JPH08241504A - Magnetoresistance effect type magnetic head - Google Patents
Magnetoresistance effect type magnetic headInfo
- Publication number
- JPH08241504A JPH08241504A JP4383395A JP4383395A JPH08241504A JP H08241504 A JPH08241504 A JP H08241504A JP 4383395 A JP4383395 A JP 4383395A JP 4383395 A JP4383395 A JP 4383395A JP H08241504 A JPH08241504 A JP H08241504A
- Authority
- JP
- Japan
- Prior art keywords
- film
- bias
- magnetic
- magnetoresistive
- magnetoresistive effect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Heads (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、情報を磁気的に記憶す
る磁気ディスク装置に係り、特に、磁気抵抗効果を利用
して情報を再生する磁気ディスク装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic disk device for magnetically storing information, and more particularly to a magnetic disk device for reproducing information by utilizing a magnetoresistive effect.
【0002】[0002]
【従来の技術】磁気抵抗効果を利用して情報を再生する
場合、高記録密度とするため磁気ヘッドのトラック幅は
数ミクロンメートル程度となる。このような微小な磁気
抵抗効果膜パターンを用いると磁気ヘッドの再生信号が
歪む問題点がある。ジャーナルオブ アプライド フィ
ジックス、1981年52巻2465頁(J.Appl.Phys.52 2465
1981)には、磁気抵抗効果膜を適用した再生用磁気ヘ
ッドの信号が不規則に歪む現象が、磁気抵抗効果膜に形
成される磁壁によるものであることを示している。この
現象を、バルクハウゼンノイズと呼んでいる。これよ
り、磁気抵抗効果膜より磁壁を消失させること(単磁区
化と称する)が歪の低下に有効であることがわかる。単
磁区化の従来方法としては以下のものがある。2. Description of the Related Art When information is reproduced by utilizing the magnetoresistive effect, the track width of a magnetic head is about several micrometers because of high recording density. When such a minute magnetoresistive film pattern is used, there is a problem that the reproduction signal of the magnetic head is distorted. Journal of Applied Physics, 1981, 52, 2465 (J. Appl. Phys. 52 2465.
1981) shows that the phenomenon in which the signal of the reproducing magnetic head to which the magnetoresistive effect film is applied is distorted irregularly is due to the domain wall formed in the magnetoresistive effect film. This phenomenon is called Barkhausen noise. From this, it is found that eliminating the domain wall from the magnetoresistive film (referred to as single domain formation) is effective in reducing strain. The following are conventional methods for forming a single magnetic domain.
【0003】特開平第3−125311号公報には、磁気抵抗
効果膜,バイアス膜とそれらを分離する膜より成る磁気
センサ膜をイオンエッチングにより再生トラック幅程度
の寸法に微細化し、電極と一体となった永久磁石膜で磁
気抵抗効果膜を単磁区化する方法が開示されている。同
技術は、磁気抵抗効果膜、分離膜、バイアス膜の多層膜
上に再生トラック幅とする寸法の2層マスクレジストを
形成しイオンエッチングを用いて不用な上記多層膜部分
を除去し、レジストはそのままとして電極膜を形成し、
その後レジストを除去するものである。同構造のヘッド
は幾何学的なトラック幅すなわち記録媒体対向面より測
定した磁気抵抗効果膜の長さと、そのヘッドの再生トラ
ック幅すなわち実効的に再生感度を有する幅とがほぼ一
致する特徴がある。このことから、同構造のヘッドは1
インチ当り3000から8000トラックの記録密度を
有する磁気記録装置に搭載するヘッドとして優れてい
る。しかし、さらにトラック密度を増加させるためには
いっそう磁気ヘッドの狭トラック化が求められる。トラ
ック幅が2ミクロンメートル以下となるヘッドを前記従
来技術で実現する際、以下の問題が生じる。In Japanese Patent Laid-Open No. 3-125311, a magnetic sensor film composed of a magnetoresistive film, a bias film and a film for separating them is miniaturized to a size of a reproduction track width by ion etching and integrated with an electrode. A method of making the magnetoresistive film into a single magnetic domain with the permanent magnet film is disclosed. This technique forms a two-layer mask resist having a size of a reproduction track width on a multilayer film of a magnetoresistive film, a separation film, and a bias film, and removes unnecessary multilayer film portions by using ion etching. Form the electrode film as it is,
After that, the resist is removed. The head having the same structure is characterized in that the geometrical track width, that is, the length of the magnetoresistive film measured from the surface facing the recording medium, and the reproducing track width of the head, that is, the width having effective reproducing sensitivity, are substantially the same. . From this, the head of the same structure is 1
It is excellent as a head to be mounted on a magnetic recording device having a recording density of 3000 to 8000 tracks per inch. However, in order to further increase the track density, it is required to narrow the track of the magnetic head. The following problems occur when a head having a track width of 2 μm or less is realized by the above conventional technique.
【0004】[0004]
【発明が解決しようとする課題】磁気抵抗効果膜のエッ
チングに用いる2層レジストは下層を上層より後退させ
るアンダーカットを有する形状とするのが、イオンエッ
チング時の再付着防止、エッチング形状の制御、電極形
状の制御のため重要である。アンダーカットの量は本発
明者らの検討によれば0.5ミクロンメートル以上を要
し、それ以下は制御不能であったりまた各部形状を安定
化できないことが分かった。このため、ヘッドの狭トラ
ック化の要請により2ミクロンメートル以下とする場
合、上記従来技術ではアンダーカット幅の制限により幾
何学的トラック幅を安定に形成できず、また1ミクロン
メートル以下の幾何学的トラック幅は実現できないこと
が分かった。The two-layer resist used for etching the magnetoresistive film has an undercut that causes the lower layer to recede from the upper layer. This is to prevent reattachment during ion etching, control of etching shape, and This is important for controlling the electrode shape. According to the studies made by the present inventors, it has been found that the amount of undercut needs to be 0.5 μm or more, and if it is less than that, it cannot be controlled or the shape of each part cannot be stabilized. Therefore, when the head is made narrower than 2 μm due to the request, the above-mentioned prior art cannot stably form the geometrical track width due to the limitation of the undercut width, and the geometrical width of 1 μm or less is not possible. It turns out that the track width cannot be realized.
【0005】そこで、本発明の目的は、記録密度を向上
させた場合の磁気ディスク装置に搭載可能な狭トラック
磁気ヘッドの形成技術を提供し、高記録密度対応の磁気
ディスク装置を実現することに有る。Therefore, an object of the present invention is to provide a technique for forming a narrow track magnetic head that can be mounted on a magnetic disk device when the recording density is improved, and to realize a magnetic disk device compatible with high recording density. There is.
【0006】[0006]
【課題を解決するための手段】本発明の磁気ヘッドは、
磁気抵抗効果膜と、バイアス膜と、一対の電極と、前記
バイアス膜の磁区を制御する磁区制御膜とより成り、特
にバイアス膜が磁気抵抗効果膜より長くかつ実効再生ト
ラック幅が幾何学的トラック幅より小さいことを特徴と
している。The magnetic head of the present invention comprises:
A magnetoresistive film, a bias film, a pair of electrodes, and a magnetic domain control film for controlling the magnetic domains of the bias film. In particular, the bias film is longer than the magnetoresistive film and the effective reproduction track width is a geometric track. It is characterized by being smaller than the width.
【0007】また、本発明の磁気ヘッドは磁気抵抗効果
膜と、バイアス膜と、一対の電極と、前記バイアス膜の
磁区を制御する磁区制御膜とより成り、特にバイアス膜
が磁気抵抗効果膜より長く、かつバイアス膜と磁区制御
膜を磁気抵抗効果膜で分離した構造であり実効再生トラ
ック幅が幾何学的トラック幅より0.3ミクロンメート
ル以上小さいことを特徴としている。The magnetic head of the present invention comprises a magnetoresistive effect film, a bias film, a pair of electrodes, and a magnetic domain control film for controlling the magnetic domain of the bias film. It is long and has a structure in which the bias film and the magnetic domain control film are separated by a magnetoresistive effect film, and is characterized in that the effective reproducing track width is smaller than the geometric track width by 0.3 μm or more.
【0008】更に、本発明の磁気ヘッドは磁気抵抗効果
膜と、バイアス膜と、一対の電極と、前記バイアス膜の
磁区を制御する磁区制御膜とより成り、特にバイアス膜
が磁気抵抗効果膜より長く、かつバイアス膜と磁区制御
膜を磁気抵抗効果膜で分離した構造であり電極下部に永
久磁石膜あるいは交換結合バイアス膜等の硬磁性膜を設
けることを特徴としている。Further, the magnetic head of the present invention comprises a magnetoresistive effect film, a bias film, a pair of electrodes, and a magnetic domain control film for controlling the magnetic domain of the bias film. It is long and has a structure in which the bias film and the magnetic domain control film are separated by a magnetoresistive film, and is characterized in that a hard magnetic film such as a permanent magnet film or an exchange coupling bias film is provided below the electrodes.
【0009】更に、本発明の磁気ヘッドは磁気抵抗効果
膜と、バイアス膜と、一対の電極と、前記バイアス膜の
磁区を制御する磁区制御膜とより成り、特にバイアス膜
が磁気抵抗効果膜より長く、かつ主にバイアス膜端部磁
化のみを固定する磁区制御膜をバイアス膜と電極膜の間
に設けることを特徴としている。Further, the magnetic head of the present invention comprises a magnetoresistive effect film, a bias film, a pair of electrodes, and a magnetic domain control film for controlling the magnetic domain of the bias film. It is characterized in that a long magnetic domain control film that mainly fixes only the end magnetization of the bias film is provided between the bias film and the electrode film.
【0010】[0010]
【作用】本発明に係る磁気抵抗効果型磁気ヘッドにおい
ては、再生波形の歪であるバルクハウゼンノイズを抑制
するため主にバイアス膜を磁区制御する。この構造は以
下の特徴を有する。前記公知例が磁気抵抗効果膜端部と
永久磁石膜を交換結合させることでトラック幅方向に反
磁界が低下し、実質的にトラック幅方向が形状異方性の
容易軸となること、及び磁気抵抗効果膜全体が感磁部と
して作用をするのに対し、本発明では磁気抵抗効果膜端
部で発生する反磁界により感磁部中央の磁気抵抗効果膜
の形状異方性が実質的に等方的となり感度が増加する。
また、端部は磁気抵抗効果膜の磁化が端部に平行となり
容易に回転しないことから不感帯となり、実効再生トラ
ック幅が感磁部の磁気抵抗効果膜の幅より狭くなる。す
なわち、幾何学的な再生トラック幅より狭い、高出力の
磁気抵抗効果型ヘッドが実現できる。In the magnetoresistive head according to the present invention, the bias film is mainly domain-controlled in order to suppress Barkhausen noise which is a distortion of the reproduced waveform. This structure has the following features. In the above-mentioned known example, the demagnetizing field is reduced in the track width direction by exchange-coupling the end portion of the magnetoresistive film and the permanent magnet film, and the track width direction is substantially an easy axis of shape anisotropy. While the entire resistance effect film acts as a magneto-sensitive part, in the present invention, the shape anisotropy of the magneto-resistive film at the center of the magneto-sensitive part is substantially equal due to the demagnetizing field generated at the end of the magneto-resistive film. It becomes directional and the sensitivity increases.
Further, the end portion becomes a dead zone because the magnetization of the magnetoresistive effect film is parallel to the end portion and does not rotate easily, and the effective reproduction track width becomes narrower than the width of the magnetoresistive effect film of the magnetic sensitive portion. That is, a high-output magnetoresistive head having a smaller width than the geometrical reproduction track width can be realized.
【0011】また、上記実効的再生トラック幅は、バイ
アス作用に無関係なバイアス膜の上に永久磁石膜を設
け、発生する磁界で不感帯の幅を調整することで最適な
設計値に調整することも可能である。永久磁石膜厚と磁
束密度の積を磁気抵抗効果膜のそれの約1.6倍とするこ
とで不感帯は約0.15μmと減少するが、これ以上厚くし
てもこの値は変らない。Further, the effective reproduction track width can be adjusted to an optimum design value by providing a permanent magnet film on a bias film which is irrelevant to the bias action and adjusting the width of the dead zone with the magnetic field generated. It is possible. By setting the product of the film thickness of the permanent magnet and the magnetic flux density to about 1.6 times that of the magnetoresistive film, the dead zone is reduced to about 0.15 μm, but even if the dead zone is made thicker, this value does not change.
【0012】本発明に用いる磁区制御膜は、バイアス膜
と等しいかむしろ長く、感磁部全体にわたる。このため
これにFeMn等金属系反強磁性膜あるいはCoPt等金属系強
磁性膜を用いるとこの部分にセンス電流が分流し、磁気
抵抗効果膜の抵抗変化量が希釈され、感度が低下する。
このことから、磁区制御膜にはNiO等酸化物系の反強磁
性膜あるいはFe2O3等の酸化物系の強磁性膜を用いるの
が良い。The magnetic domain control film used in the present invention is equal to or rather long than the bias film, and extends over the entire magnetic sensitive portion. Therefore, if a metal antiferromagnetic film such as FeMn or a metal ferromagnetic film such as CoPt is used for this, the sense current is shunted to this portion, the resistance change amount of the magnetoresistive film is diluted, and the sensitivity is lowered.
Therefore, it is preferable to use an oxide-based antiferromagnetic film such as NiO or an oxide-based ferromagnetic film such as Fe2O3 for the magnetic domain control film.
【0013】[0013]
【実施例】本発明の実施例を以下に説明する。EXAMPLES Examples of the present invention will be described below.
【0014】上部シールド膜、下部シールド膜80、1
0は、磁気抵抗効果膜40に信号以外の磁界が影響する
のを防止し、磁気抵抗効果型ヘッド1000の信号分解
能を高める作用を行う。その材料は、NiFe合金、N
iCo合金、Co系の非晶質合金などの軟磁性であり、
その膜厚はおよそ0.5〜3μmである。Upper shield film, lower shield film 80, 1
0 acts to prevent the magnetic resistance effect film 40 from being affected by a magnetic field other than a signal, and to increase the signal resolution of the magnetoresistive effect head 1000. The material is NiFe alloy, N
iCo alloy, Co-based amorphous alloy and other soft magnetism,
The film thickness is about 0.5 to 3 μm.
【0015】上記磁気シールド膜80、10に隣接して
配置される上部ギャップ膜、および下部ギャップ膜7
0、20は磁気抵抗効果素子と、上部および下部シール
ド膜80、10を電気的、磁気的に隔離する作用をし、
ガラス、アルミナなどの非磁性の絶縁物などよりなる。
上記一対の信号検出電極60間は感磁部と称し、この部
分で磁気ディスクからの信号の読み取りを行う。磁気デ
ィスクからの磁気的信号を線形の電気的信号とするた
め、磁気抵抗効果膜40に横バイアス磁界を印加すべく
分離膜50、バイアス膜55が置かれる。磁気抵抗効果膜4
0は、NiFe合金、NiCo合金、NiFeCo合金
のような、磁化の方向によって電気抵抗が変化する強磁
性膜で形成される。その膜厚は、約0.01μm〜0.
045μmである。An upper gap film and a lower gap film 7 which are arranged adjacent to the magnetic shield films 80 and 10.
0 and 20 act to electrically and magnetically isolate the magnetoresistive element from the upper and lower shield films 80 and 10.
It is made of non-magnetic insulating material such as glass or alumina.
A portion between the pair of signal detection electrodes 60 is referred to as a magnetic sensing portion, and a signal is read from the magnetic disk at this portion. In order to convert the magnetic signal from the magnetic disk into a linear electric signal, a separation film 50 and a bias film 55 are placed to apply a lateral bias magnetic field to the magnetoresistive film 40. Magnetoresistive film 4
0 is formed of a ferromagnetic film such as a NiFe alloy, a NiCo alloy, or a NiFeCo alloy whose electric resistance changes depending on the direction of magnetization. The film thickness is about 0.01 μm to 0.
It is 045 μm.
【0016】信号検出電極60は、磁気抵抗効果膜40に充
分な電流、たとえば1×106〜3×107A/cm2を流すた
め、通常、電気抵抗が比較的小さいCu、Au、Nb、
Ta、Wなどの薄膜が用いられる。Since the signal detection electrode 60 allows a sufficient current to flow through the magnetoresistive film 40, for example, 1 × 10 6 to 3 × 10 7 A / cm 2, it usually has Cu, Au, Nb,
A thin film such as Ta or W is used.
【0017】ソフト膜バイアス法は、非磁性層を介し
て、磁気抵抗効果膜に隣接して、軟磁気特性を有する強
磁性膜を形成し、磁気抵抗効果膜に流れる電流によって
発生する磁界を効率よく、磁気抵抗効果膜に印加する方
法である。バイアス膜55としては、NiFeRu、N
iFeNb、NiFeRh、CoZrCrなど高電気抵抗
で飽和磁束密度ができるだけ大きい、ソフト磁性材料が
用いられる。このためソフト膜とも呼ばれる。これら
を、図1のように磁気抵抗効果膜40、分離膜50(非磁性
膜)、バイアス膜55を積層して用いる。In the soft film bias method, a ferromagnetic film having soft magnetic characteristics is formed adjacent to the magnetoresistive film via a non-magnetic layer, and a magnetic field generated by a current flowing through the magnetoresistive film is efficiently used. Often, it is a method of applying to the magnetoresistive film. As the bias film 55, NiFeRu, N
A soft magnetic material such as iFeNb, NiFeRh, and CoZrCr, which has a high electric resistance and a saturation magnetic flux density as large as possible, is used. Therefore, it is also called a soft film. These are used by laminating the magnetoresistive film 40, the separation film 50 (nonmagnetic film), and the bias film 55 as shown in FIG.
【0018】磁区制御膜30にはCoPt,CoPtCr,CoCrTa,Fe2
O3等の永久磁石膜またはNiO,FeMn,NiMnCr等の反強磁性
膜のいずれかまたはそれらを組み合わせて適用する。し
かし、磁区制御膜に金属系材料を用いた場合、同部分に
もセンス電流が分流しヘッド感度が低下するため、でき
れば酸化物等、半導体から絶縁体の比抵抗を有する材料
が良く、形成し易さの点からNiO反強磁性膜を適用する
のが良い。CoPt, CoPtCr, CoCrTa, Fe 2 is formed on the magnetic domain control film 30.
Either a permanent magnet film such as O3 or an antiferromagnetic film such as NiO, FeMn, NiMnCr, or a combination thereof is applied. However, when a metal-based material is used for the magnetic domain control film, the sense current is shunted to the same portion and the head sensitivity is lowered. Therefore, if possible, a material having a specific resistance from a semiconductor to an insulator, such as an oxide, is preferable. It is preferable to apply the NiO antiferromagnetic film from the viewpoint of easiness.
【0019】下地膜35は磁区制御膜と磁気抵抗効果膜の
磁気的結合を分離するもので前記分流比の点から高抵抗
材料が良く、磁気抵抗効果膜の結晶性を良くするために
はTaが望ましい。The underlayer film 35 separates the magnetic coupling between the magnetic domain control film and the magnetoresistive effect film, and is preferably made of a high resistance material from the viewpoint of the shunt ratio, and Ta in order to improve the crystallinity of the magnetoresistive effect film. Is desirable.
【0020】次に、磁気抵抗効果型ヘッド1000の製
造方法について説明する。尚、下記の薄膜形成方法およ
びパターニング方法は、スパッタリング法やエッチン
グ、フォトリソグラフィー法を用いた。Next, a method of manufacturing the magnetoresistive head 1000 will be described. The thin film forming method and patterning method described below used a sputtering method, an etching method, and a photolithography method.
【0021】以下に具体的な作製法の主要部を図2に示
す。図は磁気抵抗効果ヘッドを浮上面加工後媒体対抗面
となるべき位置の断面図であらわしている。最初に、下
部シールド膜10とするNiFe合金を形成し、その後そ
の上部に下部ギャップ膜20とするアルミナを形成す
る。そして、この下部シールド膜10と下部ギャップ膜20
とを所定の形状に加工する(a)。次に、下部ギャップ膜2
0の上側に0.04〜0.15μmの酸化物反強磁性膜30を
形成する。磁区制御効果のある酸化物膜は、強磁性膜あ
るいは反強磁性膜が良いが外部磁界に対する安定度、ブ
ロッキング温度、作製し易さから、反強磁性酸化ニッケ
ル(NiO)が望ましい。酸化物反強磁性膜45の材料
としては、上記NiOのほか、ヘマタイト(α−Fe2
O3でも代用可能と推定できる。さらに、NiOにF
e、Co、Niの磁性元素や希土類磁性元素La、C
e、Pr、Nd、Pm、Sm、Gd、Tb、Dy、H
o、Er、Tm、Ybを添加しても代用可能である。FIG. 2 shows the main part of a specific manufacturing method below. The figure shows a cross-sectional view of a position where the magnetoresistive head is to be the medium facing surface after the air bearing surface processing. First, a NiFe alloy to be the lower shield film 10 is formed, and then alumina to be the lower gap film 20 is formed on the NiFe alloy. Then, the lower shield film 10 and the lower gap film 20
And are processed into a predetermined shape (a). Next, the lower gap film 2
An oxide antiferromagnetic film 30 of 0.04 to 0.15 μm is formed on the upper side of 0. The oxide film having a magnetic domain control effect is preferably a ferromagnetic film or an antiferromagnetic film, but antiferromagnetic nickel oxide (NiO) is preferable in terms of stability against an external magnetic field, blocking temperature, and ease of production. As the material of the oxide antiferromagnetic film 45, in addition to the above NiO, hematite (α-Fe2
It can be estimated that O3 can be substituted. Furthermore, NiO to F
e, Co, Ni magnetic elements and rare earth magnetic elements La, C
e, Pr, Nd, Pm, Sm, Gd, Tb, Dy, H
It is also possible to substitute by adding o, Er, Tm, and Yb.
【0022】磁区制御膜上に2層レジストフレームを形
成し(b)、下地膜35としてTa5nm、磁気抵抗効果膜40とし
てパーマロイ20nm、分離膜50としてTa5nmを順に形成
し、リフトオフすると図c)の様なパターンが形成され
る。この上にバイアス膜としてNiFeNb膜をスパッタリン
グ形成した後、紙面に平行に素子高さ方向をイオンエッ
チングにより加工する(d)。其の後2層レジストにより幾
何学的トラック幅を決めるフレームを形成する(e)。上
層レジスト110は幅2ミクロンメートル、下層レジスト11
1はアンダーカット量片側0.5ミクロンメートルを見込ん
で幅1ミクロンメートルとした。この上にTa/Au/Taの3層
膜を形成し、リフトオフすることでf)の電極形状を得
る。A two-layer resist frame is formed on the magnetic domain control film (b), Ta5 nm as the underlayer film 35, Permalloy 20 nm as the magnetoresistive film 40, and Ta5 nm as the separation film 50 are sequentially formed, and lift-off is performed, as shown in FIG. Such a pattern is formed. A NiFeNb film is formed as a bias film on this by sputtering, and then the element height direction is processed by ion etching parallel to the paper surface (d). After that, a frame that determines the geometrical track width is formed by a two-layer resist (e). The upper layer resist 110 is 2 μm wide, and the lower layer resist 11
The width of 1 was set to 1 μm width by taking into account 0.5 μm on one side. A three-layer film of Ta / Au / Ta is formed on this, and lift-off is performed to obtain the electrode shape of f).
【0023】その後、上部磁気シールド膜80とするN
iFe合金膜を2μmの厚さに形成し、さらに上部書き
込みヘッドの記録ギャップとなるアルミナ膜90を0.5ミ
クロンメートル形成後、書き込みヘッドコイル、層間絶
縁膜を形成後ライトヘッド95をNiFe合金により形成す
る。ライトヘッド95の幅は記録トラック幅に相当し、3
ミクロンメートルとした。その後保護膜としてアルミナ
を20ミクロンメートル形成し、磁気抵抗効果型ヘッド1
000の作成を完了する。Thereafter, the upper magnetic shield film 80, N, is formed.
An iFe alloy film is formed to a thickness of 2 μm, an alumina film 90 to be a recording gap of the upper write head is formed to 0.5 μm, a write head coil and an interlayer insulating film are formed, and then a write head 95 is formed of a NiFe alloy. . The width of the write head 95 corresponds to the recording track width,
It was set to micrometer. After that, alumina is formed to a thickness of 20 μm as a protective film, and the magnetoresistive head 1
000 is completed.
【0024】本発明のヘッドは、幾何学的トラック幅2
ミクロンメートルより狭い実効的トラック幅となる高感
度でノイズの無い磁気抵抗効果型磁気ヘッドを提供でき
る。The head of the present invention has a geometric track width of 2
It is possible to provide a high-sensitivity and noise-free magnetoresistive magnetic head having an effective track width narrower than a micrometer.
【0025】本発明による磁気抵抗効果ヘッドの再生ト
ラックプロフィールを図3に示す。図はヘッド1000によ
り書き込んだ信号を、ヘッドを微小量移動させて別な周
波数で消して形成したマイクロトラック上をヘッドを移
動させて読みだした信号強度とヘッド位置をプロットし
たものである。比較の為前記公知例の手法を用いて同じ
幾何学的再生トラック幅で形成したヘッド1100のトラッ
クプロフィールを合わせて示す。図中プロフィールの積
分強度がヘッド再生出力となることから、2つの出力は
ほぼ同等となった。しかし実効的トラック幅はヘッド10
00が1.4ミクロンメートル、ヘッド1100が1.9ミクロンメ
ートルとなり、ヘッド1000の方がより狭い再生トラック
幅を実現できる。ヘッド1100の構造で1.4ミクロンメー
トルを実現するためには2層レジストの下層を0.4ミクロ
ンメートルとすべきであるが、このような幅の下層レジ
ストは寸法が安定せず、レジストの剥がれ、ゆがみの原
因となり実用に耐えないことを確認している。また、ヘ
ッド1000の電極60の形成時にCoCr膜40nmを予め形成した
ヘッドは、実効的トラック幅は1.6nmとなり、マスク寸
法を変更せずトラック幅を変えることができる。The reproducing track profile of the magnetoresistive head according to the present invention is shown in FIG. The drawing is a plot of the signal intensity and the head position read by moving the head on a micro track formed by erasing a signal written by the head 1000 by a minute amount and erasing at a different frequency. For comparison, the track profile of the head 1100 formed with the same geometric reproduction track width using the method of the above-mentioned known example is also shown. Since the integrated intensity of the profile in the figure is the head reproduction output, the two outputs are almost the same. However, the effective track width is 10
00 is 1.4 μm, head 1100 is 1.9 μm, and head 1000 can realize a narrower reproduction track width. In order to realize 1.4 μm in the structure of the head 1100, the lower layer of the double-layer resist should be 0.4 μm, but the lower-layer resist of such width is not dimensionally stable, and resist peeling and distortion may occur. It has been confirmed that it becomes a cause and cannot be put to practical use. Further, in the head in which the CoCr film 40 nm is previously formed when the electrode 60 of the head 1000 is formed, the effective track width is 1.6 nm, and the track width can be changed without changing the mask dimension.
【0026】[0026]
【発明の効果】本発明によると、ノイズレス、高出力と
できる高密度磁気記録用磁気抵抗効果型磁気ヘッドを実
現できる。According to the present invention, it is possible to realize a magnetoresistive effect magnetic head for high density magnetic recording, which is capable of noiseless and high output.
【図1】本発明の一実施例の磁気抵抗効果型磁気ヘッド
を示す斜視図。及び断面図。FIG. 1 is a perspective view showing a magnetoresistive effect magnetic head according to an embodiment of the present invention. And a cross-sectional view.
【図2】本発明のヘッドの作製プロセスの概略図。FIG. 2 is a schematic view of a head manufacturing process of the present invention.
【図3】本発明のヘッドの実効的トラック幅測定例。FIG. 3 shows an example of effective track width measurement of the head of the present invention.
1…基板、 10…下部シールド膜、 20
…下部ギャップ膜、40…磁気抵抗効果膜、 30…磁
区制御膜、 50…分離膜、55…バイアス膜、
60…信号検出電極、 70…上部ギャップ膜、
80…上部シールド膜、 95…記録ヘッド上部磁気コ
ア、90…記録ヘッドギャップ、 1000…磁気抵
抗効果型磁気ヘッド、101…上部レジスト幅、
111…下部レジスト幅、Wcd…実効的トラック
幅。1 ... Substrate, 10 ... Lower shield film, 20
... Lower gap film, 40 ... Magnetoresistive film, 30 ... Domain control film, 50 ... Separation film, 55 ... Bias film,
60 ... Signal detection electrode, 70 ... Upper gap film,
80 ... Upper shield film, 95 ... Recording head upper magnetic core, 90 ... Recording head gap, 1000 ... Magnetoresistive magnetic head, 101 ... Upper resist width,
111 ... Lower resist width, Wcd ... Effective track width.
Claims (4)
信号に変換する磁気抵抗効果膜と、前記磁気抵抗効果膜
にバイアスを印加するバイアス膜と、前記磁気抵抗効果
膜に信号検出電流を流すための一対の電極と、前記バイ
アス膜の磁区を制御する磁区制御膜とより成り、特にバ
イアス膜が磁気抵抗効果膜より長くかつ実効再生トラッ
ク幅が幾何学的トラック幅より小さいことを特徴とする
磁気抵抗効果型磁気ヘッド。1. A magnetoresistive effect film for converting a magnetic signal into an electric signal by using a magnetoresistive effect, a bias film for applying a bias to the magnetoresistive effect film, and a signal detection current for the magnetoresistive effect film. And a magnetic domain control film for controlling the magnetic domain of the bias film, wherein the bias film is longer than the magnetoresistive film and the effective reproduction track width is smaller than the geometric track width. And a magnetoresistive effect type magnetic head.
信号に変換する磁気抵抗効果膜と、前記磁気抵抗効果膜
にバイアスを印加するバイアス膜と、前記磁気抵抗効果
膜に信号検出電流を流すための一対の電極と、前記バイ
アス膜の磁区を制御する磁区制御膜とより成り、特にバ
イアス膜が磁気抵抗効果膜より長く、かつバイアス膜と
磁区制御膜を磁気抵抗効果膜で分離した構造であり実効
再生トラック幅が幾何学的トラック幅より0.3ミクロ
ンメートル以上小さいことを特徴とする磁気抵抗効果型
磁気ヘッド。2. A magnetoresistive effect film for converting a magnetic signal into an electrical signal by using a magnetoresistive effect, a bias film for applying a bias to the magnetoresistive effect film, and a signal detection current for the magnetoresistive effect film. And a magnetic domain control film for controlling the magnetic domain of the bias film, wherein the bias film is longer than the magnetoresistive film and the bias film and the magnetic domain control film are separated by the magnetoresistive film. A magnetoresistive head having a structure and having an effective reproducing track width smaller than a geometric track width by 0.3 μm or more.
信号に変換する磁気抵抗効果膜と、前記磁気抵抗効果膜
にバイアスを印加するバイアス膜と、前記磁気抵抗効果
膜に信号検出電流を流すための一対の電極と、前記バイ
アス膜の磁区を制御する磁区制御膜とより成り、特にバ
イアス膜が磁気抵抗効果膜より長く、かつバイアス膜と
磁区制御膜を磁気抵抗効果膜で分離した構造であり電極
下部に永久磁石膜あるいは交換結合バイアス膜等の硬磁
性膜を設けることを特徴とする磁気抵抗効果型磁気ヘッ
ド。3. A magnetoresistive effect film for converting a magnetic signal into an electric signal by using a magnetoresistive effect, a bias film for applying a bias to the magnetoresistive effect film, and a signal detection current for the magnetoresistive effect film. And a magnetic domain control film for controlling the magnetic domain of the bias film, wherein the bias film is longer than the magnetoresistive film and the bias film and the magnetic domain control film are separated by the magnetoresistive film. A magnetoresistive effect magnetic head having a structure, wherein a hard magnetic film such as a permanent magnet film or an exchange coupling bias film is provided below the electrodes.
信号に変換する磁気抵抗効果膜と、前記磁気抵抗効果膜
にバイアスを印加するバイアス膜と、前記磁気抵抗効果
膜に信号検出電流を流すための一対の電極と、前記バイ
アス膜の磁区を制御する磁区制御膜とより成り、特にバ
イアス膜が磁気抵抗効果膜より長く、かつ主にバイアス
膜端部磁化のみを固定する磁区制御膜をバイアス膜と電
極膜の間に設けることを特徴とする磁気抵抗効果型磁気
ヘッド。4. A magnetoresistive effect film for converting a magnetic signal into an electric signal by using a magnetoresistive effect, a bias film for applying a bias to the magnetoresistive effect film, and a signal detection current for the magnetoresistive effect film. And a magnetic domain control film for controlling the magnetic domain of the bias film, and in particular, the bias film is longer than the magnetoresistive film and mainly fixes only the end magnetization of the bias film. Is provided between the bias film and the electrode film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4383395A JPH08241504A (en) | 1995-03-03 | 1995-03-03 | Magnetoresistance effect type magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4383395A JPH08241504A (en) | 1995-03-03 | 1995-03-03 | Magnetoresistance effect type magnetic head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08241504A true JPH08241504A (en) | 1996-09-17 |
Family
ID=12674761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4383395A Pending JPH08241504A (en) | 1995-03-03 | 1995-03-03 | Magnetoresistance effect type magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08241504A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6631547B2 (en) | 2000-09-14 | 2003-10-14 | Hitachi, Ltd. | Manufacturing method for thin film magnetic heads |
-
1995
- 1995-03-03 JP JP4383395A patent/JPH08241504A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6631547B2 (en) | 2000-09-14 | 2003-10-14 | Hitachi, Ltd. | Manufacturing method for thin film magnetic heads |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4051271B2 (en) | Magnetic recording head and magnetic recording / reproducing apparatus | |
JP3657916B2 (en) | Magnetoresistive head and perpendicular magnetic recording / reproducing apparatus | |
JP2005203063A (en) | Magnetic head and magnetic recording/reproducing device | |
US6721147B2 (en) | Longitudinally biased magnetoresistance effect magnetic head and magnetic reproducing apparatus | |
KR100389598B1 (en) | Magnetoresistive sensor, magnetoresistive head, and magnetic recording/reproducing apparatus | |
JP3680655B2 (en) | Magnetoresistive element and manufacturing method thereof | |
Khizroev et al. | Considerations in the design of probe heads for 100 Gbit/in/sup 2/recording density | |
US6765769B2 (en) | Magnetoresistive-effect thin film, magnetoresistive-effect element, and magnetoresistive-effect magnetic head | |
US6556391B1 (en) | Biasing layers for a magnetoresistance effect magnetic head using perpendicular current flow | |
US6120920A (en) | Magneto-resistive effect magnetic head | |
JPH05135332A (en) | Magneto-resistance effect playback head and magnetic recording device using this head | |
JP3294742B2 (en) | Magnetoresistive head | |
JP2008192269A (en) | Magnetic read head and its manufacturing method | |
US7057861B2 (en) | Electromagnetic transducer laminate with different widths for the semi-hard magnetic layer and the first ferromagnetic layer | |
JP2001229515A (en) | Magneto-resistive magnetic head and magnetic reproducing device using the same | |
JP2008243267A (en) | Magnetic reproduction head and magnetic head | |
JPH08241504A (en) | Magnetoresistance effect type magnetic head | |
JPH1125431A (en) | Magneto-resistance effect type reproducing head and magnetic recording and reproducing device | |
JPH0877517A (en) | Magneto-resistive head and its production | |
JPH11175928A (en) | Magnetic reluctance effect head and magnetic recording and reproducing device | |
JPH08221717A (en) | Magneto-resistive magnetic head | |
JP2821586B2 (en) | Thin film magnetic head | |
JP3233115B2 (en) | Magnetoresistive head and method of manufacturing the same | |
JPH06103536A (en) | Magneto-resistance effect type magnetic head | |
JP2003006818A (en) | Magnetic-reluctance reproducing head with two ferromagnetic films bound to each other in nonpararrel |