superconductive integrated circuits | |
JP2909455B1 (en) | Superconducting element | |
JP2955407B2 (en) | Superconducting element | |
JP2825374B2 (en) | Superconducting element | |
JP2000022227A (en) | Oxide superconductor material and element | |
JPH03166776A (en) | Tunnel junction element and manufacture thereof | |
JP3147999B2 (en) | Josephson junction device and method of manufacturing the same | |
JP2730360B2 (en) | Fabrication method of tunnel type Josephson junction device | |
JP3085492B2 (en) | Micro-bridge type Josephson device and stacked type Josephson device | |
JPH10178220A (en) | Tunnel-type superconducting junction element | |
JPS63266889A (en) | Josephson junction device | |
JP2862706B2 (en) | Superconducting element | |
JPH0831623B2 (en) | Superconducting joining device | |
JPH0555649A (en) | Manufacture of superconducting electric field effect element |