JPH08170153A - Highly corrosion resistant two phase stainless steel - Google Patents
Highly corrosion resistant two phase stainless steelInfo
- Publication number
- JPH08170153A JPH08170153A JP31441194A JP31441194A JPH08170153A JP H08170153 A JPH08170153 A JP H08170153A JP 31441194 A JP31441194 A JP 31441194A JP 31441194 A JP31441194 A JP 31441194A JP H08170153 A JPH08170153 A JP H08170153A
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- phase
- duplex stainless
- weight
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、2相ステンレス鋼に関
し、より詳しくは、良好な耐食性、熱間加工性および熱
的に安定な組織を有し、さらには高強度および高靭性を
容易に具備させることのできる2相ステンレス鋼であっ
て、特に化学工業用配管類や油井用ラインパイプ等とし
て用いる場合に腐食が問題となる用途、および溶接施工
等による熱影響を余儀なく受ける用途、さらには高強度
材が必要な用途に使用して好適な高耐食性を備える2相
ステンレス鋼に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a duplex stainless steel, and more particularly, it has good corrosion resistance, hot workability, and a thermally stable structure, and further facilitates high strength and high toughness. It is a duplex stainless steel that can be provided, especially when it is used as pipes for the chemical industry or oil well line pipes, where corrosion is a problem, and where it is unavoidably affected by heat due to welding, etc. The present invention relates to a duplex stainless steel having high corrosion resistance suitable for use in applications requiring high strength materials.
【0002】[0002]
【従来の技術】Crを多量に含有する2相ステンレス鋼
は、塩化物による孔食、隙間腐食ならびに応力腐食等に
対して優れた抵抗性を備えているため、海水を用いる熱
交換器をはじめ、化学工業用や油井用の配管用材料等と
して、古くから広い範囲で使用されている。2. Description of the Related Art Duplex stainless steel containing a large amount of Cr has excellent resistance to pitting corrosion, crevice corrosion and stress corrosion caused by chlorides. , Has been used in a wide range since ancient times as a pipe material for the chemical industry and oil wells.
【0003】近年、使用環境が苛酷になるのに伴って、
さらに良好な耐食性や機械的性質等を有する2相ステン
レス鋼が要求されており、この要求に答えるためになさ
れた発明としては、例えば特開昭56−142855号
公報、同62−50444号公報、同62−18004
3号公報、同62−56556号公報、特開平2−25
8956号公報、同5−132741号公報等に開示さ
れるものがある。In recent years, as the usage environment has become more severe,
Further, there is a demand for a duplex stainless steel having good corrosion resistance, mechanical properties, and the like, and examples of inventions made to meet this demand include Japanese Patent Laid-Open Nos. 56-142855 and 62-50444. Same 62-18004
No. 3, JP-A-62-56556, JP-A No. 2-25
Some are disclosed in Japanese Patent Publication Nos. 8956, 5-132741 and the like.
【0004】2相ステンレス鋼の耐孔食性を示す指標と
して、下記のまたは式で表される耐孔食性指数(P
REあるいはPREW)が知られている。As an index showing the pitting corrosion resistance of duplex stainless steel, the pitting corrosion resistance index (P
RE or PREW) is known.
【0005】 PRE=Cr+3.3Mo+16N ・・・・・・・・・・・・・・・・・・ PREW=Cr+3.3(Mo+0.5W)+16N ・・・・・・・・ 最近では、このまたは式で表されるPRE値あるい
はPREW値が40以上になるように、Cr、Mo、N
およびWを高めたスーパー2相ステンレス鋼と呼ばれる
ものが提案されており(特開昭62−56556号公報
および同5−132741号公報)、従来の2相ステン
レス鋼よりも耐海水性に優れた材料として注目されてい
る。PRE = Cr + 3.3Mo + 16N ..... PREW = Cr + 3.3 (Mo + 0.5W) + 16N .... Cr, Mo, N so that the PRE value or PREW value expressed by the formula becomes 40 or more.
And a so-called super duplex stainless steel having an increased W have been proposed (JP-A-62-56556 and JP-A-5-132741), which are superior in seawater resistance to conventional duplex stainless steels. It is attracting attention as a material.
【0006】このCr、Mo、NおよびWの増量は、高
強度化の観点からも固溶強化の点で有効である。しか
し、これらの元素の増加は、次のような問題点を有して
いる。The increase in the amounts of Cr, Mo, N and W is effective from the viewpoint of strengthening from the viewpoint of solid solution strengthening. However, the increase of these elements has the following problems.
【0007】鋼のCr、MoおよびWの含有量を増加さ
せると、σ相、χ相、ラーベス相等の硬くて脆い金属間
化合物の析出が起こりやすく、特に800℃以上の高温
で前記σ相の析出が起こりやすくなり、熱間加工時の冷
却過程でσ脆化と呼ばれる脆化機構によって、鋼片の表
面割れを誘起しやすくなり、熱間加工性が著しく劣化す
るという問題が生ずる。When the contents of Cr, Mo and W in the steel are increased, precipitation of hard and brittle intermetallic compounds such as σ phase, χ phase and Laves phase is apt to occur. Precipitation is likely to occur, and a surface crack of the steel slab is likely to be induced due to an embrittlement mechanism called σ embrittlement during the cooling process during hot working, resulting in a problem that hot workability is significantly deteriorated.
【0008】また、Cr、MoおよびWを高めた鋼で
は、σ相の析出がフェライト/オーステナイト界面(以
下、δ/γ界面という)でのδ→γ+σの共析反応によ
って生じ、特に溶接施工時の熱影響や応力除去(SR)
のための熱処理に際してσ相の析出が促進されるため、
δ/γ相バランスが不安定になって崩れるとともに、σ
相の凝集粗大化が生じ、耐食性のみならず靭性、延性等
の機械的性質の劣化が生じて2相ステンレス鋼本来の性
能が損なわれる。すなわち、鋼組織の熱的安定性が損な
われるから、熱間加工時の条件や、溶接時の条件および
その他の熱処理条件に関して厳しい管理が必要となるた
め製品製造や配管施工等の作業能率が低下するという問
題も生じる。Further, in steels with increased Cr, Mo and W, the precipitation of the σ phase is caused by the eutectoid reaction of δ → γ + σ at the ferrite / austenite interface (hereinafter referred to as the δ / γ interface), especially during welding. Thermal effects and stress relief (SR)
The precipitation of σ phase is accelerated during the heat treatment for
The δ / γ phase balance becomes unstable and collapses, and σ
Coagulation and coarsening of the phases occur, and not only corrosion resistance but also mechanical properties such as toughness and ductility deteriorate, and the original performance of the duplex stainless steel is impaired. In other words, since the thermal stability of the steel structure is impaired, strict control of hot working conditions, welding conditions, and other heat treatment conditions is required, resulting in reduced work efficiency in product manufacturing and piping work. There is also the problem of doing.
【0009】なお、2相ステンレス鋼の熱間加工性を改
善する手段としては、上記δ/γ相バランスの規定、鋼
溶製時の脱酸および脱硫の強化、熱間加工性改善元素の
積極添加等が考えられ、これらのうち熱間加工性改善元
素としてBを含有させて粒界強化を図ることによって熱
間加工性を改善した鋼が前記特開平2−258956号
公報に提案されているが、σ相そのものの析出を抑える
手段については何等示されていない。また、鋼の強化手
段としては、一般に、微細な金属間化合物、炭化物や窒
化物等を分散析出させる析出強化法が広く用いられる
が、Cr、Mo、NおよびWを高めたスーパー2相ステ
ンレス鋼、特にWを従来鋼に比べてより高めた2相ステ
ンレス鋼を対象にして前記析出強化法を適用した2相ス
テンレス鋼は未だ見当たらない。As means for improving the hot workability of duplex stainless steel, the above-mentioned δ / γ phase balance is defined, deoxidation and desulfurization are strengthened during steel melting, and hot workability improving elements are positively added. Addition and the like are considered, and among these, steel containing B as a hot workability improving element to improve the hot workability by strengthening the grain boundaries is proposed in JP-A-2-258956. However, it does not show any means for suppressing the precipitation of the σ phase itself. Further, as a strengthening means for steel, generally, a precipitation strengthening method in which fine intermetallic compounds, carbides, nitrides and the like are dispersed and precipitated is widely used, but a super duplex stainless steel with increased Cr, Mo, N and W is used. In particular, a duplex stainless steel obtained by applying the precipitation strengthening method to a duplex stainless steel having W higher than that of a conventional steel has not been found yet.
【0010】[0010]
【発明が解決しようとする課題】本発明の目的は、上記
の実状に鑑みてなされたもので、σ相の析出を完全に抑
制することによって熱間加工性を飛躍的に改善させると
ともに、組織の熱的安定性に優れ、しかも金属間化合物
を微細析出させた場合に耐食性を保持した状態で高強度
と高靭性の得られる優れた耐食性を有する2相ステンレ
ス鋼を提供することにある。SUMMARY OF THE INVENTION The object of the present invention was made in view of the above-mentioned circumstances. By completely suppressing the precipitation of the σ phase, the hot workability is dramatically improved and the structure is improved. It is an object of the present invention to provide a duplex stainless steel which is excellent in thermal stability and which has high corrosion resistance and high strength while maintaining corrosion resistance when an intermetallic compound is finely precipitated.
【0011】[0011]
【課題を解決するための手段】本発明は、下記(1)〜
(4)の高耐食性2相ステンレス鋼にある。Means for Solving the Problems The present invention includes the following (1) to
(4) Highly corrosion-resistant duplex stainless steel.
【0012】(1) 重量%で、C:0.03%以下、
Si:1.0%以下、Mn:1.5%以下、P:0.0
40%以下、S:0.01%以下、sol−Al:0.
040%以下、Ni:5.0〜9.0%、Cr:23.
0〜27.0%、W:5.0〜10.0%、N:0.2
4〜0.32%、B:0.0005〜0.01%、M
o:0〜2%未満を含有し、残部はFeおよび不可避不
純物からなる成分組成を有し、かつ下記または式で
表されるPREWが40以上である高耐食性2相ステン
レス鋼。(1) C: 0.03% or less by weight%,
Si: 1.0% or less, Mn: 1.5% or less, P: 0.0
40% or less, S: 0.01% or less, sol-Al: 0.
040% or less, Ni: 5.0 to 9.0%, Cr: 23.
0-27.0%, W: 5.0-10.0%, N: 0.2
4 to 0.32%, B: 0.0005 to 0.01%, M
o: Highly corrosion-resistant duplex stainless steel containing 0 to less than 2%, the balance being Fe and inevitable impurities, and having PREW of 40 or more represented by the formula below.
【0013】 PREW=Cr+1.65W+16N ・・・・・・・・・・・・・・・・・・ PREW=Cr+1.65W+3.3Mo+16N ・・・・・・ だだし、、式中の元素記号は各元素の含有量(重量
%)を表す。PREW = Cr + 1.65W + 16N PREW = Cr + 1.65W + 3.3Mo + 16N However, the element symbols in the formula are Indicates the content (% by weight) of an element.
【0014】(2) 上記(1)に記載の成分の外に、
さらに下記の第1群〜第3群の元素のうちから選んだ1
種または2種以上の成分を含有し、かつ上記または
式で表されるPREWが40以上である高耐食性2相ス
テンレス鋼。(2) In addition to the components described in (1) above,
Furthermore, 1 selected from the elements of the following first to third groups
A high corrosion resistance duplex stainless steel containing one or more components and having a PREW represented by the above formula or a formula of 40 or more.
【0015】(3)その金属組織が、δ相中に金属間化
合物が微細分散析出した組織である上記(1)〜(2)
に記載のいずれかの高耐食性2相ステンレス鋼。(3) The metal structure is a structure in which an intermetallic compound is finely dispersed and precipitated in a δ phase. (1) to (2)
High corrosion resistance duplex stainless steel according to any one of 1.
【0016】(4)上記(1)〜(2)に記載のいずれ
かの2相ステンレス鋼を、800〜900℃の温度域に
5〜30分間保持する時効熱処理を施す上記(3)に記
載の高耐食性2相ステンレス鋼の製造方法。(4) The aging heat treatment for holding the duplex stainless steel according to any one of (1) and (2) above in a temperature range of 800 to 900 ° C. for 5 to 30 minutes, according to (3). For producing high-corrosion duplex stainless steel.
【0017】[第1群元素]0.05〜0.1重量%の
Ta、および0.05〜0.1重量%のHf。[Group 1 element] Ta of 0.05 to 0.1% by weight and Hf of 0.05 to 0.1% by weight.
【0018】[第2群元素]0.1〜1.0重量%の
V。[Group 2 element] V of 0.1 to 1.0% by weight.
【0019】[第3群元素]0.001〜0.01重量
%のCa、および0.001〜0.01重量%のMg。[Group 3 elements] 0.001 to 0.01% by weight of Ca and 0.001 to 0.01% by weight of Mg.
【0020】上記(1)〜(4)に記載の本発明におい
て、その鋼はMo無添加鋼であってもよく、Moを添加
含有させる場合には0.05重量%以上、2.0重量%
未満の範囲で含有させることができる。In the present invention described in the above (1) to (4), the steel may be a non-Mo-added steel, and when Mo is added and contained, 0.05 wt% or more, 2.0 wt% or more. %
It can be contained in the range of less than.
【0021】従来の2相ステンレス鋼がFe、Cr、N
およびMoを主成分とする鋼であるのに対し、本開発の
2相ステンレス鋼は従来鋼で多量に添加含有されていた
Moを基本的に添加含有させないFe、Cr、Nおよび
Wを主成分とした鋼であり、最も大きな相違点はWを従
来鋼に増して多量添加含有させた鋼である。Conventional duplex stainless steel is made of Fe, Cr, N.
In contrast to the steel containing Mo and Mo as the main components, the duplex stainless steel of the present development contains Fe, Cr, N and W as the main components, which do not contain Mo, which was added in large amounts in the conventional steel. The largest difference is the steel containing a large amount of W in addition to the conventional steel.
【0022】一般に、Wは合金元素としてMoと同等の
作用効果を有するものとされ、重量比で、Moと1/2
Wが等量として取り扱われている。しかし、WはMoに
比べて極めて高価な元素であり、このWの多量添加は鋼
のコスト上昇を招いて経済的に不利であるという理由か
ら、高々5重量%までの添加に留まり、より以上の積極
添加はなされていなかった。In general, W is considered to have the same effect as Mo as an alloying element, and the weight ratio of Mo to Mo is 1/2.
W is treated as an equal amount. However, W is an extremely expensive element as compared with Mo, and because the addition of a large amount of W causes an increase in steel cost and is economically disadvantageous, the addition is limited to at most 5% by weight. Was not positively added.
【0023】そこで、本発明者等は、スーパー2相ステ
ンレス鋼のσ相等の金属間化合物の析出に及ぼすMoと
Wの作用効果、ならびに熱間加工性に及ぼす種々の合金
元素の作用効果について詳細に検討した結果、以下の
(A)〜(D)に述べる新たな事実を知見し、本発明を
なした。Therefore, the present inventors have detailed the effect of Mo and W on the precipitation of intermetallic compounds such as σ phase of super duplex stainless steel, and the effect of various alloying elements on the hot workability. As a result of the investigation, the inventors have found the new facts described in (A) to (D) below, and made the present invention.
【0024】(A)Mo単独添加およびMoとWとの複
合添加でも、Mo含有量が多い場合には、800〜10
00℃での短時間保持によりδ/γ界面でσ相が優先的
に析出し、同時にフェライト分率が著しく減少する。ま
た、Mo単独添加およびMoとWとの複合添加鋼では、
800℃以上の温度域においてσ相の析出に先行してC
rを主成分とするCr窒化物が多量に析出するため、熱
間加工性、強度および靭性等の機械的性質並びに耐食性
が著しく劣ること。(A) Even with the addition of Mo alone or the combined addition of Mo and W, when the Mo content is high, the content is 800 to 10
By holding at 00 ° C for a short time, the σ phase preferentially precipitates at the δ / γ interface, and at the same time, the ferrite fraction significantly decreases. In addition, in the steel containing only Mo and the composite addition of Mo and W,
In the temperature range above 800 ° C, C precedes the precipitation of σ phase.
Since a large amount of Cr nitride containing r as a main component is precipitated, mechanical properties such as hot workability, strength and toughness, and corrosion resistance are significantly deteriorated.
【0025】(B)これに対し、W単独添加のスーパー
2相ステンレス鋼の場合には、σ相の析出が大幅に抑制
され、特に800℃〜1000℃の温度域においてもσ
相の析出が抑制され、熱間加工性や溶接施工時のσ脆化
の問題が軽減されること。(B) On the other hand, in the case of the super duplex stainless steel containing W alone, the precipitation of σ phase is significantly suppressed, and σ is increased even in the temperature range of 800 ° C. to 1000 ° C.
The precipitation of phases is suppressed, and the problems of hot workability and σ embrittlement during welding are alleviated.
【0026】(C)また、W単独添加鋼の場合には、8
00℃〜900℃の温度域ではフェライト相中にσ相以
外の金属間化合物(χ相、μ相等。以下、TCP相とい
う)が析出する場合があるが、このTCP相は極めて微
細に分散析出するため、靭性や延性を低下させることは
なく、逆に800℃〜900℃の温度域で短時間時効を
施すと、フェライト相中にσ相以外の前記TCP相が均
一に微細分散析出した組織となって高強度化に寄与し、
この場合に適量のMoを添加含有さても、TCP相の析
出形態に何等の変化を与えず、逆にフェライト相中のW
+Mo原子の過飽和によってTCP相の微細析出を促進
し、より一層の高強度化が図れること。(C) In addition, in the case of the steel containing W alone, 8
In the temperature range of 00 ° C to 900 ° C, intermetallic compounds other than σ phase (χ phase, μ phase, etc., hereinafter referred to as TCP phase) may precipitate in the ferrite phase, but the TCP phase is extremely finely dispersed and precipitated. Therefore, toughness and ductility are not reduced, and conversely, when aged for a short time in the temperature range of 800 ° C. to 900 ° C., the TCP phase other than the σ phase is uniformly finely dispersed and precipitated in the ferrite phase. Contributes to higher strength,
In this case, even if an appropriate amount of Mo is added and contained, there is no change in the precipitation form of the TCP phase, and conversely W in the ferrite phase is added.
+ The supersaturation of Mo atoms promotes the fine precipitation of the TCP phase, and further strengthening can be achieved.
【0027】(D)さらに、W単独添加の場合には、M
o単独添加あるいはMoとWとの複合添加の場合に比べ
て金属組織の熱的安定性が優れていること。すなわち、
W単独添加鋼ではδ/γ界面の移動が抑制され、δ/γ
相バランスが保持されるとともに、800〜900℃の
温度域で析出するTCP相も凝集粗大化せず、微細なT
CP相のピンニング作用によりδ/γ界面の移動が阻止
されてδ/γ相バランスがより安定化し、靭性劣化がな
いこと。(D) Further, in the case of adding W alone, M
o The thermal stability of the metal structure is excellent as compared with the case of single addition or the combined addition of Mo and W. That is,
In the steel containing only W, the movement of the δ / γ interface was suppressed, and δ / γ
While maintaining the phase balance, the TCP phase that precipitates in the temperature range of 800 to 900 ° C. does not aggregate and coarsen, and the fine T
The pinning action of the CP phase prevents the δ / γ interface from moving and stabilizes the δ / γ phase balance without causing deterioration of toughness.
【0028】(E)W単独添加鋼であっても、腐食環境
中での均一皮膜形成性については何等の問題もなく、逆
に従来鋼のW添加量を超える多量のWを添加した方が耐
食性がより向上すること。(E) Even with W-added steel, there is no problem in forming a uniform film in a corrosive environment, and conversely, it is better to add a large amount of W, which exceeds the W addition amount of conventional steel. Improves corrosion resistance.
【0029】(F)W単独添加鋼では、800℃以上の
温度域においても、熱間加工性を劣化させるCrを主成
分とするCr窒化物の析出が抑制されること。(F) In the W-added steel, precipitation of Cr nitride containing Cr as a main component which deteriorates hot workability is suppressed even in a temperature range of 800 ° C. or higher.
【0030】(G)またさらに、Wを従来鋼に増して多
量に単独添加したスーパー2相ステンレス鋼の熱間加工
性は、B添加の有無によって大きく異なり、所定量のB
を必須成分として含有させると、W多量添加鋼であるに
もかかわらず、熱間加工性が飛躍的に向上すること。す
なわち、Bは脱酸効果を有するとともに、粒界もしくは
δ/γ界面に偏析し、粒界強化による熱間加工性の向上
に寄与するが、Mo添加鋼においては、B添加の有無に
かかわらずδ/γ界面からσ相が析出するため、一旦σ
相が析出するとBの効果は半減もしくはなくなるのに対
し、W単独添加鋼においては、σ相の粒界析出が抑制さ
れるためBの粒界偏析が有効に作用し、熱間加工性が飛
躍的に向上すること。(G) Furthermore, the hot workability of the super duplex stainless steel in which a large amount of W is added to the conventional steel alone greatly differs depending on whether B is added or not.
If it is contained as an essential component, the hot workability is dramatically improved even though it is a W-added steel. That is, B has a deoxidizing effect and segregates at the grain boundaries or at the δ / γ interface to contribute to the improvement of hot workability by grain boundary strengthening. However, in Mo-added steel, regardless of whether B is added or not. Since the σ phase precipitates from the δ / γ interface,
When the phase precipitates, the effect of B is halved or disappears. On the other hand, in the steel containing only W, the grain boundary segregation of B acts effectively because the grain boundary precipitation of the σ phase is suppressed, and the hot workability jumps. To improve.
【0031】なお、上記(A)〜(F)に記載のW単独
多量添加による効果の得られる理由は、詳細には不明で
あるが、(a) Moに比べ拡散速度が遅いことによるδ→
γ+σ反応の遅延、(b) Wの方がMoに比べて原子半径
が大きいため、σ相の安定析出を抑制する、の(a) およ
び(b) の作用によるものと推定される。The reason why the effect of adding a large amount of W alone described in the above (A) to (F) is obtained is not clear in detail, but (a) δ → due to a slower diffusion rate than Mo.
It is presumed that it is due to the effects of (a) and (b) of delaying the γ + σ reaction, and (b) W having a larger atomic radius than Mo, thus suppressing the stable precipitation of the σ phase.
【0032】[0032]
【作用】以下、本発明の2相ステンレス鋼の各成分につ
いて、その作用効果と含有量の限定理由を詳しく説明す
る。なお、各成分の含有量についての%は、全て重量%
を意味する。The function and effect of each component of the duplex stainless steel of the present invention and the reason for limiting the content will be described in detail below. In addition,% regarding the content of each component is% by weight
Means
【0033】C:0.03%以下 Cは、オーステナイト相を安定化するのに有効である
が、その含有量が0.03%を超えると炭化物が析出し
やすくなり、耐食性が劣化する。このため、その含有量
を0.03%以下と定めた。C: 0.03% or less C is effective in stabilizing the austenite phase, but if its content exceeds 0.03%, carbides are likely to precipitate and corrosion resistance deteriorates. Therefore, the content thereof is set to 0.03% or less.
【0034】Si:1.0%以下 Siは、鋼の脱酸成分として有効であるが、金属間化合
物の生成析出を促進し、かつその凝集粗大化を助長する
元素である。このため、本発明ではその含有量を1.0
%以下に限定する。好ましくは、0.5%以下である。Si: 1.0% or less Si is an element that is effective as a deoxidizing component of steel, but promotes the formation and precipitation of intermetallic compounds and promotes the agglomeration and coarsening thereof. Therefore, in the present invention, the content is 1.0
% Or less. Preferably, it is 0.5% or less.
【0035】Mn:1.5%以下 Mnは、2相ステンレス鋼の溶製時の脱硫および脱酸効
果によって熱間加工性を向上させる。また、Nの溶解度
を増加する作用もあるが、その含有量が1.5%を超え
ると耐食性が劣化する。このため、その含有量の上限を
1.5%と定めた。Mn: 1.5% or less Mn improves hot workability due to desulfurization and deoxidation effects during melting of duplex stainless steel. It also has the effect of increasing the solubility of N, but if its content exceeds 1.5%, the corrosion resistance deteriorates. Therefore, the upper limit of the content is set to 1.5%.
【0036】P:0.040%以下 不可避不純物であるPは、粒界偏析により熱間加工性を
低下させ、その含有量が0.040%を超えると耐食
性、靭性も劣化するようになる。このため、その含有量
の上限を0.040%と定めた。P: 0.040% or less P, which is an unavoidable impurity, reduces the hot workability due to grain boundary segregation, and if its content exceeds 0.040%, corrosion resistance and toughness also deteriorate. Therefore, the upper limit of the content is set to 0.040%.
【0037】S:0.010%以下 Sも不可避不純物であり、鋼の熱間加工性および耐食性
を劣化させる。このため、本発明ではその含有量を0.
010%以下に制限する。好ましくは、0.005%以
下である。S: 0.010% or less S is also an unavoidable impurity and deteriorates the hot workability and corrosion resistance of steel. Therefore, in the present invention, the content is set to 0.
It is limited to 010% or less. It is preferably 0.005% or less.
【0038】sol−Al:0.040%以下 Alは、鋼の脱酸剤として最も有効であり、添加量の増
加とともに脱酸効果は向上する。しかし、鋼中のN量が
高い場合にはAlNとして析出し、靭性および耐食性を
劣化させる。従って、本発明ではAl含有量をsol−
Alで0.040%以下に抑えた。Sol-Al: 0.040% or less Al is most effective as a deoxidizing agent for steel, and the deoxidizing effect improves as the amount of addition increases. However, when the amount of N in steel is high, it precipitates as AlN and deteriorates toughness and corrosion resistance. Therefore, in the present invention, the Al content is sol-
Al was suppressed to 0.040% or less.
【0039】Ni:5.0〜9.0% Niは、オーステナイト安定化元素である。しかし、そ
の含有量が9.0%を超えるとフェライト量が減少し、
一方、5.0%未満であるとフェライト量が多くなりす
ぎて2相ステンレス鋼の基本的な特徴が失われる。Ni: 5.0 to 9.0% Ni is an austenite stabilizing element. However, if the content exceeds 9.0%, the ferrite content decreases,
On the other hand, if it is less than 5.0%, the amount of ferrite becomes too large and the basic characteristics of the duplex stainless steel are lost.
【0040】Cr:23.0〜27.0% Crは、耐食性の向上に有効な基本成分である。その含
有量が23.0%未満では耐孔食性が不十分であり、一
方、27.0%を超えるとσ相の析出およびその凝集粗
大化が顕著になり、組織の安定性の確保が困難となる。Cr: 23.0-27.0% Cr is a basic component effective in improving the corrosion resistance. If the content is less than 23.0%, the pitting corrosion resistance is insufficient. On the other hand, if it exceeds 27.0%, the precipitation of the σ phase and the coarsening of the agglomeration become remarkable, and it is difficult to secure the stability of the structure. Becomes
【0041】W:5.0〜10.0% Wは、前述したとおり、本発明の2相ステンレス鋼を最
も特徴づける成分であって耐食性、特に耐孔食性および
耐隙間腐食性を向上させ、さらに安定な酸化物を形成さ
せてpHの低い環境での耐食性をも向上させる元素であ
る。W: 5.0 to 10.0% As described above, W is a component that most characterizes the duplex stainless steel of the present invention and improves corrosion resistance, particularly pitting corrosion resistance and crevice corrosion resistance, Further, it is an element which forms a stable oxide and also improves the corrosion resistance in an environment of low pH.
【0042】また、Wは拡散速度が遅いため、δ→γ+
σ共析反応に伴うδ/γ界面の移動を抑制する。さら
に、脆化の原因になるσ相の安定性は、σ相を構成する
原子(Fe、Cr、W、Mo)間の原子半径比で支配さ
れるが、Wは他の元素(Fe、Cr、Mo)に比べて原
子半径が大きいことから、σ相の安定析出を抑制する作
用も有する。すなわち、σ相の安定析出およびその凝集
粗大化を抑えるのに効果的に作用する。Since W has a slow diffusion rate, δ → γ +
Suppresses movement of the δ / γ interface accompanying the σ-eutectoid reaction. Furthermore, the stability of the σ phase that causes embrittlement is governed by the atomic radius ratio between the atoms (Fe, Cr, W, Mo) that make up the σ phase, but W is the other element (Fe, Cr). , Mo) has a larger atomic radius, and thus also has an action of suppressing stable precipitation of the σ phase. That is, it effectively acts to suppress the stable precipitation of the σ phase and the coarsening of its aggregation.
【0043】またさらに、Wはフェライト相中で前記σ
相以外のχ相、μ相等からなる微細なTCP相を優先的
に析出させる作用を有しており、特に、800℃〜90
0℃の温度域で短時間時効を施した場合には、フェライ
ト相中にTCP相が均一に微細分散析出した組織とし、
鋼の強度を高める作用を有している。Furthermore, W is the above σ in the ferrite phase.
Has a function of preferentially precipitating a fine TCP phase composed of a χ phase, a μ phase, etc. other than the phase, particularly 800 ° C to 90 ° C.
When aging is performed for a short time in the temperature range of 0 ° C, a structure in which the TCP phase is uniformly finely dispersed and precipitated in the ferrite phase,
It has the effect of increasing the strength of steel.
【0044】しかし、その含有量が5.0%未満では上
記の効果、特に耐食性向上およびTCP相の均一微細分
散析出による強度向上の効果が得られず、逆に10.0
%を超えるとσ相の析出を促進し、熱間加工性や靭性低
下の原因になるとともに、TCP相の析出を促進し過ぎ
て靭性低下の原因となる。従って、W含有量は5.0〜
10.0%と定めた。However, if the content is less than 5.0%, the above effects, particularly the effect of improving the corrosion resistance and the strength due to the uniform fine dispersion precipitation of the TCP phase, cannot be obtained, and conversely 10.0.
%, The precipitation of the .sigma. Phase is promoted, which causes the hot workability and the toughness to be lowered, and the TCP phase is excessively promoted to cause the toughness to be lowered. Therefore, the W content is 5.0 to
It was set at 10.0%.
【0045】N:0.24〜0.32% Nは、強力なオーステナイト生成元素で、2相ステンレ
ス鋼の熱的安定性と耐食性を向上させるうえで有効な元
素である。本発明の2相ステンレス鋼のようにフェライ
ト生成元素である、Cr、Wが多量に添加された場合に
は、フェライトとオーステナイトの2相バランスを適正
なものにするためにも0.24%以上のNの含有が必要
である。しかし、その含有量が0.32%を超えると窒
化物生成により鋼の靭性、耐食性が著しく劣化する。従
って、N含有量は0.24〜0.32%と定めた。N: 0.24 to 0.32% N is a strong austenite-forming element and is an element effective in improving the thermal stability and corrosion resistance of the duplex stainless steel. When a large amount of Cr and W, which are ferrite forming elements, is added as in the duplex stainless steel of the present invention, 0.24% or more is used in order to make the two phase balance of ferrite and austenite proper. It is necessary to include N. However, if its content exceeds 0.32%, the toughness and corrosion resistance of steel are significantly deteriorated due to the formation of nitrides. Therefore, the N content is set to 0.24 to 0.32%.
【0046】B:0.0005〜0.01% Bは、Wと同様、本発明の2相ステンレス鋼を特徴づけ
る成分であって、鋼中の酸素を固定するとともに、粒界
に偏析して粒界を強化し、熱間加工性を向上させる元素
である。しかし、その含有量が0.0005%未満では
熱間加工性の向上効果が得られない。逆に、その含有量
が0.01%を超えると非金属介在物等の形成により熱
間加工性を低下させる。従って、B含有量は0.000
5〜0.01%と定めた。好ましくは、0.0005〜
0.008%である。B: 0.0005 to 0.01% B, like W, is a component that characterizes the duplex stainless steel of the present invention. It fixes oxygen in the steel and segregates at grain boundaries. It is an element that strengthens grain boundaries and improves hot workability. However, if the content is less than 0.0005%, the effect of improving hot workability cannot be obtained. On the contrary, if the content exceeds 0.01%, the hot workability is deteriorated due to the formation of nonmetallic inclusions and the like. Therefore, the B content is 0.000
It was determined to be 5 to 0.01%. Preferably 0.0005
It is 0.008%.
【0047】以上に述べたCr、NおよびWは、前記
で表されるPREWが40以上と成るようにその含有量
を調整しなければならない。前記式で表されるPRE
W値、すなわち、Cr+1.65W+16Nは前記従来
の式からMoの項を削除したもので、それ自体は前掲
の特開平5−132741号公報にPREWとして既に
開示されている。ただし、特開平5−132741号公
報では2.0〜4.0%のMoと、1.5%超え5.0
%以下のWとの複合必須含有鋼を対象としているに過ぎ
ず、基本成分としてWを5.0〜10.0%という多量
に単独添加した鋼においてPREW値を40以上にする
場合、従来と同様に耐孔食性が飛躍的に向上、保持でき
ることについては何等開示されていない。The contents of Cr, N and W described above must be adjusted so that the PREW represented above becomes 40 or more. PRE represented by the above formula
The W value, that is, Cr + 1.65W + 16N, is obtained by deleting the term of Mo from the above-mentioned conventional formula, and itself is already disclosed as PREW in Japanese Patent Laid-Open No. 5-132741. However, in Japanese Unexamined Patent Publication (Kokai) No. 5-132741, a Mo content of 2.0 to 4.0% and a Mo content of more than 1.5% and 5.0
%, It is intended only for steels containing complex essential elements with W or less, and when the PREW value is set to 40 or more in the steel in which a large amount of W of 5.0 to 10.0% alone is added as a basic component, Similarly, there is no disclosure that the pitting corrosion resistance can be dramatically improved and maintained.
【0048】本発明の2相ステンレス鋼は、以上に述べ
た成分に加えてさらに、次のMo、ならびに前述の第1
群〜第3群の元素の1種または2種以上を必要に応じて
含有させることができる。In addition to the components described above, the duplex stainless steel of the present invention further comprises the following Mo and the above-mentioned first
One or two or more of the elements of groups 3 to 3 can be contained as necessary.
【0049】Mo:2.0%未満 Moは、Wと同様に耐孔食性および耐隙間腐食性を向上
させる作用を有し、耐食性向上の観点からはWと同等の
作用を有するが、金属間化合物の析出作用についてはW
と全く異なった作用を有する元素である。すなわち、M
oはσ相の安定成長を促進する元素であるため、粗大な
σ相を析出させ、靭性低下を招くのみならず、耐食性に
対しても悪影響を及ぼす。Mo: less than 2.0% Mo has an action of improving pitting corrosion resistance and crevice corrosion resistance like W. From the viewpoint of improving corrosion resistance, Mo has the same effect as that of W W for compound precipitation
Is an element that has a completely different action from. That is, M
Since o is an element that promotes the stable growth of the σ phase, it not only causes the coarse σ phase to precipitate and causes a decrease in toughness, but also adversely affects the corrosion resistance.
【0050】また、Moはδ/γ界面の移動を促進し、
δ/γ相バランスを不安定にする元素でもあるが、Wと
の複合添加の場合、W量が本発明で規定する上記の範囲
内で適量のMoを添加含有させると、W単独添加含有の
場合と同様のTCP相析出形態を示すのみならず、逆に
フェライト相中のTCP相生成元素であるCr、W、お
よびMoが過飽和になることから、特に短時間時効処理
を施す場合にはTCP相の均一微細分散析出を促進して
鋼の強度を向上させる作用がある。Mo promotes the movement of the δ / γ interface,
Although it is also an element that makes the δ / γ phase balance unstable, in the case of composite addition with W, when W is added in an appropriate amount within the above range specified in the present invention, W is added alone. Not only does it exhibit the same TCP phase precipitation morphology as that of the case, but on the contrary, since TCP phase-forming elements Cr, W, and Mo in the ferrite phase become supersaturated, especially when a short-time aging treatment is performed, TCP It has the function of promoting uniform fine dispersion precipitation of phases and improving the strength of steel.
【0051】従って、この効果を得たい場合には、Mo
を添加含有させることができるが、0.05%未満では
その効果が得られず、逆にその含有量が2.0%を超え
るとσ相の析出やδ/γ相バランスの乱れを招き、組織
の熱的安定性が損なわれるようになるので、含有させる
場合のMo含有量は、0.05%以上、2.0%未満と
するのが望ましい。Therefore, to obtain this effect, Mo
However, if the content is less than 0.05%, the effect cannot be obtained. On the contrary, if the content exceeds 2.0%, precipitation of σ phase and disorder of δ / γ phase balance are caused, Since the thermal stability of the structure will be impaired, the Mo content when contained is preferably 0.05% or more and less than 2.0%.
【0052】なお、この場合には高価なWの一部をMo
に置換することができるので、コスト低減が図れる。ま
た、Moを含有させた場合、PREW値は前記式で表
され、これは前掲の特開平5−132741号公報に示
される前述の式と同じである。In this case, a part of expensive W is replaced by Mo.
Since it can be replaced with, the cost can be reduced. Further, when Mo is contained, the PREW value is represented by the above-mentioned formula, which is the same as the above-mentioned formula shown in the above-mentioned JP-A-5-132741.
【0053】第1群元素(Ta、Hf):いずれの元素
も0.05〜0.1% TaおよびHfは、σ相の析出抑制作用についてはWと
同様の作用効果をもたらす元素であり、その効果を得た
い場合にTaおよびHfのうちから1種または2種を選
んで含有させることができる。しかし、いずれの元素も
その含有量が0.05%未満では上記の効果が得られな
いので、含有させる場合には、いずれの元素も0.05
%以上とする必要がある。一方、いずれの元素もその含
有量が0.1%を超えると、Nの含有量が多い場合、こ
れら元素の窒化物として析出し、靭性低下を招く。従っ
て、含有させる場合のこれら元素の含有量は、いずれの
元素も0.05〜0.1%とした。Group 1 elements (Ta, Hf): 0.05 to 0.1% for all elements Ta and Hf are elements which bring about the same action and effect as W with respect to the action of suppressing the precipitation of the σ phase. When it is desired to obtain the effect, one or two of Ta and Hf can be selected and contained. However, if the content of any element is less than 0.05%, the above effect cannot be obtained.
It must be at least%. On the other hand, if the content of any of the elements exceeds 0.1%, if the content of N is large, it precipitates as a nitride of these elements, resulting in a decrease in toughness. Therefore, when these elements are contained, the content of each element is set to 0.05 to 0.1%.
【0054】第2群元素(V):0.1〜1.0% Vは、Wと複合添加した場合、耐隙間腐食性を向上させ
るのに有効な元素であり、この効果を得たい場合に添加
することができる。しかし、その含有量が0.1%未満
では上記の効果がえられないので、含有させる場合には
0.1%以上とする必要がある。一方、その含有量が
1.0%を超えるとV窒化物として析出し、熱間加工性
および靭性低下を招く。従って、含有させる場合のV含
有量は、0.1〜1.0%とした。Group 2 element (V): 0.1 to 1.0% V is an element effective in improving crevice corrosion resistance when added in combination with W, and when this effect is desired to be obtained Can be added to. However, if the content is less than 0.1%, the above effect cannot be obtained, so when it is contained, the content must be 0.1% or more. On the other hand, if its content exceeds 1.0%, it precipitates as a V nitride, resulting in deterioration of hot workability and toughness. Therefore, the V content when contained is set to 0.1 to 1.0%.
【0055】第3群元素(Ca、Mg):いずれの元素
も0.001〜0.01% CaおよびMgは、いずれも鋼中の酸素を固定し、熱間
加工性を向上させるのに有効な元素であるが、その機構
はBの場合とは異なるので、Bと共存させることによっ
てより広い温度域での熱間加工性の向上を図ることが可
能であり、この効果を得たい場合にCaおよびMgのう
ちから1種または2種を選んで含有させることができ
る。しかし、その含有量がいずれの元素も0.001%
未満では上記の効果が得られないので、含有させる場合
には、いずれの元素も0.001%以上とする必要があ
る。一方、いずれの元素もその含有量が0.01%を超
えると酸化物、硫化物等の非金属介在物が増加し、耐食
性の劣化を招く。従って、含有させる場合のこれら元素
の含有量は、いずれの元素も0.001〜0.01%と
した。Group 3 elements (Ca, Mg): 0.001 to 0.01% of all elements Ca and Mg are both effective in fixing oxygen in steel and improving hot workability. However, since the mechanism is different from that of B, it is possible to improve the hot workability in a wider temperature range by coexisting with B, and when this effect is desired. One or two of Ca and Mg can be selected and contained. However, the content of each element is 0.001%
If the content is less than the above, the above effect cannot be obtained. Therefore, in the case of containing any of the elements, it is necessary that the content of each element be 0.001% or more. On the other hand, if the content of each element exceeds 0.01%, non-metallic inclusions such as oxides and sulfides increase, leading to deterioration of corrosion resistance. Therefore, when these elements are contained, the content of each element is set to 0.001 to 0.01%.
【0056】なお、上記のMo、第1群元素、第2群元
素および第3群元素は、これらMoおよび各群中の各元
素のうちから1または2以上を選んで含有させることが
できることはいうまでもない。It is to be noted that the Mo, the first group element, the second group element and the third group element may be contained by selecting one or more elements out of these Mo and each element in each group. Needless to say.
【0057】以上に述べた成分組成を有する本発明の2
相ステンレス鋼は、後述の実施例から明らかなように優
れた熱間加工性を有しており、常法によって何等問題な
く熱間加工を施すことができ、この熱間加工後に、例え
ば、1050〜1150℃に0.2〜1時間加熱保持
後、水冷手段等の適宜手段を用いて急冷する溶体化熱処
理を施したままで十分な強度、靭性、耐食性および優れ
た組織の熱的安定性を有するが、次に述べる時効処理を
施すことによってσ相以外の微細なTCP相がδ相中に
均一分散析出した組織、いわゆる析出強化組織となり、
組織の熱的安定性および強度、特に強度が一段と向上す
る。2 of the present invention having the component composition described above
The duplex stainless steel has excellent hot workability as will be apparent from the examples described below, and can be hot worked without any problems by a conventional method. After hot working, for example, 1050 After heating and holding at ˜1150 ° C. for 0.2 to 1 hour, it is subjected to solution heat treatment in which it is rapidly cooled using an appropriate means such as a water-cooling means to provide sufficient strength, toughness, corrosion resistance and excellent thermal stability of the structure. However, by performing the following aging treatment, a fine TCP phase other than the σ phase is uniformly dispersed and precipitated in the δ phase, that is, a so-called precipitation strengthening structure,
The thermal stability and strength of the tissue, especially strength, is further improved.
【0058】すなわち、上記本発明の2相ステンレス鋼
に、800〜900℃に5〜30分間加熱保持する時効
処理を施すと、δ相中にTCP相が均一に微細分散析出
した析出強化組織となり、組織の熱的安定性および強
度、特に強度が一段と向上する。しかし、その時効処理
温度が800℃未満、あるいは900℃を超えると、本
発明の2相ステンレス鋼の微細なTCP相が析出する析
出ノーズが800〜900℃の温度域にあることから、
δ相中にTCP相が均一に微細分散析出しなくなる。ま
た、その時効時間が5分未満ではTCP相の析出が不十
分であり、30分を超えて時効を施してもその効果は飽
和する。従って、時効処理を施す場合の時効熱処理条件
を上記のように定めた。That is, when the duplex stainless steel of the present invention is subjected to an aging treatment in which it is heated and held at 800 to 900 ° C. for 5 to 30 minutes, a precipitation strengthening structure is obtained in which the TCP phase is uniformly dispersed and precipitated in the δ phase. , The thermal stability and strength of the tissue, especially the strength, are further improved. However, when the aging treatment temperature is lower than 800 ° C. or higher than 900 ° C., the precipitation nose for depositing the fine TCP phase of the duplex stainless steel of the present invention is in the temperature range of 800 to 900 ° C.
The TCP phase does not uniformly and finely precipitate in the δ phase. Further, when the aging time is less than 5 minutes, the precipitation of the TCP phase is insufficient, and even when the aging is performed for more than 30 minutes, the effect is saturated. Therefore, the aging heat treatment conditions when performing the aging treatment are set as described above.
【0059】なお、時効時間が100分を超えると、σ
相等の靭性に悪影響を及ぼす金属間化合物の析出が開始
する場合があるので注意を要する。また、本発明の2相
ステンレス鋼は、その組織が熱的に安定であるため、上
記の時効処理を溶接やSR処理と併用しても何等問題は
ない。If the aging time exceeds 100 minutes, σ
It should be noted that precipitation of intermetallic compounds, which adversely affects the toughness of phases, may start. Further, since the structure of the duplex stainless steel of the present invention is thermally stable, there is no problem even if the above aging treatment is used in combination with welding or SR treatment.
【0060】[0060]
[実施例1]20kgの真空溶解炉で表1および表2に
示す化学成分を有する36種類の2相ステンレス鋼を溶
製して100mmφのインゴットを作成し、これらイン
ゴットを1280℃に加熱して厚さ50mmの板材に鍛
造した後、この板材に1100℃×30分→水冷の溶体
化熱処理を実施して供試材を準備した。[Example 1] 36 types of duplex stainless steels having the chemical components shown in Table 1 and Table 2 were melted in a 20 kg vacuum melting furnace to prepare 100 mmφ ingots, and these ingots were heated to 1280 ° C. After forging into a plate material having a thickness of 50 mm, this plate material was subjected to solution heat treatment of 1100 ° C. × 30 minutes → water cooling to prepare a test material.
【0061】なお、表1および表2中、No. 1〜23は
本発明例の鋼、No. 24〜36は比較例の鋼である。In Tables 1 and 2, Nos. 1 to 23 are steels according to the present invention, and Nos. 24 to 36 are comparative steels.
【0062】[0062]
【表1】 [Table 1]
【0063】[0063]
【表2】 [Table 2]
【0064】次いで、これらの鋼板から各種の試験片を
切り出し採取し、以下に示す方法によってその熱間加工
性、組織の熱的安定性、引張特性、靭性および耐孔食性
を調査した。Next, various test pieces were cut out from these steel sheets and collected, and their hot workability, thermal stability of structure, tensile properties, toughness and pitting corrosion resistance were investigated by the following methods.
【0065】[熱間加工性試験]直径10mm、長さ2
00mmの試験片を準備し、グリーブル試験機を用いて
1300℃で均一加熱保持の後、σ相の析出が顕著にな
る1000℃および900℃まで冷却してこれらの温度
に均一加熱保持の後、350mm/秒の引張速度で破断
させ、この時の破断部の絞り率を測定して評価した。[Hot workability test] Diameter 10 mm, length 2
A 00 mm test piece was prepared, and after uniform heating and holding at 1300 ° C. using a greeble tester, it was cooled to 1000 ° C. and 900 ° C. at which precipitation of σ phase became remarkable, and after uniformly heating and holding at these temperatures, It was broken at a tensile speed of 350 mm / sec, and the drawing ratio of the broken portion at this time was measured and evaluated.
【0066】なお、一部の供試材(No. 2、19、2
0、31および36)については、900〜1300℃
の範囲での熱間加工性を調査し、その結果を図1に示し
た。Some test materials (No. 2, 19, 2)
0, 31 and 36), 900-1300 ° C
The hot workability in the range was investigated and the results are shown in FIG.
【0067】[熱的組織安定性試験]900℃の温度に
5分〜200時間の範囲で加熱保持する時効処理を施
し、幅20mm、厚さ3mm、長さ20mmで、その表
面をエメリー紙およびアルミナ粉末を用いて研磨して加
工層を除去した試験片を準備し、この試験片についてX
線回折実験を実施し、時効に伴うσ相の析出挙動(σ相
の回折強度の変化)を測定し、またX線回折実験で析出
相が判別できないものについては、電子顕微鏡観察で析
出物の観察および同定を実施し、900℃に5〜30分
の範囲で加熱保持した場合にσ相の析出が認められなか
ったものを組織の熱的安定性が良好として「○」印で示
し、この時間内でσ相の析出が認められたものを組織の
熱的安定性が不芳として「×」で印で示した。[Thermal Structure Stability Test] An aging treatment of heating and holding at a temperature of 900 ° C. for 5 minutes to 200 hours was performed, and the surface was 20 mm in width, 3 mm in thickness, and 20 mm in length, and the surface thereof was emery paper or A test piece prepared by polishing the alumina powder to remove the processed layer was prepared.
A line diffraction experiment was carried out to measure the precipitation behavior of the σ phase (change in the diffraction intensity of the σ phase) with aging. For those whose precipitation phase could not be identified by the X-ray diffraction experiment, the precipitates were observed by electron microscopy. Observation and identification were carried out, and those in which precipitation of σ phase was not observed when heated and held at 900 ° C. for 5 to 30 minutes are shown as good thermal stability of the structure by a mark “◯”. When the precipitation of the σ phase was observed within the time, the thermal stability of the structure was unsatisfactory, and the mark “x” was shown.
【0068】なお、一部の供試材(No. 1、8、26お
よび27)については、5分〜200時間の範囲内での
σ相の析出量の変化を調査し、その結果を図2に示し
た。For some of the test materials (Nos. 1, 8, 26 and 27), changes in the precipitation amount of the σ phase within the range of 5 minutes to 200 hours were investigated, and the results are shown in FIG. Shown in 2.
【0069】[引張特性試験]直径6mm、ゲージ長さ
40mmの丸棒引張試験片を準備し、常温で引張試験を
行い、引張強さ(TS)、0.2%耐力(YS)、伸び
(El)を測定した。[Tensile Property Test] A round bar tensile test piece having a diameter of 6 mm and a gauge length of 40 mm was prepared and subjected to a tensile test at room temperature to obtain tensile strength (TS), 0.2% proof stress (YS) and elongation ( El) was measured.
【0070】[衝撃試験]厚さ5.0mm、幅10m
m、長さ55mmで長さ方向の中央に幅方向への深さが
2.0mmのノッチを形成した試験片を準備し、シャル
ピー衝撃試験機を用いて衝撃試験を行い、破断時の衝撃
値(吸収エネルギー)を測定した。なお、試験温度は0
℃とした。[Impact Test] Thickness 5.0 mm, width 10 m
m, length 55 mm, and a test piece with a notch having a depth of 2.0 mm in the width direction formed in the center of the length direction, an impact test using a Charpy impact tester, and an impact value at break (Absorbed energy) was measured. The test temperature is 0
° C.
【0071】[孔食試験]ASTM規格−G48に規定
の方法に基づいて、厚さ2mm、幅25mm、長さ50
mmの試験片を準備し、この試験片を腐食試験液(液:
10%FeCl3−6H2 0、液温:30℃)中に24
時間浸漬し、孔食発生の有無を観察し、孔食が発生しな
かたものを「○]、孔食が発生したものを「×」として
評価した。[Pit Corrosion Test] A thickness of 2 mm, a width of 25 mm, and a length of 50 based on the method specified in ASTM standard-G48.
mm test piece is prepared, and this test piece is subjected to a corrosion test solution (liquid:
10% FeCl 3 -6H 2 0, liquid temperature: the 30 ° C.) in 24
After immersion for a period of time, the presence or absence of pitting corrosion was observed, and those without pitting corrosion were evaluated as “◯”, and those with pitting corrosion were evaluated as “x”.
【0072】これらの試験結果を、表3および表4に示
した。The results of these tests are shown in Tables 3 and 4.
【0073】[0073]
【表3】 [Table 3]
【0074】[0074]
【表4】 [Table 4]
【0075】表3および表4に示した結果から明らかな
ように、本発明例の2相ステンレス鋼は、いずれも前記
または式で表されるPREWが40以上で、良好な
耐孔食性を示している。また、熱間加工性については、
従来のスーパー2相ステンレス鋼にあってはσ脆化が最
も問題となる900℃においても75%以上の高い絞り
率を示しており、熱間加工性が良好である。さらに、図
1に示したように、B添加との相乗効果により良好な熱
間加工性を示し、さらにCaやMgを複合添加した場合
には、78%以上の絞り率が得られており、優れた熱間
加工性を有している。これに対し、比較例の2相ステン
レス鋼は、No. 24〜30を除き、熱間加工性が劣って
おり、特に1000℃未満の温度域での熱間加工性が著
しく劣っている。As is clear from the results shown in Tables 3 and 4, the duplex stainless steels of the examples of the present invention each have a PREW of 40 or more represented by the above formula or a formula and exhibit good pitting corrosion resistance. ing. Regarding hot workability,
The conventional super duplex stainless steel shows a high drawing ratio of 75% or more even at 900 ° C. where σ embrittlement is the most problematic, and the hot workability is good. Further, as shown in FIG. 1, a good hot workability is exhibited due to the synergistic effect with the addition of B, and when Ca and Mg are added in combination, a reduction ratio of 78% or more is obtained. Has excellent hot workability. On the other hand, the duplex stainless steels of Comparative Examples are inferior in hot workability except for Nos. 24 to 30, and particularly in hot workability in a temperature range of less than 1000 ° C.
【0076】なお、No. 24〜30の熱間加工性が優れ
ているのは、次の理由による。すなわち、No. 24につ
いてはWの含有量が少なく、σ相の析出が生じないため
である。しかし、このNo. 24は耐食性が劣っている。
また、No. 24〜27については保持時間が短く、この
熱間加工試験中にσ相の析出が生じなかったためである
が、例えば900℃で5分以上保持するとσ相が凝集粗
大化して熱間加工性が劣化する。さらに、No. 28〜3
0についてはδ/γ相バランスが崩れており、いわゆる
スーパー2相ステンレス鋼本来の性質から外れているた
めである。The hot workability of Nos. 24 to 30 is excellent for the following reason. That is, with respect to No. 24, the W content is small and the precipitation of the σ phase does not occur. However, this No. 24 has poor corrosion resistance.
Further, for Nos. 24 to 27, the holding time was short, and the precipitation of the σ phase did not occur during this hot working test. The inter-workability deteriorates. Furthermore, No. 28-3
The reason for 0 is that the δ / γ phase balance is lost, which is outside the original properties of so-called super duplex stainless steel.
【0077】また、図2に示したように、本発明の2相
ステンレス鋼は、900℃での時効時間が30分以内で
はσ相の析出は認められず、良好な組織の熱的安定性を
示している。これに対し、比較例の2相ステンレス鋼
は、5〜30分の保持時間でσ相が析出し、特にMoの
含有量が多いものは組織の熱的安定性が劣っている。Further, as shown in FIG. 2, in the duplex stainless steel of the present invention, no precipitation of σ phase was observed within the aging time of 30 minutes at 900 ° C., and good thermal stability of the structure was observed. Is shown. On the other hand, in the duplex stainless steels of the comparative examples, the σ phase is precipitated in the holding time of 5 to 30 minutes, and especially those having a large Mo content are inferior in thermal stability of the structure.
【0078】さらに、本発明の2相ステンレス鋼の常温
強度は、0.2%耐力(YS)が550N/mm2 以上
であり、靭性についてもシャルピー衝撃試験による0℃
での衝撃値が20kgf−m/cm2 以上であって、従
来のスーパー2相ステンレス鋼に十分匹敵する強度と靭
性を備えている。Further, the duplex strength stainless steel of the present invention has a room temperature strength of 0.2% proof stress (YS) of 550 N / mm 2 or more and a toughness of 0 ° C. according to the Charpy impact test.
Has an impact value of 20 kgf-m / cm 2 or more, and has strength and toughness sufficiently comparable to that of the conventional super duplex stainless steel.
【0079】これに対し、比較例の2相ステンレス鋼
は、いずれも熱間加工性、組織の熱的安定性、靭性およ
び耐孔食性のいずれかが劣っている。On the other hand, the duplex stainless steels of Comparative Examples are all inferior in hot workability, thermal stability of structure, toughness and pitting corrosion resistance.
【0080】[実施例2]20kgの真空溶解炉で表5
〜表7に示す化学成分を有する55種類の2相ステンレ
ス鋼を溶製して100mmφのインゴットを作成し、こ
れらインゴットを1280℃に加熱して厚さ50mmの
板材に鍛造した後、この板材に1100℃×30分→水
冷の溶体化熱処理を実施し、引き続いて表8〜表10に
示す各条件で時効処理を施して供試材を準備した。[Example 2] In a vacuum melting furnace of 20 kg, Table 5
~ 55 types of duplex stainless steels having the chemical components shown in Table 7 are melted to make 100 mmφ ingots, these ingots are heated to 1280 ° C and forged into a plate having a thickness of 50 mm, and then this plate is formed. A solution heat treatment of 1100 ° C. × 30 minutes → water cooling was performed, and then an aging treatment was performed under each condition shown in Tables 8 to 10 to prepare a test material.
【0081】なお、表5〜表7中、No. 1〜36は本発
明例の鋼、No. 37〜55は比較例の鋼である。また、
No. 1〜48のうち、No. 1〜14、No. 30〜31お
よびNo. 37〜48は、それぞれ実施例1で用いたNo.
1〜14、No. 22〜23およびNo. 24〜35と同一
の組成を有する鋼である。In Tables 5 to 7, Nos. 1 to 36 are steels according to the present invention, and Nos. 37 to 55 are comparative steels. Also,
Among Nos. 1 to 48, Nos. 1 to 14, Nos. 30 to 31, and Nos. 37 to 48 were Nos. Used in Example 1, respectively.
It is a steel having the same composition as Nos. 1 to 14, Nos. 22 to 23 and Nos. 24 to 35.
【0082】[0082]
【表5】 [Table 5]
【0083】[0083]
【表6】 [Table 6]
【0084】[0084]
【表7】 [Table 7]
【0085】次いで、これらの鋼板から各種の試験片を
切り出し採取し、以下に示す方法によってそのTCP相
とσ相の析出挙動、組織の熱的安定性、引張特性、靭性
および耐孔食性を調査した。Next, various test pieces were cut out from these steel plates and collected, and the precipitation behavior of the TCP phase and σ phase, the thermal stability of the structure, the tensile properties, the toughness and the pitting corrosion resistance were investigated by the following methods. did.
【0086】[TCP相とσ相の析出挙動試験]幅20
mm、厚さ3mm、長さ20mmで、その表面をエメリ
ー紙およびアルミナを用いて研磨して加工層を除去した
試験片を準備し、この試験片にX線回折実験を実施し、
X線回折強度を測定して下記および式に基づいてT
CP相とσ相の分率をγ相強度との比で表して評価し
た。[TCP phase and σ phase precipitation behavior test] Width 20
mm, thickness 3 mm, length 20 mm, the surface of which was polished by using emery paper and alumina to prepare a test piece, and an X-ray diffraction experiment was performed on the test piece.
The X-ray diffraction intensity was measured and the T
The fraction of the CP phase and the σ phase was expressed by the ratio of the γ phase strength and evaluated.
【0087】 TCP相分率=TCP/{(γ200 +γ220 )/2} ・・・・・・・・ σ相分率={(σ112 +σ212 +σ411 )/3} /{(γ200 +γ220 )/2} ・・・・・・・・ なお、TCP相分率はその値が大きければ大きいほどT
CP相の微細分散析出が顕著であることを、σ相分率は
その値が小さければ小さいほどσ相の析出が少ないこと
を表している。TCP phase fraction = TCP / {(γ 200 + γ 220 ) / 2} ... σ phase fraction = {(σ 112 + σ 212 + σ 411 ) / 3} / {(γ 200 + Γ 220 ) / 2} ・ ・ ・ The greater the TCP phase fraction, the greater the T
The fact that the finely dispersed precipitation of the CP phase is remarkable means that the smaller the value of the σ phase fraction, the less the precipitation of the σ phase.
【0088】また、一部の鋼(No. 2およびNo. 40)
について、そのX線回折実験の測定結果を、図3および
図4に示した。この図3および図4は、所定の時効処理
を施した2相ステンレス鋼の典型的なX線回折パターン
を示す図であり、本発明の2相ステンレス鋼(No. 2)
ではTCP相が認められるが、比較例である2相ステン
レス鋼(No. 40)ではσ相のみが析出し、X線のピー
クがシャープであることから、σ相が凝集粗大化してい
ることがわかる。Also, some steels (No. 2 and No. 40)
The measurement results of the X-ray diffraction experiment for the are shown in FIGS. 3 and 4. FIG. 3 and FIG. 4 are diagrams showing typical X-ray diffraction patterns of duplex stainless steel subjected to a predetermined aging treatment, and the duplex stainless steel of the present invention (No. 2).
However, in the duplex stainless steel (No. 40) which is a comparative example, only the σ phase is precipitated and the X-ray peak is sharp, so that the σ phase is agglomerated and coarsened. Recognize.
【0089】[熱的組織安定性試験]所定の温度に所定
の時間加熱保持する時効処理を施した供試材から、幅2
0mm、厚さ3mm、長さ20mmで、その表面をエメ
リー紙およびアルミナ粉末を用いて研磨して加工層を除
去した試験片を準備し、この試験片について上記と同様
のX線回折実験を実施し、時効に伴うTCP相分率とσ
相分率の変化を測定し、時効時間が5〜30分間の範囲
内でσ相の析出が認めらず、かつこの時効処理時間内で
のTCP相の変化率が5%以下であったものを組織の熱
的安定性が良好として「○」印で示し、この時間内でσ
相の析出が認められ、かつTCP相の変化率が5%を超
えたものを組織の熱的安定性が不芳として「×」で印で
示した。[Thermal Structure Stability Test] From the test material which was subjected to the aging treatment in which it was heated and maintained at a predetermined temperature for a predetermined time, a width of 2 was obtained.
A test piece having a thickness of 0 mm, a thickness of 3 mm and a length of 20 mm, the surface of which was polished by using emery paper and alumina powder to remove the processed layer was prepared, and an X-ray diffraction experiment similar to the above was performed on the test piece. And TCP phase fraction and σ with aging
Change in phase fraction was measured, precipitation of σ phase was not observed within an aging time range of 5 to 30 minutes, and change rate of TCP phase within this aging treatment time was 5% or less. Is indicated by the mark "○", indicating that the thermal stability of the tissue is good.
When the precipitation of phases was observed and the rate of change of the TCP phase exceeded 5%, the thermal stability of the structure was unsatisfactory and indicated by a mark "x".
【0090】なお、一部の供試材(No. 1、4、8およ
び39)については、0〜6000時間の範囲内でのT
CP相とσ相の上記および式で表されるX線回折強
度比の調査結果を、図5〜図8に示した。For some of the test materials (Nos. 1, 4, 8 and 39), T within the range of 0 to 6000 hours was used.
The examination results of the X-ray diffraction intensity ratio of the CP phase and the σ phase expressed by the above and the formula are shown in FIGS.
【0091】図5〜図8は、時効処理後の各合金の熱的
安定性を示しており、本発明で規定する範囲内の条件で
時効処理したNo. 8の2相ステンレス鋼ではTCP相が
安定に析出し、かつσ相が析出していない(図5参
照)。FIGS. 5 to 8 show the thermal stability of each alloy after aging treatment. In the case of No. 8 duplex stainless steel aged under the conditions defined by the present invention, the TCP phase is shown. Is stably deposited, and the σ phase is not deposited (see FIG. 5).
【0092】これに対し、鋼組成はNo. 4と同じで本発
明の範囲内であるが、時効温度が950℃と本発明の規
定範囲外の条件で時効処理したNo. 50の2相ステンレ
ス鋼ではσ相が優先的析出し、TCP相が析出していな
い(図6参照)。同様に、鋼組成はNo. 1と同じで本発
明の範囲内であるが、時効温度が600℃と本発明の規
定範囲外の条件で時効処理したNo. 49の2相ステンレ
ス鋼では時効温度が低いためσ相の析出がない反面、T
CP相が析出しない(図7参照)。また、時効処理条件
は本発明の範囲内であるが、鋼組成が本発明の範囲外で
あるNo. 39の2相ステンレス鋼ではTCP相の析出は
認められるもののσ相が優先的に析出するため組織の熱
的安定性が保証されない(図8参照)。On the other hand, the steel composition is the same as that of No. 4 and is within the range of the present invention, but the aging temperature is 950 ° C. and the duplex stainless steel of No. 50 which has been aged under conditions outside the specified range of the present invention In the steel, the σ phase preferentially precipitates and the TCP phase does not precipitate (see FIG. 6). Similarly, the steel composition is the same as that of No. 1 and is within the range of the present invention, but the aging temperature is 600 ° C and the aging temperature of the No. 49 duplex stainless steel aged under conditions outside the specified range of the present invention. Is low, there is no precipitation of σ phase, but T
CP phase does not precipitate (see FIG. 7). In addition, although the aging conditions are within the scope of the present invention, in the duplex stainless steel No. 39 having a steel composition outside the scope of the present invention, precipitation of TCP phase is observed, but σ phase preferentially precipitates. Therefore, the thermal stability of the tissue cannot be guaranteed (see FIG. 8).
【0093】なお、「引張特性試験」、「衝撃試験」お
よび「孔食試験」については、実施例1の場合と同じ方
法によって行ったので、その詳細説明を省略する。The "tensile property test", "impact test" and "pitting corrosion test" were carried out in the same manner as in Example 1, so detailed description thereof will be omitted.
【0094】これらの試験結果を、表8〜表10に併せ
て示した。The test results are also shown in Tables 8 to 10.
【0095】なお、表10中のNo. 49〜55は、表5
〜表7中のNo. 1、No. 4、No. 8、No. 9、No. 1
7、No. 21およびNo. 28の本発明例の鋼に本発明規
定の範囲外の条件で時効処理を施した比較例である。Nos. 49 to 55 in Table 10 are shown in Table 5
~ No. 1, No. 4, No. 8, No. 9, No. 1 in Table 7
It is a comparative example in which the steels of Nos. 7, No. 21 and No. 28 of the present invention were subjected to an aging treatment under the conditions outside the scope of the present invention.
【0096】[0096]
【表8】 [Table 8]
【0097】[0097]
【表9】 [Table 9]
【0098】[0098]
【表10】 [Table 10]
【0099】表7〜表10に示した結果から明らかなよ
うに、上記または式で表されるPREW値が40以
上で、かつ所定条件の時効処理を施すことによって、T
CP相の量がγ相とのX線回折強度比で0.1以上とδ
相中に均一に微細分散析出した組織、すなわち析出強化
組織とされた本発明の2相ステンレス鋼は、いずれも室
温での引張強度がTSで900N/mm2 以上、YSで
650N/mm2 以上という高強度を有し、かつ伸びが
35%という高い延性を維持している。As is clear from the results shown in Tables 7 to 10, the PREW value represented by the above or the formula is 40 or more, and the aging treatment under the predetermined condition is performed to obtain T
When the amount of CP phase is 0.1 or more in the X-ray diffraction intensity ratio with the γ phase, δ
Tissue uniformly finely dispersed precipitates in the phases, duplex stainless steel of the present invention, which is precipitation strengthening tissue are both 900 N / mm 2 or more in tensile strength TS at room temperature, 650 N / mm 2 or more in YS Has a high strength and maintains a high ductility of 35% elongation.
【0100】また、衝撃値も20kgf−m/cm2 以
上で、靭性にも優れており、さらに耐食性についても良
好な耐孔食性を有しており、組織の熱的安定性にも優れ
ている。Also, the impact value is 20 kgf-m / cm 2 or more, the toughness is excellent, the corrosion resistance is good, and the pitting corrosion resistance is excellent, and the thermal stability of the structure is also excellent. .
【0101】これに対し、比較例の2相ステンレス鋼
は、いずれも強度、延性、靭性、耐孔食性および組織の
熱的安定性のいずれかが劣っている。On the other hand, the duplex stainless steels of Comparative Examples are all inferior in strength, ductility, toughness, pitting corrosion resistance and thermal stability of structure.
【0102】[0102]
【発明の効果】本発明の2相ステンレス鋼は、優れた熱
間加工性、組織の熱的安定性および耐食性を有してお
り、微細なTCP相がδ相中に均一分散析出した組織、
すなわち析出強化組織にした場合には、靭性、延性およ
び耐食性を維持した状態で高強度を有する鋼である。従
って、この鋼は、腐食が問題となる用途および溶接施工
等による熱影響を余儀なくされる用途、具体的には海洋
環境で使用される設備や器具類あるいは油井用のライン
パイプや配管用部材の材料として好適であり、かつ90
0℃付近の低温域でも良好な熱間加工性を有するので、
鋼片の手入工数が削減できて製品歩留の向上にも寄与す
る。また、析出強化組織鋼とした場合には、従来よりも
苛酷な腐食環境への適用および製品の薄肉軽量化材料と
して好適であり、かつ熱的安定性にも優れることから析
出強化合金としての組織と性能を維持しつつ、溶接施工
や応力除去熱処理の併用も可能である。The duplex stainless steel of the present invention has excellent hot workability, thermal stability of structure and corrosion resistance, and a structure in which fine TCP phase is uniformly dispersed and precipitated in the δ phase,
That is, in the case of a precipitation strengthened structure, the steel has high strength while maintaining toughness, ductility and corrosion resistance. Therefore, this steel is used in applications where corrosion is a problem and applications in which the heat effect is inevitable due to welding, etc., specifically in equipment and instruments used in the marine environment, or line pipe and piping members for oil wells. Suitable as a material and 90
Since it has good hot workability even in the low temperature range around 0 ° C,
The number of man-hours required for the billet can be reduced, which contributes to the improvement of product yield. Further, when a precipitation-strengthened steel is used, it is suitable for use in a more severe corrosive environment than before, is suitable as a material for reducing the thickness and weight of products, and has excellent thermal stability. While maintaining the performance, it is possible to use welding work and stress relief heat treatment together.
【図1】代表的な本発明鋼と比較鋼の1300〜900
℃の範囲内での熱間加工性の変化の一例を示す図であ
る。FIG. 1 shows typical invention steels and comparative steels 1300-900.
It is a figure which shows an example of the change of hot workability in the range of (degree C).
【図2】代表的な本発明鋼と比較鋼の900℃での時効
処理によるσ相の析出挙動の一例を示す図である。FIG. 2 is a diagram showing an example of the precipitation behavior of a σ phase by the aging treatment at 900 ° C. of a representative present invention steel and a comparative steel.
【図3】代表的な本発明の析出強化組織鋼の金属間化合
物の析出挙動を表す典型的なX線回折パターンの一例を
示す図である。FIG. 3 is a diagram showing an example of a typical X-ray diffraction pattern showing precipitation behavior of an intermetallic compound in a typical precipitation-strengthened steel of the present invention.
【図4】代表的な比較例の析出強化組織鋼の金属間化合
物の析出挙動を表す典型的なX線回折パターンの一例を
示す図である。FIG. 4 is a diagram showing an example of a typical X-ray diffraction pattern showing precipitation behavior of an intermetallic compound in a precipitation-strengthened steel of a representative comparative example.
【図5】代表的な本発明の析出強化組織鋼の組織の熱的
安定性を表すX線回折強度比の一例を示す図である。FIG. 5 is a diagram showing an example of an X-ray diffraction intensity ratio representing the thermal stability of the structure of a typical precipitation strengthened structure steel of the present invention.
【図6】代表的な比較例の析出強化組織鋼の組織の熱的
安定性を表すX線回折強度比の一例を示す図である。FIG. 6 is a diagram showing an example of an X-ray diffraction intensity ratio representing the thermal stability of the structure of a precipitation strengthened structure steel of a representative comparative example.
【図7】代表的な比較例の析出強化組織鋼の組織の熱的
安定性を表すX線回折強度比の一例を示す図である。FIG. 7 is a diagram showing an example of an X-ray diffraction intensity ratio representing the thermal stability of the structure of a precipitation strengthened structure steel of a representative comparative example.
【図8】代表的な比較例の析出強化組織鋼の組織の熱的
安定性を表すX線回折強度比の一例を示す図である。FIG. 8 is a diagram showing an example of an X-ray diffraction intensity ratio representing the thermal stability of the structure of a precipitation strengthened structure steel of a representative comparative example.
Claims (10)
1.0%以下、Mn:1.5%以下、P:0.040%
以下、S:0.010%以下、sol−Al:0.04
0%以下、Ni:5.0〜9.0%、Cr:23.0〜
27.0%、W:5.0〜10.0%、N:0.24〜
0.32%、B:0.0005〜0.01%、Mo:0
〜2.0%未満を含有し、残部はFeおよび不可避不純
物からなる成分組成を有し、かつ下記または式で表
されるPREWが40以上であることを特徴とする高耐
食性2相ステンレス鋼。 PREW=Cr+1.65W+16N ・・・・・・・・・・・・・・・・・・ PREW=Cr+1.65W+3.3Mo+16N ・・・・・・ だだし、、式中の元素記号は各元素の含有量(重量
%)を表す。1. C: 0.03% or less by weight%, Si:
1.0% or less, Mn: 1.5% or less, P: 0.040%
Hereinafter, S: 0.010% or less, sol-Al: 0.04
0% or less, Ni: 5.0 to 9.0%, Cr: 23.0 to
27.0%, W: 5.0 to 10.0%, N: 0.24 to
0.32%, B: 0.0005 to 0.01%, Mo: 0
A high corrosion resistance duplex stainless steel characterized by containing less than 2.0% and a balance of Fe and inevitable impurities, and having PREW of 40 or more represented by the formula below. PREW = Cr + 1.65W + 16N ..... PREW = Cr + 1.65W + 3.3Mo + 16N .. However, the element symbol in the formula is the content of each element. Indicates the amount (% by weight).
05〜0.1重量%のTaと0.05〜0.1重量%の
Hfのいずれか一方または両方を含有し、かつ上記ま
たは式で表されるPREWが40以上であることを特
徴とする高耐食性2相ステンレス鋼。2. In addition to the components according to claim 1, further 0.
It is characterized by containing one or both of Ta of 0.05 to 0.1% by weight and Hf of 0.05 to 0.1% by weight, and PREW represented by the above or the formula is 40 or more. Highly corrosion resistant duplex stainless steel.
1〜1.0重量%のVを含有し、かつ上記または式
で表されるPREWが40以上であることを特徴とする
高耐食性2相ステンレス鋼。3. In addition to the components according to claim 1, further 0.
A highly corrosion-resistant duplex stainless steel containing 1 to 1.0% by weight of V and having PREW represented by the above formula or a formula of 40 or more.
001〜0.01重量%のCaと0.001〜0.01
重量%のMgのいずれか一方または両方を含有し、かつ
上記または式で表されるPREWが40以上である
ことを特徴とする高耐食性2相ステンレス鋼。4. In addition to the components according to claim 1, further 0.
001-0.01 wt% Ca and 0.001-0.01
A high corrosion-resistant duplex stainless steel containing one or both of Mg in a weight percentage and having a PREW represented by the above formula or a formula of 40 or more.
05〜0.1重量%のTaと0.05〜0.1重量%の
Hfのいずれか一方または両方と、0.1〜1.0重量
%のVを含有し、かつ上記または式で表されるPR
EWが40以上であることを特徴とする高耐食性2相ス
テンレス鋼。5. In addition to the components according to claim 1, further 0.
05-0.1 wt% Ta and / or 0.05-0.1 wt% Hf, or both, and 0.1-1.0 wt% V, and represented by the above or formula. PR
High corrosion resistance duplex stainless steel characterized by having an EW of 40 or more.
05〜0.1重量%のTaと0.05〜0.1重量%の
Hfのいずれか一方または両方と、0.001〜0.0
1重量%のCaと0.001〜0.01重量%のMgの
いずれか一方または両方を含有し、かつ上記または
式で表されるPREWが40以上であることを特徴とす
る高耐食性2相ステンレス鋼。6. In addition to the components according to claim 1, further 0.
05 to 0.1 wt% Ta and 0.05 to 0.1 wt% Hf, or both, and 0.001 to 0.0
High corrosion resistance two phase containing 1% by weight of Ca and / or 0.001 to 0.01% by weight of Mg, or both, and PREW represented by the above or the formula being 40 or more. Stainless steel.
1〜1.0重量%のVと、0.001〜0.01重量%
のCaと0.001〜0.01重量%のMgのいずれか
一方または両方を含有し、かつ上記または式で表さ
れるPREWが40以上であることを特徴とする高耐食
性2相ステンレス鋼。7. In addition to the components according to claim 1, further 0.
1 to 1.0 wt% V and 0.001 to 0.01 wt%
Of Ca and 0.001 to 0.01 wt% of Mg, or both, and PREW represented by the above or the formula is 40 or more, high corrosion resistance duplex stainless steel.
05〜0.1重量%のTaと0.05〜0.1重量%の
Hfのいずれか一方または両方と、0.1〜1.0重量
%のVと、0.001〜0.01重量%のCaと0.0
01〜0.01重量%のMgのいずれか一方または両方
を含有し、かつ上記または式で表されるPREWが
40以上であることを特徴とする高耐食性2相ステンレ
ス鋼。8. In addition to the components according to claim 1, further 0.
Either or both of Ta of 0.05 to 0.1% by weight and Hf of 0.05 to 0.1% by weight, V of 0.1 to 1.0% by weight, and 0.001 to 0.01% by weight. % Ca and 0.0
A highly corrosion-resistant duplex stainless steel containing 01 to 0.01% by weight of either or both of Mg and having PREW represented by the above formula or a formula of 40 or more.
分散析出した組織であることを特徴とする請求項1〜8
に記載のいずれかの高耐食性2相ステンレス鋼。9. The structure according to claim 1, wherein the structure is a structure in which an intermetallic compound is finely dispersed and precipitated in the δ phase.
High corrosion resistance duplex stainless steel according to any one of 1.
テンレス鋼を、800〜900℃の温度域に5〜30分
間保持する時効熱処理を施すことを特徴とする請求項9
に記載の高耐食性2相ステンレス鋼の製造方法。10. The aging heat treatment for holding the duplex stainless steel according to claim 1 in a temperature range of 800 to 900 ° C. for 5 to 30 minutes.
The method for producing a high-corrosion duplex stainless steel according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31441194A JPH08170153A (en) | 1994-12-19 | 1994-12-19 | Highly corrosion resistant two phase stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31441194A JPH08170153A (en) | 1994-12-19 | 1994-12-19 | Highly corrosion resistant two phase stainless steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08170153A true JPH08170153A (en) | 1996-07-02 |
Family
ID=18053023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31441194A Pending JPH08170153A (en) | 1994-12-19 | 1994-12-19 | Highly corrosion resistant two phase stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08170153A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005014872A1 (en) * | 2003-08-07 | 2005-02-17 | Sumitomo Metal Industries, Ltd. | Duplex stainless steel and method for production thereof |
JP2007332395A (en) * | 2006-06-12 | 2007-12-27 | Fu Sheng Industrial Co Ltd | Alloy of golf club head |
US7396421B2 (en) | 2003-08-07 | 2008-07-08 | Sumitomo Metal Industries, Ltd. | Duplex stainless steel and manufacturing method thereof |
WO2008087929A1 (en) | 2007-01-16 | 2008-07-24 | Sumitomo Metal Industries, Ltd. | 2-phase stainless pipe manufacturing method, correction method, intensity adjusting method, and correction device operating method |
US8313691B2 (en) | 2007-11-29 | 2012-11-20 | Ati Properties, Inc. | Lean austenitic stainless steel |
US8337748B2 (en) | 2007-12-20 | 2012-12-25 | Ati Properties, Inc. | Lean austenitic stainless steel containing stabilizing elements |
US8337749B2 (en) | 2007-12-20 | 2012-12-25 | Ati Properties, Inc. | Lean austenitic stainless steel |
WO2014112445A1 (en) | 2013-01-15 | 2014-07-24 | 株式会社神戸製鋼所 | Duplex stainless steel material and duplex stainless steel pipe |
US8877121B2 (en) | 2007-12-20 | 2014-11-04 | Ati Properties, Inc. | Corrosion resistant lean austenitic stainless steel |
WO2016063974A1 (en) * | 2014-10-24 | 2016-04-28 | 新日鐵住金株式会社 | Two-phase stainless steel and production method therefor |
US9771628B2 (en) | 2011-02-14 | 2017-09-26 | Nippon Steel & Sumitomo Metal Corporation | Duplex stainless steel and production method therefor |
KR20180081582A (en) | 2015-11-17 | 2018-07-16 | 가부시키가이샤 고베 세이코쇼 | Two-phase stainless steel material and two-phase stainless steel pipe |
JP2020023736A (en) * | 2018-08-08 | 2020-02-13 | 日本冶金工業株式会社 | Two-phase stainless steel having excellent low-temperature toughness |
JP2021143407A (en) * | 2020-03-13 | 2021-09-24 | 日本冶金工業株式会社 | Duplex stainless steel and manufacturing method thereof |
-
1994
- 1994-12-19 JP JP31441194A patent/JPH08170153A/en active Pending
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7396421B2 (en) | 2003-08-07 | 2008-07-08 | Sumitomo Metal Industries, Ltd. | Duplex stainless steel and manufacturing method thereof |
WO2005014872A1 (en) * | 2003-08-07 | 2005-02-17 | Sumitomo Metal Industries, Ltd. | Duplex stainless steel and method for production thereof |
JP2007332395A (en) * | 2006-06-12 | 2007-12-27 | Fu Sheng Industrial Co Ltd | Alloy of golf club head |
JP4669444B2 (en) * | 2006-06-12 | 2011-04-13 | 復盛股▲分▼有限公司 | Golf club head alloy |
WO2008087929A1 (en) | 2007-01-16 | 2008-07-24 | Sumitomo Metal Industries, Ltd. | 2-phase stainless pipe manufacturing method, correction method, intensity adjusting method, and correction device operating method |
US8006528B2 (en) | 2007-01-16 | 2011-08-30 | Sumitomo Metal Industries, Ltd. | Method for producing duplex stainless steel pipe, method for straightening, method for regulating strength, and method for operating straightener |
US8858872B2 (en) | 2007-11-29 | 2014-10-14 | Ati Properties, Inc. | Lean austenitic stainless steel |
US8313691B2 (en) | 2007-11-29 | 2012-11-20 | Ati Properties, Inc. | Lean austenitic stainless steel |
US10370748B2 (en) | 2007-11-29 | 2019-08-06 | Ati Properties Llc | Lean austenitic stainless steel |
US9617628B2 (en) | 2007-11-29 | 2017-04-11 | Ati Properties Llc | Lean austenitic stainless steel |
US9133538B2 (en) | 2007-12-20 | 2015-09-15 | Ati Properties, Inc. | Lean austenitic stainless steel containing stabilizing elements |
US9822435B2 (en) | 2007-12-20 | 2017-11-21 | Ati Properties Llc | Lean austenitic stainless steel |
US9121089B2 (en) | 2007-12-20 | 2015-09-01 | Ati Properties, Inc. | Lean austenitic stainless steel |
US8337748B2 (en) | 2007-12-20 | 2012-12-25 | Ati Properties, Inc. | Lean austenitic stainless steel containing stabilizing elements |
US8877121B2 (en) | 2007-12-20 | 2014-11-04 | Ati Properties, Inc. | Corrosion resistant lean austenitic stainless steel |
US8337749B2 (en) | 2007-12-20 | 2012-12-25 | Ati Properties, Inc. | Lean austenitic stainless steel |
US9624564B2 (en) | 2007-12-20 | 2017-04-18 | Ati Properties Llc | Corrosion resistant lean austenitic stainless steel |
US10323308B2 (en) | 2007-12-20 | 2019-06-18 | Ati Properties Llc | Corrosion resistant lean austenitic stainless steel |
US9873932B2 (en) | 2007-12-20 | 2018-01-23 | Ati Properties Llc | Lean austenitic stainless steel containing stabilizing elements |
US9771628B2 (en) | 2011-02-14 | 2017-09-26 | Nippon Steel & Sumitomo Metal Corporation | Duplex stainless steel and production method therefor |
KR20150087430A (en) | 2013-01-15 | 2015-07-29 | 가부시키가이샤 고베 세이코쇼 | Duplex stainless steel material and duplex stainless steel pipe |
WO2014112445A1 (en) | 2013-01-15 | 2014-07-24 | 株式会社神戸製鋼所 | Duplex stainless steel material and duplex stainless steel pipe |
EP2947169A4 (en) * | 2013-01-15 | 2016-12-21 | Kobe Steel Ltd | Duplex stainless steel material and duplex stainless steel pipe |
JP5962878B1 (en) * | 2014-10-24 | 2016-08-03 | 新日鐵住金株式会社 | Duplex stainless steel and manufacturing method thereof |
US20170327915A1 (en) * | 2014-10-24 | 2017-11-16 | Nippon Steel & Sumitomo Metal Corporation | Duplex stainless steel and method for producing the same |
EP3211107A4 (en) * | 2014-10-24 | 2018-05-09 | Nippon Steel & Sumitomo Metal Corporation | Two-phase stainless steel and production method therefor |
CN107075639A (en) * | 2014-10-24 | 2017-08-18 | 新日铁住金株式会社 | Two phase stainless steel and its manufacture method |
WO2016063974A1 (en) * | 2014-10-24 | 2016-04-28 | 新日鐵住金株式会社 | Two-phase stainless steel and production method therefor |
KR20180081582A (en) | 2015-11-17 | 2018-07-16 | 가부시키가이샤 고베 세이코쇼 | Two-phase stainless steel material and two-phase stainless steel pipe |
JP2020023736A (en) * | 2018-08-08 | 2020-02-13 | 日本冶金工業株式会社 | Two-phase stainless steel having excellent low-temperature toughness |
JP2021143407A (en) * | 2020-03-13 | 2021-09-24 | 日本冶金工業株式会社 | Duplex stainless steel and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4834292B2 (en) | Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with reduced formation of intermetallic compounds | |
JP5072285B2 (en) | Duplex stainless steel | |
US8119063B2 (en) | Austenitic iron and an iron product | |
US5298093A (en) | Duplex stainless steel having improved strength and corrosion resistance | |
JP4803174B2 (en) | Austenitic stainless steel | |
CA2830155C (en) | Carburization resistant metal material | |
JP6369662B1 (en) | Duplex stainless steel and manufacturing method thereof | |
JP3608743B2 (en) | Martensitic stainless steel with excellent hot workability and resistance to sulfide stress cracking | |
WO2013190834A1 (en) | High-strength stainless steel seamless pipe having excellent corrosion resistance for oil well, and method for manufacturing same | |
WO2016052397A1 (en) | High-strength steel material for oil wells, and oil well pipe | |
WO2002099150A1 (en) | Martensitic stainless steel | |
KR101539520B1 (en) | Duplex stainless steel sheet | |
JPH08170153A (en) | Highly corrosion resistant two phase stainless steel | |
JP2018204110A (en) | Abrasion resistant thick steel plate | |
JP2002004009A (en) | High strength martensitic stainless steel tube for oil well and its production method | |
JP2020023736A (en) | Two-phase stainless steel having excellent low-temperature toughness | |
JP6776469B1 (en) | Duplex stainless steel and its manufacturing method | |
JP2000328198A (en) | Austenitic stainless steel excellent in hot workability | |
JP3328967B2 (en) | Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance | |
JP2002212684A (en) | Martensitic stainless steel having high temperature strength | |
JPS61113749A (en) | High corrosion resistance alloy for oil well | |
JP7207557B2 (en) | Stainless seamless steel pipe for oil country tubular goods and manufacturing method thereof | |
JP3814836B2 (en) | Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance | |
JP3642030B2 (en) | High strength martensitic stainless steel and method for producing the same | |
JP2672437B2 (en) | Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance |