JPH08242557A - Structure for cooling high-speed rotary machine - Google Patents
Structure for cooling high-speed rotary machineInfo
- Publication number
- JPH08242557A JPH08242557A JP7041521A JP4152195A JPH08242557A JP H08242557 A JPH08242557 A JP H08242557A JP 7041521 A JP7041521 A JP 7041521A JP 4152195 A JP4152195 A JP 4152195A JP H08242557 A JPH08242557 A JP H08242557A
- Authority
- JP
- Japan
- Prior art keywords
- ventilation duct
- holes
- rotor
- rotating machine
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2793—Rotors axially facing stators
- H02K1/2795—Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2796—Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the rotor face a stator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2793—Rotors axially facing stators
- H02K1/2795—Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2798—Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the stator face a rotor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K16/00—Machines with more than one rotor or stator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/24—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/10—Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
- H02K9/12—Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing wherein the cooling medium circulates freely within the casing
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Motor Or Generator Frames (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高速回転機の冷却構
造、特にロータとステータとが櫛型で組み合わされた構
造の高速回転機において、ロータの周速の相違に基づい
て発生する圧力差を利用し、冷却風を自己循環させるよ
うにした高速回転機の冷却構造に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling structure for a high-speed rotating machine, and more particularly to a high-speed rotating machine having a structure in which a rotor and a stator are combined in a comb shape. The present invention relates to a cooling structure of a high-speed rotating machine in which cooling air is circulated by itself.
【0002】[0002]
【従来の技術】従来のフラット回転機、例えばフラット
モータは、比較的小容量のものに限られていたため、特
に冷却する必要性がなかった。またその回転数も低い範
囲で使用されていたため、冷却は熱伝導だけに頼ってい
た。2. Description of the Related Art Conventional flat rotating machines, for example, flat motors, are limited to those having a relatively small capacity, and therefore need not be particularly cooled. In addition, since its rotational speed was used in a low range, cooling relied only on heat conduction.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、フラッ
ト回転機が高速回転で大容量の大型化したものになる
と、重量又は容積当たりの出力が極めて大きくなってい
るために、高効率とは言え、重量当たりの損失も大きく
なってしまう。However, when the flat rotary machine becomes large in size with high speed rotation at a high speed, the output per weight or volume becomes extremely large, so that the efficiency is high even though the weight is high. The loss per hit will also increase.
【0004】またフラット回転機ではコアレスとするた
めに、エネルギー密度の高い、例えばネオジムNd,鉄
Fe,ホウ素B系の永久磁石を使用するが、この永久磁
石は高温になるとその磁力が低下する傾向にあり、雰囲
気温度が120°以下で使用することが必要とされてい
る。In the flat rotating machine, a permanent magnet having a high energy density, for example, neodymium Nd, iron Fe, and boron B is used in order to make the coreless. However, the magnetic force of this permanent magnet tends to decrease at high temperature. Therefore, it is necessary to use it at an ambient temperature of 120 ° or less.
【0005】このために大容量、大型化したフラット回
転機では、ステータコイルの冷却が重要な課題となって
きている。またそのための冷却も、その高効率化の目的
に合わせ、低損失で行うことが望まれる。For this reason, in a large-capacity and large-sized flat rotating machine, cooling of the stator coil has become an important issue. Further, cooling for that purpose is also desired to be performed with low loss in accordance with the purpose of increasing the efficiency.
【0006】本発明は、上記の点に鑑みなされたもので
あり、負荷となる冷却ファンを用いることなく、櫛型の
組み合わせをなす回転機の構造を利用し、すなわちロー
タの周速の相違に基づいて発生する圧力差を利用し、冷
却風を自己循環させる高速回転機の冷却構造を提供する
ことを目的としている。The present invention has been made in view of the above points, and utilizes the structure of a rotating machine forming a comb-shaped combination without using a cooling fan as a load, that is, in the difference in the peripheral speed of the rotor. It is an object of the present invention to provide a cooling structure for a high-speed rotating machine that utilizes a pressure difference generated based on the above to circulate cooling air by itself.
【0007】[0007]
【課題を解決するための手段】上記の目的を解決するた
めに、本発明の高速回転機の冷却構造は円筒ケースに固
着されたステータと、半径を異にする部位がシャフトに
設けられてなるロータと、ブラケットとを備え、ロータ
とステータとが櫛型状に組み合わされて回転する高速回
転機の冷却構造において、当該ロータのシャフトには、
その軸方向に通風ダクト穴を設け、ロータの櫛型の底部
に放射状に複数個の通風ダクト穴を穿設すると共に、こ
れらの通風ダクト穴を上記シャフトの通風ダクト穴にそ
れぞれ連通させた構造となし、ステータを固着する円筒
ケースには、その軸方向に沿って複数個の通風ダクト溝
を設け、ステータの櫛型の底部にその内側から外側に向
けた複数個の通風ダクト穴を穿設すると共に、これらの
通風ダクト穴を上記円筒ケースの通風ダクト溝にそれぞ
れ連通させた構造となし、エンド側のブラケットに上記
円筒ケースの通風ダクト溝と連通した形態で通風穴をそ
れぞれ穿設し、半径を異にする部位の周速によって生じ
る気圧差に基づいて冷却風を循環させるようにしたこと
を特徴としている。In order to solve the above-mentioned problems, the cooling structure for a high speed rotating machine of the present invention comprises a stator fixed to a cylindrical case and a shaft having a portion having a different radius. In a cooling structure of a high-speed rotating machine including a rotor and a bracket, wherein the rotor and the stator are combined and rotated in a comb shape, the shaft of the rotor is
A ventilation duct hole is provided in the axial direction, a plurality of ventilation duct holes are radially formed in the comb-shaped bottom of the rotor, and these ventilation duct holes are respectively communicated with the ventilation duct holes of the shaft. None, the cylindrical case to which the stator is fixed is provided with a plurality of ventilation duct grooves along its axial direction, and the comb-shaped bottom of the stator is provided with a plurality of ventilation duct holes from inside to outside. Along with it, the ventilation duct holes are formed to communicate with the ventilation duct grooves of the cylindrical case, respectively, and the ventilation holes are formed in the bracket on the end side so as to communicate with the ventilation duct grooves of the cylindrical case. It is characterized in that the cooling air is circulated based on the pressure difference caused by the peripheral speeds of different parts.
【0008】上記エンド側のブラケットに、放熱用のフ
ィンを備えたエンドカバーを設けると共に高速回転機を
密閉構造となし、その内部に冷却用ガスを封入し、上記
の各通風ダクト穴を通して冷却用ガスを自己循環させ、
冷却するようにしてもよい。The bracket on the end side is provided with an end cover having fins for radiating heat, and a high-speed rotating machine has a closed structure. Cooling gas is enclosed in the inside of the bracket and is cooled through the ventilation duct holes. Self-circulate the gas,
You may make it cool.
【0009】上記シャフトの中心軸には、通風ダクト穴
の径を実質的に可変させるための風量調整機構を設け、
冷却風量を調整するようになっている。The central axis of the shaft is provided with an air volume adjusting mechanism for substantially varying the diameter of the ventilation duct hole,
The cooling air volume is adjusted.
【0010】[0010]
【作用】ロータが高速回転しているとき、ロータの半径
が大きい部位の外周付近の周速は半径が小さい部位の内
径付近の周速より大きいので、この両者の間で気圧差が
生じ、この部分に通風路が形成されていることにより、
高速回転機内で気体が流動し、いわゆるファン作用が発
生する。When the rotor is rotating at a high speed, the peripheral speed near the outer periphery of the portion with a large radius of the rotor is higher than the peripheral speed near the inner diameter of the portion with a small radius, so a pressure difference occurs between the two. Due to the formation of ventilation passages in the part,
The gas flows in the high-speed rotating machine and a so-called fan action occurs.
【0011】[0011]
【実施例】図1は本発明に係るフラット回転機の冷却構
造の一実施例部分断面図、図2は図1のA−A変形断面
図である。1 is a partial sectional view of an embodiment of a cooling structure for a flat rotating machine according to the present invention, and FIG. 2 is a sectional view taken along line AA of FIG.
【0012】図1のフラット回転機は、3段構成のもの
が図示されており、後に説明する様に1段のフラット回
転機にすることができるものである。図1,図2におい
て、円筒ケース1の両端にブラケット2がねじ3で固定
される。それぞれのブラケット2にはベアリング4が嵌
め込まれ、シャフト5が両側のブラケット2で回転自在
に軸支されている。シャフト5には、4枚の円板状のフ
ラット型ロータ8が、それぞれ空隙9を隔てて配設され
固着されている。そして当該円板状のフラット型ロータ
8には、極性を異にして順に複数個の永久磁石6が固着
されている。空隙9を隔てて配設された2枚の各フラッ
ト型ロータ8の各永久磁石6は、その極性を異にし相対
向している。これらの永久磁石6は、マグネットホルダ
19、非磁性体のリング20等で固定されている。The flat rotary machine of FIG. 1 is shown to have a three-stage structure, and can be a single-stage flat rotary machine as will be described later. 1 and 2, brackets 2 are fixed to both ends of a cylindrical case 1 with screws 3. A bearing 4 is fitted in each bracket 2, and a shaft 5 is rotatably supported by the brackets 2 on both sides. Four flat disk-shaped flat rotors 8 are arranged and fixed to the shaft 5 with a gap 9 therebetween. A plurality of permanent magnets 6 having different polarities are sequentially fixed to the disc-shaped flat rotor 8. The permanent magnets 6 of the two flat rotors 8 arranged with the gap 9 therebetween are opposite in polarity. These permanent magnets 6 are fixed by a magnet holder 19, a nonmagnetic ring 20, and the like.
【0013】なお、7はヨークであり、ロータ15は4
枚のフラット型ロータ8で構成されている。そしてこれ
らの永久磁石6は、エネルギー密度の高い、例えばネオ
ジムNd,鉄Fe,ホウ素Bを含んだ合金の磁性材でな
る磁石が用いられる。Reference numeral 7 is a yoke, and rotor 15 is 4
It is composed of one flat type rotor 8. For these permanent magnets 6, a magnet having a high energy density, for example, a magnetic material of an alloy containing neodymium Nd, iron Fe, and boron B is used.
【0014】2枚の各フラット型ロータ8で形成される
各空隙9には、フラット型に形成された図5の形状をし
た円板状のステータコイル10、すなわち電機子巻線が
それぞれ配設されている。当該ステータコイル10は、
直径が0.1mm程度の細いエナメル線等を10本から
数10本より合わせた絶縁電線のリッツ線で、図4に示
されている様に、略三角形状に巻線されたU,V,W各
相のコイル11を、図2の如く6個円形に配置して、3
層構造で絶縁ワニスや合成樹脂材でモールドして固形化
されたものである。A disk-shaped stator coil 10 having a flat shape and shown in FIG. 5, that is, an armature winding, is provided in each space 9 formed by the two flat rotors 8. Has been done. The stator coil 10 is
As shown in FIG. 4, U-, V-, and L-shaped litz wires of an insulated electric wire in which thin enameled wires having a diameter of about 0.1 mm are combined from 10 to several tens of wires, as shown in FIG. As shown in FIG. 2, the coils 11 of each phase W are arranged in a circle, and
It has a layered structure and is solidified by molding with an insulating varnish or a synthetic resin material.
【0015】図3はステータコイルの一実施例部分断面
図を示しており、各コイル11の層間に絶縁紙12が挟
まれ、表面にも絶縁紙12を付けてモールドされる。ス
テータコイル10の外周部には、固定用の穴13が形成
されている。FIG. 3 shows a partial sectional view of an embodiment of the stator coil. Insulating paper 12 is sandwiched between the layers of each coil 11, and the insulating paper 12 is also molded on the surface. A fixing hole 13 is formed on the outer peripheral portion of the stator coil 10.
【0016】ステータコイル10は、図6に示された円
形のスペーサ16でサンドイッチ状に挟まれ、当該スペ
ーサ16に穿設された固定用の穴17、当該ステータコ
イル10に形成された固定用の穴13を用いて、ボルト
18でブラケット2の一方に固定される。このときステ
ータコイル10のコイル11の部分が、上記永久磁石6
の位置に配置されるようになっていることは言うまでも
ない。The stator coil 10 is sandwiched between circular spacers 16 shown in FIG. 6, and fixing holes 17 are formed in the spacer 16 and fixing holes formed in the stator coil 10. It is fixed to one of the brackets 2 with a bolt 18 using the holes 13. At this time, the portion of the coil 11 of the stator coil 10 is the permanent magnet 6
Needless to say, it is arranged at the position of.
【0017】なおシャフト5の中心軸には通風ダクト穴
5−1が穿設されると共に、当該通風ダクト穴5−1に
連通して放射状の通風ダクト穴5−2が複数個穿設され
ている。シャフト5のエンド側端部には風量を調整する
ための調整ナット5−3が交換可能に取り付けられてお
り、当該調整ナット5−3の内径穴の大きさによって、
つまり当該調整ナット5−3を交換することによってそ
の内径穴を変え、冷却用風量を調整する構造となってい
る。A ventilation duct hole 5-1 is formed in the central axis of the shaft 5, and a plurality of radial ventilation duct holes 5-2 are formed in communication with the ventilation duct hole 5-1. There is. An adjusting nut 5-3 for adjusting the air volume is replaceably attached to the end portion of the shaft 5 depending on the size of the inner diameter hole of the adjusting nut 5-3.
That is, by changing the adjusting nut 5-3, the inner diameter hole is changed to adjust the cooling air volume.
【0018】またシャフト5に固着されているマグネッ
トホルダ19には、シャフト5に穿設された放射状の通
風ダクト穴5−2とそれぞれ連通した通風ダクト穴19
−1が設けられている。上記スペーサ16には通風ダク
ト穴16−1がそれぞれ設けられ、当該スペーサ16の
通風ダクト穴16−1とそれぞれ連通して円筒ケース1
に通風ダクト穴1−2が穿設されている。さらに当該円
筒ケース1には、これらの通風ダクト穴1−2に連通
し、その軸方向に複数個の通風ダクト溝1−1が穿設さ
れている。そしてさらに,エンド側ブラケット2には上
記円筒ケース1の各通風ダクト溝1−1に連通した形態
で通風穴2−1が穿設されている。Further, the magnet holder 19 fixed to the shaft 5 has a ventilation duct hole 19 communicating with the radial ventilation duct hole 5-2 formed in the shaft 5.
-1 is provided. Ventilation duct holes 16-1 are provided in the spacers 16, respectively, and are communicated with the ventilation duct holes 16-1 of the spacers 16 to form the cylindrical case 1.
A ventilation duct hole 1-2 is formed in the. Further, the cylindrical case 1 is communicated with these ventilation duct holes 1-2 and is provided with a plurality of ventilation duct grooves 1-1 in the axial direction thereof. Further, ventilation holes 2-1 are formed in the end side bracket 2 so as to communicate with the ventilation duct grooves 1-1 of the cylindrical case 1.
【0019】これらシャフト5、マグネットホルダ1
9、スペーサ16にそれぞれ設けられた通風ダクト穴5
−1,5−2,19−1,16−1や円筒ケース1に設
けられた通風ダクト穴1−2及びその通風ダクト溝1−
1,そしてエンド側ブラケット2に穿設されている通風
穴2−1によって流通路が形成され、冷却風がこの流通
路を通り抜け、ステータコイル10に発生した熱が放散
冷却される。These shaft 5 and magnet holder 1
9, ventilation duct holes 5 provided in the spacer 16 respectively
-1, 5-2, 19-1, 16-1 and ventilation duct hole 1-2 provided in the cylindrical case 1 and its ventilation duct groove 1-
1, and the ventilation hole 2-1 formed in the end bracket 2 forms a flow passage, and the cooling air passes through the flow passage, and the heat generated in the stator coil 10 is dissipated and cooled.
【0020】この様に構成された本発明のフラット回転
機の冷却構造において、ロータ15が高速回転している
とき、フラット型ロータ8の外径周辺部分の周速は円板
状のステータコイル10のコイル内径周辺部分が配置さ
れるマグネットホルダ19の空隙位置付近の周速より大
きいので、すなわちスペーサ16のフラット型ロータ8
側の通風ダクト穴16−1の近傍の流速は、マグネット
ホルダ19のステータコイル10のコイル内径周辺部分
が配置された空隙位置付近の流速に比べると速く、この
両者の間で気圧差が生じ、マグネットホルダ19の通風
ダクト穴19−1からスペーサ16のフラット型ロータ
8側の通風ダクト穴16−1に向かって、いわゆる冷却
風が流れる。つまりファン作用が発生する。In the cooling structure of the flat rotating machine of the present invention thus constructed, when the rotor 15 is rotating at a high speed, the peripheral speed of the outer peripheral portion of the flat rotor 8 is the disk-shaped stator coil 10. Since the peripheral speed of the coil holder is larger than the peripheral speed of the magnet holder 19 in the vicinity of the air gap position, that is, the flat rotor 8 of the spacer 16
The flow velocity in the vicinity of the ventilation duct hole 16-1 on the side is faster than the flow velocity in the vicinity of the gap position where the coil inner diameter peripheral portion of the stator coil 10 of the magnet holder 19 is arranged, and a pressure difference occurs between the two. A so-called cooling air flows from the ventilation duct hole 19-1 of the magnet holder 19 toward the ventilation duct hole 16-1 of the spacer 16 on the flat rotor 8 side. That is, a fan action occurs.
【0021】これにより調整ナット5−3、シャフト5
の通風ダクト穴5−1,5−2、マグネットホルダ19
の通風ダクト穴19−1、空隙9、スペーサ16の通風
ダクト穴16−1、円筒ケース1の通風ダクト穴1−
2,通風ダクト溝1−1の流通路を通ってリアカバー2
1側へ冷却風が通り抜ける。ステータコイル10を冷却
した熱風はリアカバー21を介して直接外部へ放出され
る。As a result, the adjusting nut 5-3 and the shaft 5
Ventilation duct holes 5-1 and 5-2, magnet holder 19
Ventilation duct hole 19-1, the air gap 9, the ventilation duct hole 16-1 of the spacer 16, the ventilation duct hole 1 of the cylindrical case 1-
2, the rear cover 2 through the flow passage of the ventilation duct groove 1-1
Cooling air passes through to side 1. The hot air that has cooled the stator coil 10 is directly discharged to the outside via the rear cover 21.
【0022】或いは、リアカバー21に、内部熱交換用
のフィン21−1を設けると共に、外部熱交換用のフィ
ン21−2を設け、フラット回転機の内部を密閉構造に
してその内部に例えば、水素やヘリウム等の冷却ガスを
封入しておけば、上記のファン作用により当該冷却ガス
が自己循環する。従って上記のステータコイル10を冷
却した冷却ガスは、これらの内部熱交換用のフィン21
−1や外部熱交換用のフィン21−2を介して熱放散さ
れる。このときフラット回転機は更に風損の低減が可能
となり、効率の良いモータ或いは発電機を作ることがで
きる。Alternatively, the rear cover 21 is provided with the fins 21-1 for internal heat exchange and the fins 21-2 for external heat exchange to make the inside of the flat rotating machine a hermetically sealed structure, for example, hydrogen inside. If a cooling gas such as helium or helium is enclosed, the cooling gas circulates by the fan action. Therefore, the cooling gas that has cooled the stator coil 10 is used as the fins 21 for internal heat exchange.
-1 and heat is dissipated via the fins 21-2 for external heat exchange. At this time, the flat rotating machine can further reduce the wind loss, and an efficient motor or generator can be manufactured.
【0023】上記の説明では、フラット回転機が3段構
成のものを説明して来たが、1段構成のものは図1で2
組のステータコイル10やフラット型ロータ8などを取
り外ずしたものである。In the above description, a flat rotary machine having a three-stage structure has been described.
The stator coil 10 and the flat rotor 8 of the set are not removed.
【0024】また上記の説明では、フラット回転機につ
いて説明してきたが、ロータとステータとが櫛型状に組
み合わされて回転する構造の高速回転機において、図1
図示のコアレス構造のみならず、コアを備えた構造のも
のにおいても同様に冷却ファンを設けることなく、冷却
風を自己循環させることができる。In the above description, the flat rotary machine has been described. However, in a high speed rotary machine having a structure in which a rotor and a stator are combined and rotated in a comb shape,
Not only the illustrated coreless structure but also the structure including a core can similarly circulate the cooling air without providing a cooling fan.
【0025】[0025]
【発明の効果】以上説明した如く、本発明によれば、シ
ャフト、ステータ内部、円筒ケース等に気体流通路を形
成し、高速回転するロータの周速差を利用してファン作
用を発生させ、自己循環させているので、本来負荷とな
るべき冷却ファンを使用せずに冷却でき、かつその風損
がなくなり、効率の良いモータ或いは発電機を作ること
ができる。冷却ガスを封入する構成の高速回転機にあっ
ては、さらに効率の良いモータ或いは発電機を作ること
ができる。As described above, according to the present invention, the gas flow passage is formed in the shaft, the inside of the stator, the cylindrical case, etc., and the fan action is generated by utilizing the peripheral speed difference of the rotor rotating at a high speed. Since it circulates by itself, it can be cooled without using a cooling fan which should be an original load, and the wind loss is eliminated, so that an efficient motor or generator can be manufactured. In a high-speed rotating machine configured to contain cooling gas, a more efficient motor or generator can be manufactured.
【0026】従って、高速回転機の小型軽量化が可能と
なる。またシャフトに通風量を制御するための風量機構
を設けることにより、冷却風量を自由に調整することが
できる。Therefore, it is possible to reduce the size and weight of the high-speed rotating machine. Further, by providing the shaft with an air volume mechanism for controlling the air volume, the cooling air volume can be freely adjusted.
【図1】本発明に係るフラット回転機の冷却構造の一実
施例部分断面図である。FIG. 1 is a partial cross-sectional view of an embodiment of a cooling structure for a flat rotating machine according to the present invention.
【図2】図1のA−A変形断面図である。FIG. 2 is a cross-sectional view taken along line AA of FIG.
【図3】ステータコイルの一実施例部分断面図である。FIG. 3 is a partial cross-sectional view of an embodiment of a stator coil.
【図4】コイルの巻線説明図である。FIG. 4 is an explanatory view of winding of a coil.
【図5】ステータコイルの一実施例斜視図である。FIG. 5 is a perspective view of an embodiment of a stator coil.
【図6】スペーサの一実施例斜視図である。FIG. 6 is a perspective view of an example of a spacer.
1 円筒ケース 1−1 通風ダクト溝 1−2 通風ダクト穴 2 ブラケット 2−1 通風穴 5 シャフト 5−1 通風ダクト穴 6 永久磁石 7 ヨーク 8 フラット型ロータ 9 空隙 10 ステータコイル 11 コイル 15 ロータ 16 スペーサ 16−1 通風ダクト穴 21 リアカバー 21−1 フィン 1 Cylindrical Case 1-1 Ventilation Duct Groove 1-2 Ventilation Duct Hole 2 Bracket 2-1 Ventilation Hole 5 Shaft 5-1 Ventilation Duct Hole 6 Permanent Magnet 7 Yoke 8 Flat Type Rotor 9 Gap 10 Stator Coil 11 Coil 15 Rotor 16 Spacer 16-1 Ventilation duct hole 21 Rear cover 21-1 Fin
Claims (3)
径を異にする部位がシャフトに設けられてなるロータ
と、ブラケットとを備え、ロータとステータとが櫛型状
に組み合わされて回転する高速回転機の冷却構造におい
て、 当該ロータのシャフトには、その軸方向に通風ダクト穴
を設け、 ロータの櫛型の底部に放射状に複数個の通風ダクト穴を
穿設すると共に、これらの通風ダクト穴を上記シャフト
の通風ダクト穴にそれぞれ連通させた構造となし、 ステータを固着する円筒ケースには、その軸方向に沿っ
て複数個の通風ダクト溝を設け、 ステータの櫛型の底部にその内側から外側に向けた複数
個の通風ダクト穴を穿設すると共に、これらの通風ダク
ト穴を上記円筒ケースの通風ダクト溝にそれぞれ連通さ
せた構造となし、 エンド側のブラケットに上記円筒ケースの通風ダクト溝
と連通した形態で通風穴をそれぞれ穿設し、 半径を異にする部位の周速によって生じる気圧差に基づ
いて冷却風を循環させるようにしたことを特徴とする高
速回転機の冷却構造。1. A high speed rotating machine comprising a stator fixed to a cylindrical case, a rotor having a shaft having portions with different radii, and a bracket, wherein the rotor and the stator are combined and rotated in a comb shape. In the cooling structure of a rotary machine, the shaft of the rotor is provided with ventilation duct holes in the axial direction thereof, and a plurality of ventilation duct holes are radially provided at the bottom of the rotor comb shape, and these ventilation duct holes are provided. And the ventilation duct holes of the shaft are communicated with each other.The cylindrical case to which the stator is fixed is provided with a plurality of ventilation duct grooves along the axial direction of the stator. A plurality of ventilation duct holes facing outward are formed, and these ventilation duct holes are connected to the ventilation duct grooves of the cylindrical case, respectively. Vent holes are formed in the casing in a form communicating with the ventilation duct groove of the cylindrical case, respectively, and the cooling air is circulated based on the pressure difference caused by the peripheral speeds of the parts having different radii. High speed rotating machine cooling structure.
フィンを備えたエンドカバーを設けると共に高速回転機
を密閉構造となし、その内部に冷却用ガスを封入し、上
記の各通風ダクト穴を通して冷却用ガスを自己循環さ
せ、冷却するようにしたことを特徴とする請求項1記載
の高速回転機の冷却構造。2. The end side bracket is provided with an end cover provided with fins for heat radiation, and a high-speed rotating machine is hermetically sealed structure. Cooling gas is enclosed inside the high-speed rotating machine and is passed through the ventilation duct holes. The cooling structure for a high-speed rotating machine according to claim 1, wherein the cooling gas is circulated by itself.
穴の径を実質的に可変させるための風量調整機構を設
け、冷却風量を調整できるようにしたことを特徴とする
請求項1記載の高速回転機の冷却構造。3. The air flow rate adjusting mechanism for substantially varying the diameter of the ventilation duct hole is provided on the central axis of the shaft to adjust the cooling air flow rate. Cooling structure for high-speed rotating machines.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7041521A JPH08242557A (en) | 1995-03-01 | 1995-03-01 | Structure for cooling high-speed rotary machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7041521A JPH08242557A (en) | 1995-03-01 | 1995-03-01 | Structure for cooling high-speed rotary machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08242557A true JPH08242557A (en) | 1996-09-17 |
Family
ID=12610695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7041521A Pending JPH08242557A (en) | 1995-03-01 | 1995-03-01 | Structure for cooling high-speed rotary machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08242557A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006068042A1 (en) * | 2004-12-24 | 2006-06-29 | Sumitomo Electric Industries, Ltd. | Axial gap motor |
JP2007086060A (en) * | 2005-08-25 | 2007-04-05 | Ntn Corp | Turbine unit for air cycle refrigeration cooling |
JP2008042952A (en) * | 2006-08-01 | 2008-02-21 | Kayaba Ind Co Ltd | Axial air-gap type motor |
JP2008043055A (en) * | 2006-08-07 | 2008-02-21 | Kayaba Ind Co Ltd | Axial air-gap type motor |
WO2008032430A1 (en) * | 2006-09-13 | 2008-03-20 | Ntn Corporation | Motor-integrated magnetic bearing device |
JP2008072783A (en) * | 2006-09-12 | 2008-03-27 | Kayaba Ind Co Ltd | Axial air gap type motor |
JP2008131831A (en) * | 2006-11-24 | 2008-06-05 | Kayaba Ind Co Ltd | Axial air gap motor |
WO2008108063A1 (en) * | 2007-03-01 | 2008-09-12 | Ntn Corporation | Motor-integrated magnetic bearing device |
JP2008219988A (en) * | 2007-03-01 | 2008-09-18 | Ntn Corp | Magnetic bearing device integrated with motor |
WO2008117631A1 (en) | 2007-03-23 | 2008-10-02 | Shin-Etsu Chemical Co., Ltd. | Permanent-magnet generator and windmill generator using the same |
JP2011130530A (en) * | 2009-12-15 | 2011-06-30 | Honda Motor Co Ltd | Axial gap motor and manufacturing method of rotor of the same |
US8022797B2 (en) | 2006-06-23 | 2011-09-20 | Ihi Corporation | Superconducting coil apparatus and inductor-type synchronous machine |
JP2011200038A (en) * | 2010-03-19 | 2011-10-06 | Toyota Motor Corp | Electric motor |
US8215898B2 (en) | 2005-08-25 | 2012-07-10 | Ntn Corporation | Turbine unit for refrigerating/cooling air cycle |
CN103501092A (en) * | 2013-10-12 | 2014-01-08 | 山东理工大学 | Electric excitation brushless generator for vehicle |
GB2520516A (en) * | 2013-11-21 | 2015-05-27 | Greenspur Renewables Ltd | Direct drive generator for renewable energy applications |
WO2017081458A1 (en) * | 2015-11-09 | 2017-05-18 | Greenspur Renewables Limited | Cooling means for direct drive generators |
FR3076674A1 (en) * | 2018-01-09 | 2019-07-12 | Whylot Sas | ELECTROMAGNETIC ENGINE OR GENERATOR WITH TWO ROTORS AND FOUR STATORS AND INTEGRATED COOLING SYSTEM |
JP2019129637A (en) * | 2018-01-25 | 2019-08-01 | 公益財団法人鉄道総合技術研究所 | Rotary electric machine |
JP2020137386A (en) * | 2019-02-26 | 2020-08-31 | 東芝三菱電機産業システム株式会社 | Synchronization rotary electric machine |
GB2583974A (en) * | 2019-05-17 | 2020-11-18 | Greenspur Renewables Ltd | Improvements to the construction of axial flux rotary generators |
CN113309701A (en) * | 2021-07-09 | 2021-08-27 | 广德玉龙泵业有限公司 | Roots vacuum pump |
KR102511123B1 (en) * | 2022-05-23 | 2023-03-15 | 유근화 | Axial Gap Type Modular Wind Generator Assembly |
WO2023104249A1 (en) * | 2021-12-10 | 2023-06-15 | Schaeffler Technologies AG & Co. KG | Electric drive system with two drive machines and a housing-side stator screw connection |
CN116885910A (en) * | 2023-09-08 | 2023-10-13 | 佳沃德(佛山)科技有限公司 | Motor stator structure and axial flux motor |
IT202200016746A1 (en) * | 2022-08-04 | 2024-02-04 | Domenico Piatti | Method for cooling a multi-stage axial flow electric motor with radial and rotating air jetsPiatti Doemnico |
-
1995
- 1995-03-01 JP JP7041521A patent/JPH08242557A/en active Pending
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100976884B1 (en) * | 2004-12-24 | 2010-08-18 | 스미토모 덴키 고교 가부시키가이샤 | Axial gap motor |
JP2006187055A (en) * | 2004-12-24 | 2006-07-13 | Sumitomo Electric Ind Ltd | Axial gap motor |
WO2006068042A1 (en) * | 2004-12-24 | 2006-06-29 | Sumitomo Electric Industries, Ltd. | Axial gap motor |
JP4690032B2 (en) * | 2004-12-24 | 2011-06-01 | 住友電気工業株式会社 | Axial gap type motor |
US7821169B2 (en) | 2004-12-24 | 2010-10-26 | Sumitomo Electric Industries, Ltd. | Axial gap type motor |
US8215898B2 (en) | 2005-08-25 | 2012-07-10 | Ntn Corporation | Turbine unit for refrigerating/cooling air cycle |
JP2007086060A (en) * | 2005-08-25 | 2007-04-05 | Ntn Corp | Turbine unit for air cycle refrigeration cooling |
US8022797B2 (en) | 2006-06-23 | 2011-09-20 | Ihi Corporation | Superconducting coil apparatus and inductor-type synchronous machine |
JP2008042952A (en) * | 2006-08-01 | 2008-02-21 | Kayaba Ind Co Ltd | Axial air-gap type motor |
JP2008043055A (en) * | 2006-08-07 | 2008-02-21 | Kayaba Ind Co Ltd | Axial air-gap type motor |
JP2008072783A (en) * | 2006-09-12 | 2008-03-27 | Kayaba Ind Co Ltd | Axial air gap type motor |
WO2008032430A1 (en) * | 2006-09-13 | 2008-03-20 | Ntn Corporation | Motor-integrated magnetic bearing device |
JP2008131831A (en) * | 2006-11-24 | 2008-06-05 | Kayaba Ind Co Ltd | Axial air gap motor |
WO2008108063A1 (en) * | 2007-03-01 | 2008-09-12 | Ntn Corporation | Motor-integrated magnetic bearing device |
JP2008219988A (en) * | 2007-03-01 | 2008-09-18 | Ntn Corp | Magnetic bearing device integrated with motor |
WO2008117631A1 (en) | 2007-03-23 | 2008-10-02 | Shin-Etsu Chemical Co., Ltd. | Permanent-magnet generator and windmill generator using the same |
EP2131478A4 (en) * | 2007-03-23 | 2013-05-01 | Shinetsu Chemical Co | Permanent-magnet generator and windmill generator using the same |
EP2131478A1 (en) * | 2007-03-23 | 2009-12-09 | Shin-Etsu Chemical Co., Ltd. | Permanent-magnet generator and windmill generator using the same |
JP2011130530A (en) * | 2009-12-15 | 2011-06-30 | Honda Motor Co Ltd | Axial gap motor and manufacturing method of rotor of the same |
JP2011200038A (en) * | 2010-03-19 | 2011-10-06 | Toyota Motor Corp | Electric motor |
CN103501092A (en) * | 2013-10-12 | 2014-01-08 | 山东理工大学 | Electric excitation brushless generator for vehicle |
US10720821B2 (en) | 2013-11-21 | 2020-07-21 | Time To Act Limited | Direct drive generator for renewable energy applications |
GB2520516A (en) * | 2013-11-21 | 2015-05-27 | Greenspur Renewables Ltd | Direct drive generator for renewable energy applications |
GB2520516B (en) * | 2013-11-21 | 2021-08-25 | Time To Act Ltd | Direct drive generator for renewable energy applications |
WO2017081458A1 (en) * | 2015-11-09 | 2017-05-18 | Greenspur Renewables Limited | Cooling means for direct drive generators |
CN108702076A (en) * | 2015-11-09 | 2018-10-23 | 格林斯普可再生能源有限公司 | Cooling device for direct drive generator |
US11309754B2 (en) | 2015-11-09 | 2022-04-19 | Time To Act Limited | Generator with series stators, and series rotors separated by annular collars with cooling vents |
GB2544275B (en) * | 2015-11-09 | 2022-02-16 | Time To Act Ltd | Cooling means for direct drive generators |
US11211853B2 (en) | 2018-01-09 | 2021-12-28 | Whylot Sas | Electromagnetic motor or generator with two rotors, four stators and an integrated cooling system |
CN111742473B (en) * | 2018-01-09 | 2023-05-09 | 万络公司 | Electromagnetic motor or generator with two rotors and four stators and integrated cooling system |
CN111742473A (en) * | 2018-01-09 | 2020-10-02 | 万络公司 | Electromagnetic motor or generator with two rotors and four stators and integrated cooling system |
WO2019138308A1 (en) * | 2018-01-09 | 2019-07-18 | Whylot | Electromagnetic motor or generator with two rotors, four stators and an integrated cooling system |
FR3076674A1 (en) * | 2018-01-09 | 2019-07-12 | Whylot Sas | ELECTROMAGNETIC ENGINE OR GENERATOR WITH TWO ROTORS AND FOUR STATORS AND INTEGRATED COOLING SYSTEM |
JP2019129637A (en) * | 2018-01-25 | 2019-08-01 | 公益財団法人鉄道総合技術研究所 | Rotary electric machine |
JP2020137386A (en) * | 2019-02-26 | 2020-08-31 | 東芝三菱電機産業システム株式会社 | Synchronization rotary electric machine |
GB2583974A (en) * | 2019-05-17 | 2020-11-18 | Greenspur Renewables Ltd | Improvements to the construction of axial flux rotary generators |
GB2583974B (en) * | 2019-05-17 | 2023-12-06 | Time To Act Ltd | Improvements to the construction of axial flux rotary generators |
CN113309701A (en) * | 2021-07-09 | 2021-08-27 | 广德玉龙泵业有限公司 | Roots vacuum pump |
CN113309701B (en) * | 2021-07-09 | 2023-12-26 | 广德玉龙泵业有限公司 | Roots vacuum pump |
WO2023104249A1 (en) * | 2021-12-10 | 2023-06-15 | Schaeffler Technologies AG & Co. KG | Electric drive system with two drive machines and a housing-side stator screw connection |
KR102511123B1 (en) * | 2022-05-23 | 2023-03-15 | 유근화 | Axial Gap Type Modular Wind Generator Assembly |
IT202200016746A1 (en) * | 2022-08-04 | 2024-02-04 | Domenico Piatti | Method for cooling a multi-stage axial flow electric motor with radial and rotating air jetsPiatti Doemnico |
CN116885910A (en) * | 2023-09-08 | 2023-10-13 | 佳沃德(佛山)科技有限公司 | Motor stator structure and axial flux motor |
CN116885910B (en) * | 2023-09-08 | 2023-11-10 | 佳沃德(佛山)科技有限公司 | Motor stator structure and axial flux motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08242557A (en) | Structure for cooling high-speed rotary machine | |
US10630157B2 (en) | Axial flux machine | |
JP4468589B2 (en) | Electric machine | |
KR101996320B1 (en) | Coreless rotating electric machine provided with stator including cylindrical coil and cooling method for same | |
JP5080603B2 (en) | Apparatus and method for cooling an electric machine | |
US8264107B2 (en) | AFPM coreless multi-generator and motor | |
JP4999990B2 (en) | Rotating motor and blower using the same | |
JP7201601B2 (en) | Enclosed rotating electrical machine with an internal air cooling system for the magnets in the rotor | |
JP2014033584A (en) | Wind cooling structure of rotary electric machine | |
JPS60219945A (en) | Permanent magnet type synchronous motor | |
JP2005269845A (en) | Structure for cooling stator of axial gap electric motor | |
JPH09168246A (en) | Cooling device of permanent magnet synchronous machine | |
JP2021029083A (en) | Rotary apparatus | |
JPH0965614A (en) | Small-sized motor | |
JPH0487547A (en) | Brushless fan motor | |
JP2885294B2 (en) | Motor cooling structure | |
JP2002238227A (en) | Direct drive motor for washing machine | |
JP2013158161A (en) | Rotary electric machine | |
KR20220118084A (en) | A motor with bearing cooling structure | |
WO2022210434A1 (en) | Motor, blowing device and refrigeration device | |
WO2022044783A1 (en) | Rotating machine | |
JPH09121521A (en) | Structure of magnetic circuit for rotating machine | |
JPH04138056A (en) | Brushless motor | |
JP2878347B2 (en) | Fully closed multiple stator induction motor | |
TWM607555U (en) | Heat dissipation structure of external rotation motor for treadmill |