JPH0827900B2 - Magnetic head core manufacturing method - Google Patents
Magnetic head core manufacturing methodInfo
- Publication number
- JPH0827900B2 JPH0827900B2 JP63290396A JP29039688A JPH0827900B2 JP H0827900 B2 JPH0827900 B2 JP H0827900B2 JP 63290396 A JP63290396 A JP 63290396A JP 29039688 A JP29039688 A JP 29039688A JP H0827900 B2 JPH0827900 B2 JP H0827900B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic head
- ferrite
- joining
- gap
- head core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Magnetic Heads (AREA)
- Soft Magnetic Materials (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、単結晶フェライトと多結晶フェライトもし
くは多結晶フェライトと多結晶フェライトを接合させて
磁気ヘッドコアを製造する方法に関するものである。TECHNICAL FIELD The present invention relates to a method for manufacturing a magnetic head core by bonding a single crystal ferrite and a polycrystalline ferrite or a polycrystalline ferrite and a polycrystalline ferrite.
(従来の技術) 従来、単結晶フェライトと多結晶フェライトもしくは
多結晶フェライトと多結晶フェライトを接合して磁気ギ
ャップを形成する磁気ヘッドコアは、まず予じめエッチ
ングによって磁気ギャップに相当するくぼみを形成した
後、磁気ギャップへガラスを封入するとともに後部接合
境界面を接合して製造していた。(Prior Art) Conventionally, a magnetic head core in which a single crystalline ferrite and a polycrystalline ferrite or a polycrystalline ferrite and a polycrystalline ferrite are bonded to each other to form a magnetic gap has first formed a recess corresponding to the magnetic gap by preliminary etching. After that, the glass was sealed in the magnetic gap and the rear bonding interface was bonded to manufacture.
上述したような単結晶と多結晶もしくは多結晶と多結
晶の直接接合では有機酸または無機酸を接合界面に介在
させても低温度の加熱処理では固相反応が不充分となり
接合状態が悪化するため、例えばフェライトの接合にお
いては1000℃以上で加熱し一体化するのが一般的であっ
た。In the above-mentioned direct bonding of single crystal and polycrystal or polycrystal and polycrystal, even if an organic acid or an inorganic acid is present at the bonding interface, the solid state reaction becomes insufficient and the bonding state deteriorates at low temperature heat treatment. Therefore, for example, when joining ferrites, it is common to heat at 1000 ° C. or higher to integrate them.
(発明が解決しようとする課題) しかしながら、1000℃以上の固相反応においては、多
結晶フェライトの物質移動が誘起され、第4図(a),
(b)に示すようにギャップ構成面の粒界に例えば0.1
〜0.15μmのくぼみ11が発生し、磁気ギャップ12の精
度、直線性が悪化してヘッド特性が悪くなる問題があっ
た。例えば、1MBのフロッピーディスク用の磁気ギャッ
プとして1.6μm±0.4μm、1.6MBのフロッピーディス
ク用として1.2μm±0.1μmの精度が要求され、さらに
高密度記録用磁気ヘッドの場合はさらに精密な公差が要
求されるが、上述した従来の製造方法により得られる磁
気ヘッドでは、この要求を達成することが困難であっ
た。(Problems to be Solved by the Invention) However, in the solid-phase reaction at 1000 ° C. or higher, the mass transfer of polycrystalline ferrite is induced, and FIG.
As shown in (b), for example, 0.1
There was a problem that a recess 11 of .about.0.15 .mu.m was generated, the accuracy and linearity of the magnetic gap 12 were deteriorated, and the head characteristics were deteriorated. For example, an accuracy of 1.6 μm ± 0.4 μm is required for a 1 MB floppy disk, and 1.2 μm ± 0.1 μm is required for a 1.6 MB floppy disk. Although required, it was difficult to achieve this requirement with the magnetic head obtained by the above-described conventional manufacturing method.
また、磁気ヘッド後部の単結晶フェライトと多結晶フ
ェライトの接合部分においては、単結晶フェライトと直
接接合した多結晶フェライトの一部が接合した単結晶と
同一結晶面になり、その境界部がうねり直線にならず、
その結果磁気ヘッドの特性のバラツキが大きくなる問題
もあった。In addition, at the junction between the single crystal ferrite and the polycrystalline ferrite at the rear of the magnetic head, a part of the polycrystalline ferrite directly joined to the single crystal ferrite has the same crystal plane as the joined single crystal, and the boundary portion is a wavy straight line. Not
As a result, there is also a problem that the variation in the characteristics of the magnetic head becomes large.
本発明の目的は上述した課題を解消して、磁気ギャッ
プの直線性が良好でかつ接合面境界部における直線性が
良好な磁気ヘッドの製造方法を提供しようとするもので
ある。An object of the present invention is to solve the above-mentioned problems and to provide a method of manufacturing a magnetic head in which the linearity of the magnetic gap is good and the linearity at the boundary portion of the bonding surface is good.
(課題を解決するための手段) 本発明の磁気ヘッドコアの製造法は、単結晶フェライ
トと多結晶フェライトもしくは多結晶フェライトと多結
晶フェライトを接合して磁気ギャップを形成する磁気ヘ
ッドコアの製造法において、接合境界面に5wt%以下の
ケイ酸ナトリウムを含む硝酸からなる接合助剤を介在さ
せ、700℃以上1000℃未満の多結晶フェライトが物質移
動する温度以下の温度で加熱処理することにより、接合
境界面に中間層が存在しない状態で接合境界面を一体接
合することを特徴とするものである。(Means for Solving the Problems) A method of manufacturing a magnetic head core of the present invention is a method of manufacturing a magnetic head core, in which a single crystal ferrite and a polycrystalline ferrite or a polycrystalline ferrite and a polycrystalline ferrite are joined to form a magnetic gap, By interposing a joining aid consisting of nitric acid containing 5 wt% or less of sodium silicate on the joining boundary surface and performing heat treatment at a temperature of 700 ° C or more and less than 1000 ° C that is less than the temperature at which polycrystalline ferrite mass-transfers, It is characterized in that the joint boundary surfaces are integrally joined in a state where no intermediate layer is present on the surfaces.
(作 用) 上述した構成において、多結晶フェライトが物質移動
する温度以下の温度で直接接合を実施することにより、
接合時の加熱により多結晶フェライトは移動せず磁気ギ
ャップ面のくぼみの発生や接合面における単結晶面への
移動がないため、磁気ギャップの直線性および接合面の
直線性を高めることができる。なお、上記温度は一般に
固相反応の充分性じない温度であるが、接合界面に接合
助剤好ましくはケイ酸ナトリウムもしくはガラス粉末を
酸もしくはアルカリに溶解した溶液、または金属イオン
を含む溶液を介在させることにより接合面が活性化し、
この温度でも充分な強度を有する接合を達成することが
できる。(Operation) In the above-mentioned configuration, by performing direct bonding at a temperature equal to or lower than the temperature at which polycrystalline ferrite mass-transfers,
Since the polycrystalline ferrite does not move due to the heating at the time of bonding and neither the depression of the magnetic gap surface nor the movement to the single crystal surface of the bonding surface occurs, the linearity of the magnetic gap and the linearity of the bonding surface can be enhanced. The above-mentioned temperature is generally a temperature at which the solid-phase reaction does not sufficiently occur, but a bonding aid, preferably a solution of sodium silicate or glass powder dissolved in an acid or alkali, or a solution containing metal ions is interposed at the bonding interface. By activating the joint surface,
Bonding with sufficient strength can be achieved even at this temperature.
また、上記温度は比較的低温であるため、磁気ギャッ
プ内へのガラス封入を接合時の加熱と同時に達成するこ
ともできる。Further, since the above temperature is relatively low, it is possible to achieve glass encapsulation in the magnetic gap at the same time as heating during bonding.
なお、多結晶フェライトが物質移動する温度とは、多
結晶フェライトが結晶成長を示す温度のことであり、フ
ェライトの場合は約1000℃以上1600℃以下である。The temperature at which the polycrystalline ferrite mass-transfers is the temperature at which the polycrystalline ferrite shows crystal growth, and in the case of ferrite, it is about 1000 ° C or more and 1600 ° C or less.
(実施例) 以下、実際の例について説明する。(Example) Hereinafter, an actual example will be described.
実施例1 Mn−Znフェライト(主成分の組成:MnO=31モル%、Zn
O=16.5モル%、Fe2O3=52.5モル%)の多結晶体および
単結晶体に対して、切断、研摩、溝入およびエッチング
を実施し、第1図(a)に示すような、2つの接合面1
を有するとともに2つのギャップ長を規制する平面2と
ガラス棒を挿入するための溝部3を有する多結晶舟形品
4と、第1図(b)に示すような、2つの接合面5とギ
ャップ長を規制する凹部6とを形成した単結晶エッチン
グ品7を準備した。ただし、接合面は0.03S以下の鏡面
研摩を実施した。Example 1 Mn-Zn ferrite (composition of main component: MnO = 31 mol%, Zn
O = 16.5 mol%, Fe 2 O 3 = 52.5 mol%) polycrystals and single crystals were cut, polished, grooved and etched, as shown in FIG. 1 (a). Two joining faces 1
And a polycrystal boat 4 having a flat surface 2 for regulating the gap length and a groove portion 3 for inserting a glass rod, and two joining surfaces 5 and a gap length as shown in FIG. 1 (b). A single crystal etching product 7 having a concave portion 6 for controlling the above was prepared. However, the joint surface was mirror-polished at 0.03 S or less.
次に、接合面に接合助剤としてNa2SiO31gに対して、
濃硝酸と水とを当容量で混合したHNO3(1+1)50mlを
加えた溶液を滴下し、すり合せた後乾燥させることによ
り密着仮接合した。仮接合後、ガラス棒を中央の溝に挿
入し、加圧しながら不活性ガス雰囲気中で、多結晶フェ
ライトが物質移動する温度以下の920℃で30分加熱し、
ガップガラスの封入と接合部の直接接合を同時に実施し
た。Next, with respect to Na 2 SiO 3 1 g as a bonding aid on the bonding surface,
A solution prepared by adding 50 ml of HNO 3 (1 + 1), which was a mixture of concentrated nitric acid and water in the same volume, was added dropwise, and after rubbing and drying, close contact and temporary joining were performed. After temporary bonding, insert a glass rod into the center groove, and heat for 30 minutes at 920 ℃ below the temperature at which polycrystalline ferrite mass-transfers in an inert gas atmosphere while applying pressure,
The encapsulation of Gap glass and the direct joining of the joints were performed at the same time.
次に、得られたバー材を2分割し、接合部が残る様に
溝入れ、チップスライス、鏡面研摩した後、得られたギ
ャップ長と接合前に予じめ設けたエッチング深さとの関
係を調べるとともに、ギャップ部の顕微鏡観察を実施し
た。ギャップ長についての結果を第1表に示すととも
に、第2図(a),(b)にそれぞれ本発明および比較
のため従来例のギャップ部の顕微鏡写真を示す。第1表
において、エッチング深さについては表面粗さ計(×20
000)を用いると共に、ギャップ長についてはオートテ
レコンパレータで測定した。Next, the obtained bar material is divided into two, and the relationship between the gap length obtained after grooving so that the bonded portion remains, chip slicing, and mirror-polishing, and the etching depth previously provided before bonding is shown. Along with the examination, microscopic observation of the gap portion was performed. The results of the gap length are shown in Table 1, and FIGS. 2 (a) and 2 (b) show micrographs of the gap portion of the present invention and the conventional example for comparison, respectively. In Table 1, for the etching depth, a surface roughness meter (× 20
000) was used and the gap length was measured by an auto-telecomparator.
第1表の結果から、エッチング深さとギャップ長は良
く一致していることがわかった。また、第2図(a),
(b)に示すギャップ部の顕微鏡写真から、第2図
(b)に示す従来例のギャップ部では多結晶フェライト
のギャップ面に複数のくぼみが認められ直線性が悪いの
に対し、第2図(a)に示す本発明のギャップ部では多
結晶フェライトのギャップ面にくぼみがまったく認めら
れず直線性が良好であることがわかる。 From the results in Table 1, it was found that the etching depth and the gap length are in good agreement. FIG. 2 (a),
From the micrograph of the gap portion shown in (b), in the conventional gap portion shown in FIG. 2 (b), a plurality of dents are recognized on the gap surface of the polycrystalline ferrite, and the linearity is poor. It can be seen that in the gap portion of the present invention shown in (a), no indentation is observed on the gap surface of the polycrystalline ferrite and the linearity is good.
また、得られた後部接合部について金属顕微鏡で観察
したところ、光学的には中間層は認められなかった。In addition, when observing the obtained rear junction with a metallurgical microscope, no intermediate layer was observed optically.
さらに、第3図に示す本発明の接合部における多結晶
フェライトと単結晶フェライトの境界を示す顕微鏡写真
より、多結晶フェライトの一部が接合した単結晶と同一
結晶面になることもなく、接合面は多結晶粒界と同様な
挙動が見られかつ強固に接合していることがわかった。Further, from the micrograph showing the boundary between the polycrystalline ferrite and the single crystal ferrite in the joint portion of the present invention shown in FIG. 3, a part of the polycrystalline ferrite does not have the same crystal plane as the joined single crystal, It was found that the surface behaved similarly to the polycrystalline grain boundary and was strongly bonded.
実施例2 接合助剤の影響を調べるため、接合助剤として、ガラ
ス粉末を硝酸に溶解した溶液、ガラス粉末をアンモニア
溶液に溶解した溶液、ナトリウムやカリウム等の金属イ
オンを含む溶液を用いて、800℃で30分間加熱処理を実
施した以外は実施例1と同じ方法で、ギャップ部のガラ
ス封入と接合面の直接接合を同時に行って接合体を得
た。Example 2 In order to investigate the influence of the bonding aid, a solution of glass powder dissolved in nitric acid, a solution of glass powder dissolved in ammonia solution, a solution containing metal ions such as sodium and potassium were used as the bonding aid. In the same manner as in Example 1 except that the heat treatment was carried out at 800 ° C. for 30 minutes, glass encapsulation of the gap portion and direct joining of the joining surfaces were simultaneously performed to obtain a joined body.
接合体を切断、研摩し、実施例1と同様ギャップ部お
よび接合部を金属顕微鏡で観察したところ、ギャップ部
の直線性は維持されているとともに、接合部に中間層は
認められず、また接合面は多結晶粒界と同様な挙動を示
した強固に接合一体化していることがわかった。When the bonded body was cut and polished, and the gap portion and the bonded portion were observed with a metallographic microscope as in Example 1, the linearity of the gap portion was maintained and no intermediate layer was observed in the bonded portion. It was found that the faces were strongly bonded and integrated with the behavior similar to that of polycrystalline grain boundaries.
また、ギャップエッチング深さとギャップ長の関係を
測定したところ、第2表に示すようにエッチング深さと
ギャップ長は良く一致した。When the relationship between the gap etching depth and the gap length was measured, the etching depth and the gap length were in good agreement as shown in Table 2.
実施例3 硝酸溶液に対するケイ酸ナトリウムの濃度の影響を調
べるため、硝酸溶液に対するケイ酸ナトリウムの濃度が
0.1%,0.2%,2%,5%,10%,20%の接合助剤を用いすり
合わせて仮接合後、加圧しながら800℃で30分間の加熱
処理を実施した以外は実施例1と同じ方法によって、ギ
ャップ部のガラス封入と接合面の直接接合を同時に行っ
た。その後、各20個の接合体に対し実施例1と同様にエ
ッチング深さおよびギャップ長を測定し、その平均およ
び変動幅を求めた。結果を第3表に示す。 Example 3 To examine the effect of sodium silicate concentration on nitric acid solution, the concentration of sodium silicate on nitric acid solution was measured.
Same as Example 1 except that after 0.1%, 0.2%, 2%, 5%, 10%, 20% of joining aids were rubbed together and tentatively joined, heat treatment was performed at 800 ° C for 30 minutes while applying pressure. Depending on the method, glass encapsulation of the gap part and direct bonding of the bonding surface were simultaneously performed. Then, the etching depth and the gap length were measured for each of the 20 bonded bodies in the same manner as in Example 1, and the average and the fluctuation range were obtained. The results are shown in Table 3.
第3表の結果から、ケイ酸ナトリウムの濃度が10%以
上になると加水分解による固形分の発生により、仮接合
時の密着性が悪くなりギャップ精度が安定しないことが
わかった。ケイ酸ナトリウムの濃度が0.1%〜5%の範
囲では、加水分解による固形分の発生が遅くなり溶液状
態で仮接合できることから、密着性に優れギャップ長精
度も安定することがわかる。ケイ酸ナトリウムの濃度は
0.2%〜2%の範囲が好ましい。 From the results shown in Table 3, it was found that when the concentration of sodium silicate was 10% or more, the solid content was generated due to hydrolysis, the adhesion at the time of temporary joining was deteriorated, and the gap accuracy was not stable. It can be seen that when the concentration of sodium silicate is in the range of 0.1% to 5%, the generation of solids due to hydrolysis is delayed and temporary bonding can be performed in a solution state, so that the adhesiveness is excellent and the gap length accuracy is stable. The concentration of sodium silicate is
The range of 0.2% to 2% is preferable.
実施例4 接合温度の影響を調べるため、硝酸溶液に対するケイ
酸ナトリウムの濃度が2%の溶液を接合助剤として用い
すり合わせて仮接合後、加圧しながらいずれも多結晶フ
ェライトが物質移動する温度以下の400℃,500℃,600℃,
700℃,900℃各30分間の加熱処理を実施した以外は実施
例1と同じ方法によって、接合一体化させた。その後、
接合体を切断して磁気コアを作製したところ、400℃で
加熱処理したものは切断加工中に接合面がはがれ、実用
上使用できなかった。その他の接合体については、加工
工程ではがれることがなく、磁気ヘッド製造上問題がな
かった。又、接合面の機械的強度を測定したところ第4
表の結果が得られ、多結晶フェライト単体の曲げ強度1
2.3±1.3kg/mm2に対し600℃−30分の加熱処理では不充
分であった。しかし、700℃以上の加熱処理ではフェラ
イト単体の曲げ強度と同等の結果が得られた。Example 4 In order to investigate the influence of the bonding temperature, a solution having a sodium silicate concentration of 2% with respect to a nitric acid solution was used as a bonding auxiliary agent, and after the temporary bonding, the temperature was lower than the temperature at which the polycrystalline ferrite mass-transferred while being pressed. 400 ℃, 500 ℃, 600 ℃,
Joining was integrated by the same method as in Example 1 except that heat treatment was performed at 700 ° C. and 900 ° C. for 30 minutes each. afterwards,
When a magnetic core was produced by cutting the bonded body, the one heat-treated at 400 ° C. was peeled off the bonded surface during the cutting process and could not be used practically. Other bonded bodies did not peel off in the processing step, and there was no problem in manufacturing the magnetic head. Also, when the mechanical strength of the joint surface was measured, it was 4
The results in the table are obtained, and the bending strength of the polycrystalline ferrite alone is 1
The heat treatment at 600 ° C for 30 minutes was insufficient for 2.3 ± 1.3 kg / mm 2 . However, the heat treatment at 700 ℃ or higher gave the same result as the bending strength of ferrite alone.
以上の結果から600℃以下ではフェライト単体の機械
的強度まで向上しなかったが、ヘッド製造上問題がな
い。しかし好ましくは700℃以上で加熱接合することに
より機械的強度も充分であり、完全に一体化していた。 From the above results, the mechanical strength of the ferrite alone was not improved at 600 ° C. or lower, but there was no problem in head manufacturing. However, the mechanical strength is preferably sufficient by heat-bonding at 700 ° C. or higher, and they are completely integrated.
(発明の効果) 以上の説明から明らかなように、本発明の磁気ヘッド
コアの製造法によれば、接合沿材を使用して多結晶フェ
ライトが物質移動する温度以下の温度で直接接合を実施
することにより、磁気ギャップの直線性および接合面の
直線性を高めることができ、その結果磁気特性のバラツ
キの少ない磁気ヘッドを得ることができる。(Effects of the Invention) As is apparent from the above description, according to the method of manufacturing a magnetic head core of the present invention, direct bonding is performed at a temperature equal to or lower than the temperature at which polycrystalline ferrite mass-transfers by using a bonding material As a result, it is possible to improve the linearity of the magnetic gap and the linearity of the joint surface, and as a result, it is possible to obtain a magnetic head with less variation in magnetic characteristics.
第1図(a),(b)はそれぞれ本発明の実施例で使用
した多結晶舟形品と単結晶エッチング品を示す斜視図、 第2図(a),(b)はそれぞれ本発明および従来例の
磁気ヘッドコアのギャップ部の結晶構造を示す写真、 第3図は本発明の磁気ヘッドコアの接合部の結晶構造を
示す写真、 第4図(a),(b)はそれぞれ従来例の磁気ギャップ
部を模式的に示す図である。1 (a) and 1 (b) are perspective views showing a polycrystalline boat-shaped product and a single-crystal etched product used in the embodiments of the present invention, and FIGS. 2 (a) and 2 (b) are the present invention and a conventional product, respectively. A photograph showing the crystal structure of the gap portion of the magnetic head core of the example, FIG. 3 is a photograph showing the crystal structure of the junction portion of the magnetic head core of the present invention, and FIGS. 4 (a) and 4 (b) are magnetic gaps of the conventional example, respectively. It is a figure which shows a part typically.
Claims (3)
くは多結晶フェライトと多結晶フェライトを接合して磁
気ギャップを形成する磁気ヘッドコアの製造法におい
て、接合境界面に5wt%以下のケイ酸ナトリウムを含む
硝酸からなる接合助剤を介在させ、700℃以上1000℃未
満の多結晶フェライトが物質移動する温度以下の温度で
加熱処理することにより、接合境界面に中間層が存在し
ない状態で接合境界面を一体接合することを特徴とする
磁気ヘッドコアの製造法。1. A nitric acid containing 5 wt% or less of sodium silicate at a joint boundary surface in a method of manufacturing a magnetic head core in which a monocrystalline ferrite and a polycrystalline ferrite or a polycrystalline ferrite and a polycrystalline ferrite are bonded to each other to form a magnetic gap. By interposing a joining aid consisting of, and performing heat treatment at a temperature of 700 ° C or more and less than 1000 ° C that is less than or equal to the temperature at which the polycrystalline ferrite mass-transfers, the joining boundary surface is integrated without the intermediate layer. A method of manufacturing a magnetic head core, which comprises bonding.
ガラス封入を同時に行う請求項1記載の磁気ヘッドコア
の製造法。2. The method of manufacturing a magnetic head core according to claim 1, wherein the joining of the joining surfaces and the encapsulation of glass in the magnetic gap are performed simultaneously.
1または2記載の磁気ヘッドコアの製造法。3. The method of manufacturing a magnetic head core according to claim 1, wherein the integral joining is performed under pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63290396A JPH0827900B2 (en) | 1988-11-18 | 1988-11-18 | Magnetic head core manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63290396A JPH0827900B2 (en) | 1988-11-18 | 1988-11-18 | Magnetic head core manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02137103A JPH02137103A (en) | 1990-05-25 |
JPH0827900B2 true JPH0827900B2 (en) | 1996-03-21 |
Family
ID=17755470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63290396A Expired - Lifetime JPH0827900B2 (en) | 1988-11-18 | 1988-11-18 | Magnetic head core manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0827900B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS534519A (en) * | 1976-07-02 | 1978-01-17 | Fujitsu Ltd | Magnetic head |
JPH0740335B2 (en) * | 1983-12-27 | 1995-05-01 | 日本碍子株式会社 | Method for manufacturing core for magnetic head |
JPS62141615A (en) * | 1985-12-17 | 1987-06-25 | Hitachi Metals Ltd | Manufacture of magnetic head |
-
1988
- 1988-11-18 JP JP63290396A patent/JPH0827900B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02137103A (en) | 1990-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4826430A (en) | Adhesive primer for alumina brackets | |
JPS59190279A (en) | Ceramic structure and manufacture | |
JPS6126572A (en) | Ceramic product and manufacture | |
JPH0827900B2 (en) | Magnetic head core manufacturing method | |
JP3161663B2 (en) | Silicon ingot casting mold | |
JP2618155B2 (en) | Ceramic bonded body and method of manufacturing the same | |
JPS62207773A (en) | Method of joining ceramics | |
JPH0475879B2 (en) | ||
JPH0147277B2 (en) | ||
JPS60195097A (en) | Production of ferrite single crystal | |
JPH0471874B2 (en) | ||
JPS63210091A (en) | Production of single crystal ferrite | |
JPS6249647B2 (en) | ||
JPS59141499A (en) | Preparation of single crystal of ferrite | |
JPH0397699A (en) | Production of joined ferrite | |
JPH03261671A (en) | Bonding method of diamond for machining tool | |
JPS6335496A (en) | Production of single crystal garnet | |
JPS58172278A (en) | High speed cutting tip and manufacture | |
JPS61169190A (en) | Composite brazing filler metal | |
JPS5926994A (en) | Preparation of oxide single crystal | |
JPH02107577A (en) | Production of joint ferrite | |
JPS6077181A (en) | Ceramic-metal bonded body | |
JP2945738B2 (en) | Ceramic brazing method | |
JPS62216986A (en) | Production of single crystal ferrite | |
JPH08157274A (en) | Method for joining ferrites |