JPH0821404B2 - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH0821404B2
JPH0821404B2 JP1135048A JP13504889A JPH0821404B2 JP H0821404 B2 JPH0821404 B2 JP H0821404B2 JP 1135048 A JP1135048 A JP 1135048A JP 13504889 A JP13504889 A JP 13504889A JP H0821404 B2 JPH0821404 B2 JP H0821404B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
electrode
secondary battery
electrolyte
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1135048A
Other languages
Japanese (ja)
Other versions
JPH031450A (en
Inventor
修 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP1135048A priority Critical patent/JPH0821404B2/en
Publication of JPH031450A publication Critical patent/JPH031450A/en
Publication of JPH0821404B2 publication Critical patent/JPH0821404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電池活物質が液状である二次電池に係り、
特に短時間充放電が可能な、保守および運転性に優れた
二液式二次電池に関するものである。
TECHNICAL FIELD The present invention relates to a secondary battery in which a battery active material is liquid,
In particular, the present invention relates to a two-component secondary battery that can be charged and discharged for a short time and has excellent maintenance and drivability.

〔従来の技術〕[Conventional technology]

二次電池の主流は鉛蓄電池やニッケル・カドミウム電
池等であるが、近年になってレドックス・フロー型電
池、亜鉛−塩素電池、亜鉛−臭素電池などの新型二次電
池の開発が進められている。二次電池の中で最も広く普
及している鉛蓄電池は、深い放電を行いにくいほか、短
時間に定格での連続充放電を行う、いわゆる短時間充放
電用として、またランダムに1日に数サイクルの充放電
を繰り返す、いわゆるサイクル寿命が要求される用途に
は適していない。
The mainstream of secondary batteries are lead-acid batteries and nickel-cadmium batteries, but in recent years development of new-type secondary batteries such as redox flow type batteries, zinc-chlorine batteries, and zinc-bromine batteries has been underway. . Lead-acid batteries, which are the most widespread among secondary batteries, do not perform deep discharge easily, and are used for so-called short-time charge / discharge that performs continuous continuous charge / discharge at the rated time in a short time, or randomly at a few days per day. It is not suitable for applications in which so-called cycle life is required, in which charge and discharge of cycles are repeated.

一方、レドックス・フロー型電池は複数を積層して用
いる場合も、均等充電操作や完全放電操作が不要であ
り、どのような充放電状態においても停止および起動が
即時にできるうえ、長時間にわたる放置または連続運転
にも対応でき、最もメンテナンス性のよい電池として知
られている。最近このレドックス・フロー型電池のメン
テナンス性の良さが注目され、太陽光電池バックアップ
用の二次電池として、充放電に要する時間が短くしかも
高い電圧効率が要求される独立電源システムに利用しよ
うとする提案がなされている。
On the other hand, redox flow type batteries do not require uniform charging operation or complete discharging operation even when a plurality of redox flow type batteries are stacked, and can be stopped and started immediately in any charging / discharging state and left for a long time. Alternatively, it is known as a battery that can be continuously operated and has the best maintainability. Recently, attention has been paid to the good maintainability of this redox flow battery, and a proposal to use it as an independent power supply system that requires a short time for charging and discharging and high voltage efficiency as a secondary battery for solar battery backup Has been done.

しかしながら、従来のレドックス・フロー型二次電池
は、ランダムな充放電には対応できるが、定格での充放
電に長時間を要するうえ、高い電圧効率を接続すること
ができないものであった。
However, the conventional redox flow type secondary battery can cope with random charging / discharging, but it takes a long time to charge / discharge at the rated value and cannot connect high voltage efficiency.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明の目的は、上記従来技術の問題点を解決し、定
格による充放電が数時間内にできるうえ、1日に数サイ
クルの充放電にも耐えられるサイクロ寿命があり、かつ
高い電圧効率を持続することができる二液式の二次電池
を提供することにある。
The object of the present invention is to solve the above-mentioned problems of the prior art, to allow charging / discharging according to the rating within a few hours, to have a cyclo life capable of withstanding several cycles of charging / discharging a day, and to achieve high voltage efficiency. An object of the present invention is to provide a two-component secondary battery that can last.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者等は、メンテナンスフリーの二次電池を得る
ために、レドックス・フロー型二次電池について鋭意研
究を続けた結果、レドックス・フロー型二次電池におけ
る電解液循環系統内の全電解液量に対する電極に保持さ
れる電解液量の割合(以下、電極の電解液保持割合とい
うことがある)を増加させることにより、レドックス・
フロー型電池の電圧効率が著しく向上することを見出し
本発明に到達した。
The inventors of the present invention continued to earnestly study redox flow type secondary batteries in order to obtain a maintenance-free secondary battery, and as a result, the total amount of electrolyte solution in the electrolyte circulation system in the redox flow type secondary battery. By increasing the ratio of the amount of electrolytic solution retained in the electrode to the electrode (hereinafter, also referred to as the electrolytic solution retaining ratio of the electrode).
The inventors have found that the voltage efficiency of a flow type battery is remarkably improved and have reached the present invention.

すなわち本発明は、電解液を含浸または流通する透過
型電極を内臓した電池本体と、該電池本体に電解液を循
環する配管および送液手段と、前記電解液を貯留する容
器とを有する二液式二次電池において、前記透過型電極
に保持される電解液量が電解液循環系統内の、充放電に
関与する全電解液量の10%以上になるように構成したこ
とを特徴とする。
That is, the present invention is a two-part battery having a battery main body containing a transparent electrode that impregnates or circulates the electrolytic solution, a pipe and a liquid feeding means for circulating the electrolytic solution in the battery main body, and a container for storing the electrolytic solution. The secondary battery is characterized in that the amount of the electrolytic solution held by the transmission electrode is 10% or more of the total amount of the electrolytic solution involved in charging and discharging in the electrolytic solution circulation system.

第1図は、本発明の原理を説明するためのレドックス
・フロー型二次電池の充放電回路を示す図である。この
回路は、小型単電池1と、該小型単電池1の正極または
負極にそれぞれ循環される電解液を貯留する正極液貯留
槽2および負極液貯留槽3と、該正負両極液貯留槽2お
よび3と前記小型単電池1の正極および負極とをそれぞ
れ連結する電解液循環系統4および5と、該電解液循環
系統4および5に共通に設けられたチューブポンプ6と
から主として構成されている。
FIG. 1 is a diagram showing a charging / discharging circuit of a redox flow type secondary battery for explaining the principle of the present invention. This circuit comprises a small-sized cell 1, a positive-electrode liquid storage tank 2 and a negative-electrode liquid storage tank 3 for storing electrolyte solutions circulated in the positive electrode and the negative electrode of the small-sized cell 1, respectively, and the positive and negative bipolar liquid storage tanks 2, 3 and the electrolytic solution circulating systems 4 and 5 for connecting the positive electrode and the negative electrode of the small unit cell 1, respectively, and the tube pump 6 commonly provided to the electrolytic solution circulating systems 4 and 5.

このようなレドックス・フロー型二次電池の充放電回
路において、例えば、単電池の隔膜として陽イオン交換
膜を、正極および負極としてそれぞれ縦100mm、横10m
m、厚さ5mmのカーボンフェルトであって電解液保持量が
それぞれ3.5mlのもの(空孔率:0.7)を、正極液として
バナジウム2価/3価のイオン活物質濃度が2mol/の2
規定硫酸水溶液を、負極液としてバナジウム4価/5価の
イオン活物質濃度が2mol/の2規定硫酸水溶液をそれ
ぞれ用い、正極および負極の全循環電解液量を変化させ
ることにより、正負両極の電解液保持割合を変化させて
10分間充電した後、10分間放電する操作を繰り返し、電
極の電解液保持割合と電圧効率(平均電圧との比)ηv
の関係を求めた。結果を第1表に示す。なお、このとき
の正負両極の送液量は3ml/min、通電量は400mV、電解槽
温度は25℃であった。
In such a redox flow type secondary battery charging / discharging circuit, for example, a cation exchange membrane is used as a diaphragm of a single cell, and a positive electrode and a negative electrode are each 100 mm in length and 10 m in width.
m, 5mm thick carbon felt with 3.5ml of each electrolyte retention (porosity: 0.7), 2% vanadium / trivalent ion active material concentration of 2mol /
Electrolysis of both positive and negative electrodes is performed by changing the total circulating electrolyte volume of the positive and negative electrodes by using the normal sulfuric acid aqueous solution as the negative electrode solution and the 2N sulfuric acid aqueous solution with vanadium tetravalent / 5 valent ion active material concentration of 2 mol /. Change the liquid retention ratio
The operation of charging for 10 minutes and then discharging for 10 minutes was repeated. Electrolyte holding ratio of electrodes and voltage efficiency (ratio to average voltage) ηv
Asked for a relationship. The results are shown in Table 1. At this time, the liquid feed rate of the positive and negative electrodes was 3 ml / min, the energization amount was 400 mV, and the electrolytic cell temperature was 25 ° C.

第1表から、正極および負極の電解液保持量をそれぞ
れ3.5mlで一定とし、充放電に関与する全電解液量を絞
り込んで、全電解液量に対する電極の電解液保持割合を
相対的に大きくしてゆくと、タンク内混合の問題がなく
なり、全電解液自身の充電深度が立ち上がり電圧効率が
次第に向上することが分かる。また、電極の電解液保持
割合を10%以上とすることにより、10%未満のときに較
べて電圧効率が著しく大きくなることが分かる。
From Table 1, the electrolyte holding amount of the positive electrode and the negative electrode is kept constant at 3.5 ml respectively, and the total amount of electrolytic solution involved in charging / discharging is narrowed down so that the electrolyte holding ratio of the electrode relative to the total amount of electrolytic solution is relatively large. By doing so, it can be seen that the problem of mixing in the tank disappears, the charging depth of the entire electrolyte solution rises, and the voltage efficiency gradually improves. Further, it can be seen that when the electrolytic solution holding ratio of the electrode is set to 10% or more, the voltage efficiency is significantly increased as compared with the case of less than 10%.

第2図は、電極の電解液保持割合と電圧効率ηvとの
関係を示す図である。図において電極の電解液保持割合
が大きくなるに従って電圧効率ηvも大きくなり、電極
の電解液保持割合が10%以上になると電圧効率ηvは80
%以上となり、電極の電解液保持割合が20%以上になれ
ばηvは85%以上の高効率になることがわかる。
FIG. 2 is a diagram showing the relationship between the electrolytic solution holding ratio of the electrodes and the voltage efficiency ηv. In the figure, the voltage efficiency ηv increases as the electrode electrolyte retention rate increases, and when the electrode electrolyte retention rate becomes 10% or more, the voltage efficiency ηv becomes 80%.
% Or more, and if the electrolytic solution holding ratio of the electrode is 20% or more, ηv becomes high efficiency of 85% or more.

本発明において電極の電解液保持量とは、電解液循環
系統内の電解液のうち電極に含浸される液量をいう。
In the present invention, the electrolytic solution holding amount of the electrode means the amount of the electrolytic solution in the electrolytic solution circulation system which is impregnated into the electrode.

本発明において、電極の電解液保持割合が10%以上に
なるように構成した二次電池とは、例えば電極材として
炭素繊維フェルトの積層体に代表される電解液保持容量
の大きいものを用い、また電解液循環系統の例えばマニ
ホールド、スリット等の径を小さくし、さらには循環ポ
ンプとして可能な限り小型のものを用いるなどして電解
液循環系統の全内容積を電極の電解液保持量の10倍以下
に抑え、相対的に電極の電解液保持割合を10%以上に設
定したものがあげられる。
In the present invention, the secondary battery configured so that the electrolyte holding ratio of the electrode is 10% or more, for example, using a large electrolyte holding capacity represented by a laminate of carbon fiber felt as an electrode material, Also, for example, by reducing the diameter of the manifold, slits, etc. of the electrolytic solution circulation system, and by using the smallest possible circulation pump, the total internal volume of the electrolytic solution circulation system should be 10% of the electrolytic solution retention amount of the electrode. One example is one in which the electrolytic solution holding ratio of the electrodes is set to 10% or more while suppressing the amount to less than or equal to twice.

本発明においては、電極の電解液保持割合を10%以
上、好ましくは30%以上とする。電極の電解液保持割合
を10%以上にすることにより、電圧効率が高くなり、ま
た短時間での定格による充放電が可能となる。電極の電
解液保持割合が10%未満では電圧効率ηvが80%以下と
なり、本発明の目的が達成されなくなる。
In the present invention, the electrolytic solution holding ratio of the electrode is 10% or more, preferably 30% or more. By setting the electrolytic solution holding ratio of the electrode to 10% or more, voltage efficiency becomes high, and charging / discharging according to the rating becomes possible in a short time. If the electrolyte holding ratio of the electrode is less than 10%, the voltage efficiency ηv becomes 80% or less, and the object of the present invention cannot be achieved.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be described in more detail with reference to Examples.

第3図は、本発明の一実施例を示すレドックス・フロ
ー型二次電池の部分断面図である。この二次電池は、正
極および負極を有する電解槽ならびに電解液循環系統が
同一の枠体内に収納されたものである。図においてこの
二次電池は、同一枠体内に一体に収納された、正極11お
よび負極12を有する電解槽と、該正極11および負極12へ
活物質電解液をそれぞれ循環する正極側マニホルド14お
よび負極側マニホルド15と、前記活物質電解液を貯留す
る正極液溜部16および負極液溜部17と、活物質電解液を
循環する手動式の正極側および負極側電解液循環ポンプ
18および19とから主としてなり、前記電解槽は隔膜10を
介して隣接する正極11および負極12からなる複数の単セ
ルからなり、この単セルは複極仕切板13を介して積層さ
れている。電極反応に関与する全電解液量に対する電極
に保持される電解液量の割合は、電極として電解液保持
容量が多い100mm×100mm×6mmの炭素繊維フェルトの積
層体をそれぞれ用い、かつマニホールド、スリット、電
解液貯留部等からなる電解液循環系統の全内容積を調節
して50%になるように構成されている。
FIG. 3 is a partial cross-sectional view of a redox flow type secondary battery showing an embodiment of the present invention. In this secondary battery, an electrolytic cell having a positive electrode and a negative electrode and an electrolytic solution circulation system are housed in the same frame. In the figure, this secondary battery includes an electrolytic cell having a positive electrode 11 and a negative electrode 12, which are integrally housed in the same frame, a positive electrode side manifold 14 and a negative electrode 14 for circulating an active material electrolytic solution to the positive electrode 11 and the negative electrode 12, respectively. Side manifold 15, positive electrode liquid reservoir 16 and negative electrode liquid reservoir 17 that store the active material electrolyte, and manual positive and negative electrode electrolyte circulation pumps that circulate the active material electrolyte
The electrolytic cell is mainly composed of 18 and 19, and the electrolytic cell is composed of a plurality of single cells composed of a positive electrode 11 and a negative electrode 12 which are adjacent to each other with a diaphragm 10 therebetween, and the single cells are laminated with a bipolar partition plate 13 interposed therebetween. The ratio of the amount of electrolyte solution retained in the electrode to the total amount of electrolyte solution involved in the electrode reaction is determined by using a stack of 100 mm × 100 mm × 6 mm carbon fiber felt, which has a large electrolytic solution holding capacity, as the electrode, and the manifold and slit. The total internal volume of the electrolytic solution circulation system including the electrolytic solution storage section and the like is adjusted to be 50%.

この二次電池により、正極側電解液としてバナジウム
2価/3価イオン活物質濃度が2mol/の2規定硫酸水溶
液を、また負極液としてバナジウム4価/5価イオン活物
質濃度が2mol/の2規定硫酸水溶液を用い、太陽光電
池と接続してバックアップ用二次電池として使用したと
ころ、数日に1回、すなわち間歇的に正極および負極電
解液循環ポンプ18および19を作動させて電解槽内の活物
質電解液を更新する以外はメンテナンスフリーで、2ケ
月経過後の現在もトラブルは皆無であり、電圧効率ηv
は常に83%以上を示していた。
With this secondary battery, a 2N sulfuric acid aqueous solution having a vanadium divalent / trivalent ion active material concentration of 2 mol / was used as the positive electrode side electrolyte, and a vanadium tetravalent / 5 valent ion active material concentration of 2 mol / was used as the negative electrode liquid. When using a specified sulfuric acid aqueous solution and connecting it to a solar cell and using it as a backup secondary battery, once in a few days, that is, intermittently, the positive and negative electrode electrolyte circulation pumps 18 and 19 were activated to operate in the electrolytic cell. It is maintenance-free except for renewing the active material electrolyte, and there are no problems even after two months have passed. Voltage efficiency ηv
Always showed more than 83%.

本実施例によれば、電解液循環ポンプ18および19、マ
ニホルド14および15、並びに液溜部16および17を可能な
限り小さくし、電極反応に関与する全電解液量に対する
電極に保持される電解液量の割合を50%に設定したの
で、電圧効率ηvが高く、短時間での定格の充放電も可
能となり、さらにランダムな充放電に対するサイクル寿
命が長くなる。また従来のレドックス・フロー型二次電
池においては、電解液のコストが全体のコストに占める
割合は著しく大きく、鉛蓄電池などと較べ経済的に不利
であったが、本実施例によれば、貯留する電解液量が従
来のものに較べ格段に少ないために経済性が向上する。
According to the present embodiment, the electrolytic solution circulation pumps 18 and 19, the manifolds 14 and 15, and the liquid reservoirs 16 and 17 are made as small as possible, and the electrolysis held in the electrode with respect to the total amount of the electrolytic solution involved in the electrode reaction. Since the ratio of the liquid amount is set to 50%, the voltage efficiency ηv is high, the rated charge / discharge can be performed in a short time, and the cycle life for random charge / discharge is extended. Further, in the conventional redox flow type secondary battery, the cost of the electrolytic solution accounts for a significant proportion of the total cost, which is economically disadvantageous as compared with the lead storage battery, but according to this example, the storage is The amount of electrolyte to be used is much smaller than that of the conventional one, so that the economical efficiency is improved.

〔発明の効果〕〔The invention's effect〕

本発明によれば、二液式二次電池の電圧効率が向上
し、短時間での定格による充放電が可能となる上、ラン
ダムな充放電に対するサイクル寿命が長くなる。
ADVANTAGE OF THE INVENTION According to this invention, the voltage efficiency of a two-component secondary battery improves, it becomes possible to charge / discharge by a rating in a short time, and the cycle life for random charge / discharge becomes long.

【図面の簡単な説明】[Brief description of drawings]

第1図は、レドックス・フロー型二次電池の充放電回路
を示す図、第2図は、レドックス・フロー型二次電池に
おける、電極の電解液保持割合と電圧効率ηvとの関係
を示す図、第3図は、本発明の一実施例を示すレドック
ス・フロー型二次電池の部分断面図である。 11……正極、12……負極、14……正極側マニホールド、
15……負極側マニホールド、16……正極液溜部、17……
負極液溜部。
FIG. 1 is a diagram showing a charge / discharge circuit of a redox flow type secondary battery, and FIG. 2 is a diagram showing a relationship between an electrode electrolyte retention ratio and voltage efficiency ηv in the redox flow type secondary battery. FIG. 3 is a partial cross-sectional view of a redox flow type secondary battery showing an embodiment of the present invention. 11 …… positive electrode, 12 …… negative electrode, 14 …… positive electrode side manifold,
15 …… Negative side manifold, 16 …… Positive electrode reservoir, 17 ……
Anode liquid reservoir.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電解液を含浸または流通する透過型電極を
内蔵した電池本体と、該電池本体に電解液を循環する配
管および送液手段と、前記電解液を貯留する容器とを有
する二液式二次電池において、前記透過型電極に保持さ
れる電解液量が電解液循環系統内の、充放電に関与する
全電解液量の10%以上になるように構成したことを特徴
とする二液式二次電池。
1. A two-part liquid having a battery main body containing a transparent electrode for impregnating or circulating an electrolytic solution, a pipe and a liquid feeding means for circulating the electrolytic solution in the battery main body, and a container for storing the electrolytic solution. In the secondary battery of the formula, the amount of the electrolytic solution held by the transmission electrode is configured to be 10% or more of the total amount of the electrolytic solution involved in charging and discharging in the electrolytic solution circulation system. Liquid secondary battery.
JP1135048A 1989-05-29 1989-05-29 Secondary battery Expired - Lifetime JPH0821404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1135048A JPH0821404B2 (en) 1989-05-29 1989-05-29 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1135048A JPH0821404B2 (en) 1989-05-29 1989-05-29 Secondary battery

Publications (2)

Publication Number Publication Date
JPH031450A JPH031450A (en) 1991-01-08
JPH0821404B2 true JPH0821404B2 (en) 1996-03-04

Family

ID=15142716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1135048A Expired - Lifetime JPH0821404B2 (en) 1989-05-29 1989-05-29 Secondary battery

Country Status (1)

Country Link
JP (1) JPH0821404B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6630718B2 (en) * 2014-07-21 2020-01-15 レッドフロー アール アンド ディー プロプライエタリー リミテッドRedFlow R&D Pty Ltd Forming an integral manifold
US20200176790A1 (en) * 2017-08-10 2020-06-04 Kyocera Corporation Flow battery

Also Published As

Publication number Publication date
JPH031450A (en) 1991-01-08

Similar Documents

Publication Publication Date Title
Cheng et al. Preliminary study of single flow zinc–nickel battery
EP0517217B1 (en) Redox battery
CN103137986B (en) A kind of zinc bromine single flow battery
US20070072067A1 (en) Vanadium redox battery cell stack
JP5713186B2 (en) Redox flow battery
CN113314733A (en) Rebalanceable system of iron-chromium flow battery
WO2020147635A1 (en) Aqueous hybrid super capacitor
JP4830190B2 (en) Redox flow battery
JPH0534784B2 (en)
JPH0821404B2 (en) Secondary battery
JPH0411340Y2 (en)
US10673089B2 (en) Reduction-oxidation flow battery
JPH0546063B2 (en)
JPS62226580A (en) Redox flow battery
JPH0527233B2 (en)
JPH0534785B2 (en)
EP0171285A2 (en) Method of operating zinc bromide electrolyte secondary battery
KR20160150158A (en) ELECTROLYTE SOLUTION FOR Ni-Zn FLOW BATTERY AND Ni-Zn FLOW BATTERY COMPRISING THE SAME
US20220407102A1 (en) Zinc-bromine flow battery including conductive interlayer
JPS60225366A (en) Redox flow battery
JP2000100460A (en) All-iron battery and adjusting method for its charging depth
JP2853271B2 (en) Electrolyte static zinc-bromine battery
CN112993359A (en) Zinc-nickel single flow battery
KR20170120283A (en) Redox flow battery stack having a structure for protecting metal current collectors
JP2967634B2 (en) Zinc-bromine battery