JPH0774162A - Apparatus and method for vapor phase reaction - Google Patents

Apparatus and method for vapor phase reaction

Info

Publication number
JPH0774162A
JPH0774162A JP23914593A JP23914593A JPH0774162A JP H0774162 A JPH0774162 A JP H0774162A JP 23914593 A JP23914593 A JP 23914593A JP 23914593 A JP23914593 A JP 23914593A JP H0774162 A JPH0774162 A JP H0774162A
Authority
JP
Japan
Prior art keywords
electrodes
discharge
phase difference
pair
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23914593A
Other languages
Japanese (ja)
Other versions
JP3576188B2 (en
Inventor
Takeshi Fukada
武 深田
Mitsunori Sakama
光範 坂間
Atsushi Kawano
篤 川野
Yuji Yanagi
雄二 柳
Toshihiro Jinbo
敏浩 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOTSUKI KK
Semiconductor Energy Laboratory Co Ltd
Canon Tokki Corp
Original Assignee
TOTSUKI KK
Semiconductor Energy Laboratory Co Ltd
Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOTSUKI KK, Semiconductor Energy Laboratory Co Ltd, Tokki Corp filed Critical TOTSUKI KK
Priority to JP23914593A priority Critical patent/JP3576188B2/en
Publication of JPH0774162A publication Critical patent/JPH0774162A/en
Application granted granted Critical
Publication of JP3576188B2 publication Critical patent/JP3576188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve uniformity of vapor phase reaction both in the electrode- to-electrode direction and in the direction of reactive gas supply. CONSTITUTION:Discharge is caused between a pair of electrodes 14, 15, and a film is thereby formed on the surface of a substrate 23 that is placed in a direction perpendicular to the surfaces of the electrodes. In such vapor phase reaction, high-frequency power supplied between a pair of the electrodes is oscillated by pulse. Reactive gas is supplied through a gas feed system 12, and exhausted through an exhaust system 13. Pulse oscillation will improve the film thickness distribution in the direction of reactive gas flow. Meanwhile, the film thickness distribution in the electrode-to-electrode direction will be improved by controlling the difference in phase of high-frequency power supplied between a pair of the electrodes 14, 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気相反応装置の構成、
および気相反応方法に関する。さらに本発明は、気相反
応により、薄膜を形成する技術に関する。
BACKGROUND OF THE INVENTION The present invention relates to a structure of a gas phase reaction apparatus,
And a gas phase reaction method. Further, the present invention relates to a technique for forming a thin film by a gas phase reaction.

【0002】[0002]

【従来の技術】従来より気相反応により薄膜を形成する
技術が知られている。特に、平行平板型に構成された電
極の一方の電極上(一般に接地電位側)にガラス基板等
を配置し、電極間に高周波(例えば13.56MHz)
を加えることで、気相反応を起こし、基板表面に半導体
膜や絶縁膜を形成する技術が広く知られている。
2. Description of the Related Art Conventionally, a technique for forming a thin film by a gas phase reaction has been known. In particular, a glass substrate or the like is placed on one electrode (generally the ground potential side) of the parallel plate type electrodes, and a high frequency (eg 13.56 MHz) is placed between the electrodes.
There is widely known a technique of forming a semiconductor film or an insulating film on the surface of a substrate by causing a gas phase reaction by the addition of.

【0003】一方、図1および図2および図3に示すよ
うな構成を有した気相反応装置が知られている。図1の
A−A’で切った断面図が図2であり、図2のB−Bで
切った断面が図3である。即ち、図1に示す装置を上面
から見た断面が図2であり、図1に示す装置を紙面右側
あるいは紙面左側から見た断面が図3である。
On the other hand, there is known a gas phase reactor having a structure as shown in FIGS. 1, 2 and 3. 2 is a sectional view taken along the line AA ′ of FIG. 1, and FIG. 3 is a sectional view taken along the line BB of FIG. That is, FIG. 2 is a cross section of the device shown in FIG. 1 as seen from above, and FIG. 3 is a cross section of the device shown in FIG. 1 as seen from the right or left side of the drawing.

【0004】以下において、この気相反応装置(一般に
CVD装置、あるいはプラズマCVD装置といわれる)
の構成について説明する。図1に示す気相反応装置は、
真空容器11内に一対の電極14と15を備えている。
そしてガス導入系から導入される反応性気体をこの一対
の電極間において行われる高周波放電によってプラズマ
気相反応させ、成膜を行うものである。
In the following, this gas phase reaction apparatus (generally referred to as a CVD apparatus or a plasma CVD apparatus)
The configuration of will be described. The gas phase reactor shown in FIG.
A pair of electrodes 14 and 15 are provided in the vacuum container 11.
Then, the reactive gas introduced from the gas introduction system is caused to undergo a plasma vapor phase reaction by the high frequency discharge performed between the pair of electrodes to form a film.

【0005】成膜が行われる基板は、基板ホルダー25
に保持されている。基板は図1の23、24で示される
ように、上下に2枚を1組として保持される。また図
2、図3に示すように、基板は複数枚が平行に配置され
ている。そして基板ホルダー25はアルミやステンレス
等の導体、あるいは石英、セラミック等の絶縁体で構成
され、枠構造を有している。
The substrate on which the film is formed is the substrate holder 25.
Held in. As shown by 23 and 24 in FIG. 1, the substrates are held as a pair of upper and lower substrates. Further, as shown in FIGS. 2 and 3, a plurality of substrates are arranged in parallel. The substrate holder 25 is made of a conductor such as aluminum or stainless steel, or an insulator such as quartz or ceramic, and has a frame structure.

【0006】反応性気体やキャリアガスさらには添加ガ
スは、ガス供給系12より図2に示す基板ホルダー25
上部のスリット27から基板ホルダー内に導入され、一
対の電極14、15間に形成される放電空間に導かれ
る。ガス供給系より導入されるガスは、図1〜図3のy
方向に示す向きに従って図3の28で示されるように流
れていく。この際に、基板ホルダーの内部で行われる気
相反応によって、基板表面に薄膜が形成される。
The reactive gas, the carrier gas, and the additive gas are supplied from the gas supply system 12 to the substrate holder 25 shown in FIG.
It is introduced into the substrate holder through the upper slit 27 and guided to the discharge space formed between the pair of electrodes 14 and 15. The gas introduced from the gas supply system is y in FIGS.
Flows as indicated by 28 in FIG. 3 according to the direction indicated by the direction. At this time, a thin film is formed on the surface of the substrate by a gas phase reaction performed inside the substrate holder.

【0007】また、不要になった反応性気体は排気系1
3より排気される。排気系13には真空ポンプ22が設
けられている。
The reactive gas that has become unnecessary is exhausted from the exhaust system 1.
Exhausted from 3. The exhaust system 13 is provided with a vacuum pump 22.

【0008】一対の電極14、15には、2つの高周波
電源20、21より位相が互いに180度ずれた位相差
をもった高周波が整合器17、18を介して加えられ
る。位相制御は、位相差制御器19により行われる。
High frequencies having a phase difference of 180 degrees from each other are applied to the pair of electrodes 14 and 15 from the two high frequency power sources 20 and 21 through the matching units 17 and 18. The phase control is performed by the phase difference controller 19.

【0009】また、基板を加熱する必要がある場合は、
赤外線ランプ(図示せず)によって、基板ホルダー25
を加熱し、基板を間接的に加熱する。
When it is necessary to heat the substrate,
An infrared lamp (not shown) allows a substrate holder 25.
To heat the substrate indirectly.

【0010】以上において説明した気相反応装置は、以
下の特徴を有している。 ・基板が一対の電極間に垂直に複数配置されるので、複
数の基板を同時に処理することができる。 ・気相反応が枠で囲まれた構造を有する基板ホルダー内
で行われるので、反応室内部に反応生成物がパーティク
ルとして残存する問題を低減できる。
The gas phase reactor described above has the following features. Since a plurality of substrates are vertically arranged between the pair of electrodes, it is possible to simultaneously process a plurality of substrates. Since the gas phase reaction is carried out in the substrate holder having a structure surrounded by a frame, it is possible to reduce the problem that reaction products remain as particles in the reaction chamber.

【0011】本発明者らは、上記の気相反応装置で数々
の成膜実験を行い、以下の実験事実を得た。なお基板の
大きさは400mm×300mmのガラス基板を用い、
x方向が400mm、y方向が300mmとなるように
配置した。
The inventors of the present invention conducted a number of film formation experiments with the above-mentioned vapor phase reactor and obtained the following experimental facts. The size of the substrate is a glass substrate of 400 mm × 300 mm,
It was arranged so that the x direction was 400 mm and the y direction was 300 mm.

【0012】図4、図5に示すのは、図1に示す装置を
用いて成膜実験を行った結果の膜厚分布を示すものであ
る。図4の横軸と図5の縦軸に示すのは、成膜速度(gr
owthrate)であるが、所定の時間(例えば成膜時間)を
乗ずれば膜厚として比較することができる。即ち図4の
横軸と図5縦軸は、成膜される膜厚として評価すること
ができる。また、図4の縦軸と図5の横軸は、図1〜3
に示されるx及びyで示される座標を示す。この座標
は、原点をガラス基板の角の部分にとったものである。
従って、この座標と膜厚の関係を見ることで膜厚分布を
評価することができる。
FIGS. 4 and 5 show the film thickness distribution as a result of a film deposition experiment using the apparatus shown in FIG. The horizontal axis of FIG. 4 and the vertical axis of FIG. 5 indicate the film formation rate (gr
The film thickness can be compared by multiplying it by a predetermined time (for example, film formation time). That is, the horizontal axis of FIG. 4 and the vertical axis of FIG. 5 can be evaluated as the film thickness to be formed. The vertical axis of FIG. 4 and the horizontal axis of FIG.
The coordinates indicated by x and y shown in FIG. These coordinates are obtained by taking the origin as a corner of the glass substrate.
Therefore, the film thickness distribution can be evaluated by looking at the relationship between the coordinates and the film thickness.

【0013】図4の白丸印は、2つの基板(300mm
幅が2枚で600mm幅になる)のy方向における膜厚
分布を示すものである。(図3の黒丸印のプロット点に
ついては後述する)
White circles in FIG. 4 indicate two substrates (300 mm).
It shows the film thickness distribution in the y direction when the width is two and the width is 600 mm. (The plot points with black circles in FIG. 3 will be described later)

【0014】図5の白丸印、白四角印には、上下それぞ
れの基板の中央部分におけるx方向(400mm幅)に
おける膜厚分布を示すものである。(図5の黒丸印、黒
四角印については後述する)
The white circles and white squares in FIG. 5 indicate the film thickness distributions in the x direction (400 mm width) in the central portions of the upper and lower substrates, respectively. (The black circles and black squares in FIG. 5 will be described later)

【0015】図5において、白丸印で示されるのは、図
1に示される上側の基板(upper substrate) のx方向の
膜厚分布であり、白四角印で示されるのは、下側の基板
(lower substrate) のx方向の膜厚分布である。図5に
おいて、白丸印のプロット点と白四角印のプロット点と
では、その形状が似ているが、その絶対値が異なってい
る。これは、図4の白丸印のプロット点を見れば分かる
ように、図1のy方向にいくに従って、膜厚が薄くなる
ことに関係する。即ち、図5の白丸印と白四角印は、上
側の基板の膜厚が下側の基板に比較して厚く成膜されて
しまうことを示している。
In FIG. 5, the white circles indicate the film thickness distribution in the x direction of the upper substrate shown in FIG. 1, and the white squares indicate the lower substrate.
It is a film thickness distribution of the (lower substrate) in the x direction. In FIG. 5, the plot points of the white circles and the plot points of the white squares are similar in shape, but their absolute values are different. This is related to the film thickness becoming thinner in the y direction of FIG. 1, as can be seen from the plot points of the white circles in FIG. That is, the white circles and white squares in FIG. 5 indicate that the film thickness of the upper substrate is thicker than that of the lower substrate.

【0016】なお、図4、図5に示す膜厚分布は、図2
に示す平行に複数配置された基板全てにおいて同様であ
る。即ち上下一組として配置された複数組の基板全てに
おいて、図4、図5に示すような膜厚分布が観察され
た。
The film thickness distributions shown in FIGS. 4 and 5 are as shown in FIG.
The same applies to all the substrates arranged in parallel as shown in FIG. That is, the film thickness distributions as shown in FIGS. 4 and 5 were observed in all of the plurality of sets of substrates arranged as one set above and below.

【0017】図4、図5から明らかなように、図1〜図
3に示すような構成を有する気相反応装置においては、
成膜される膜厚の不均一性という問題が存在する。即
ち、一対の電極間に電極とその面が垂直になるように基
板を配置し、電極間において放電を起こすことによって
成膜を行う気相反応装置は、 ・反応性気体の移動方向(図1でいうy方向)における
膜厚分布の不均一性 ・電極間方向(図1でいうx方向)における膜厚分布の
不均一性とが問題となる。
As is apparent from FIGS. 4 and 5, in the gas phase reactor having the structure shown in FIGS.
There is the problem of non-uniformity of the deposited film thickness. That is, a gas phase reaction apparatus in which a substrate is arranged between a pair of electrodes so that the electrodes and the surface thereof are perpendicular to each other and a film is formed by generating an electric discharge between the electrodes is as follows: Non-uniformity of the film thickness distribution in the y direction) and non-uniformity of the film thickness distribution in the inter-electrode direction (the x direction in FIG. 1) are problems.

【0018】また、この不均一性の問題は、それぞれ不
均一にする原因が独立であることが判明している。即
ち、電極間方向(図1〜図3でいうとx方向)における
膜厚分布の不均一性と、反応性気体の移動方向(図1〜
図3でいうとy方向)における膜厚分布の不均一性と
は、それぞれ独立した原因によるものであることが判明
している。
Further, it has been found that the causes of the nonuniformity are independent of each other. That is, the non-uniformity of the film thickness distribution in the direction between the electrodes (the x direction in FIGS. 1 to 3) and the moving direction of the reactive gas (see FIGS. 1 to 3).
It has been found that the non-uniformity of the film thickness distribution in the y direction in FIG. 3) is due to independent causes.

【0019】〔発明が解決しようとする課題〕本発明
は、一対の電極間に電極と垂直に基板を配置し、該基板
の表面に薄膜の成膜を行う構成において、成膜される薄
膜の膜厚分布の不均一性を解決することを目的とする。
具体的には、下記の2点の問題を解決することを目的と
する。 1.電極間方向における膜厚の不均一性を解決する。 2.反応性気体の移動方向における膜厚の不均一性を解
決する。
[Problems to be Solved by the Invention] The present invention provides a thin film to be formed in a structure in which a substrate is arranged between a pair of electrodes in a direction perpendicular to the electrodes and a thin film is formed on the surface of the substrate. The object is to solve the non-uniformity of the film thickness distribution.
Specifically, it aims to solve the following two problems. 1. To solve the non-uniformity of the film thickness in the direction between the electrodes. 2. To solve the non-uniformity of the film thickness in the moving direction of the reactive gas.

【0020】〔課題を解決するための手段〕本発明は、
一対の電極間に少なくとも1枚の基板が基板面を電極面
に対して垂直にして配置された気相反応装置において、
下記の2点を主要な発明の構成とする。 ・一対の電極間に供給する高周波電力を間欠放電(パル
ス放電)とする。 ・それぞれの電極に供給する高周波電力に少なくとも2
つの位相差を非同時に与えて気相反応させる。
[Means for Solving the Problems] The present invention is
In a gas phase reaction device in which at least one substrate is arranged between a pair of electrodes with the substrate surface perpendicular to the electrode surface,
The following two points are major invention components. -The high-frequency power supplied between the pair of electrodes is an intermittent discharge (pulse discharge).・ At least 2 for high frequency power supplied to each electrode
Gas phase reaction is performed by applying two phase differences non-simultaneously.

【0021】それぞれの電極に供給する高周波電力に少
なくとも2つの位相差を非同時に与えて気相反応させる
動作の例を以下に示す。 (1)まず一対の電極にX度の位相差でもって高周波電
力を供給する。ここで、X度は任意の角度である。この
X度の位相差でもって高周波電力を供給する時間は、任
意である。 (2)上記(1)の動作に続いて、(X±180)度の
位相差でもって、一対の電極に高周波電力を供給する。
The following is an example of an operation in which at least two phase differences are non-simultaneously applied to the high frequency power supplied to each electrode to cause a gas phase reaction. (1) First, high frequency power is supplied to the pair of electrodes with a phase difference of X degrees. Here, X degree is an arbitrary angle. The time for supplying the high frequency power with this phase difference of X degrees is arbitrary. (2) Following the operation of (1) above, high frequency power is supplied to the pair of electrodes with a phase difference of (X ± 180) degrees.

【0022】例えば、X=0度であれば、上記(1)に
示す動作過程において、一対の電極に同相(位相差0)
で高周波電力を供給し、次の動作過程(上記(2)の動
作過程に相当する)において、一対の電極に180度の
位相差で高周波電力を供給すればよい。
For example, if X = 0 degree, in the operation process shown in (1) above, the pair of electrodes have the same phase (phase difference of 0).
Then, the high frequency power may be supplied to the pair of electrodes in the next operation process (corresponding to the operation process of (2) above) with a phase difference of 180 degrees.

【0023】また、X=−90度(270度)であれ
ば、上記(1)の動作過程において、一対の電極に−9
0度の位相差で高周波電力を供給し、次の動作過程にお
いて、一対の電極に90度の位相差で高周波電力を供給
すればよい。
If X = -90 degrees (270 degrees), a pair of electrodes will be -9 in the operation process of (1).
High frequency power may be supplied with a phase difference of 0 degree, and high frequency power may be supplied to the pair of electrodes with a phase difference of 90 degrees in the next operation process.

【0024】この(1)の動作過程と位相差と(2)の
動作過程の位相差との差は、180度であることが好ま
しいが、±20%範囲で許容することができる。
The difference between the phase difference between the operation process (1) and the phase difference between the operation process (2) is preferably 180 degrees, but can be allowed within a range of ± 20%.

【0025】上記(1)と(2)の動作過程は、以下
(a) 〜(b) に示すような組み合わせでもって実施され
る。 (a) 始めに(1)の動作を所定の時間行い、引き続いて
(2)の動作を所定の時間行う。この際において、それ
ぞれの動作時間は、同じ場合もあるし、異なる場合もあ
る。 (b) (1)の動作と(2)の動作とを交互に繰り返して
行う。 (c) 所定時間内において、(1)の動作時間と(2)の
動作時間との割合が一定の比率になるようにする。
The operation process of the above (1) and (2) is as follows.
The combination shown in (a) to (b) is carried out. (a) First, the operation (1) is performed for a predetermined time, and then the operation (2) is performed for a predetermined time. At this time, the respective operation times may be the same or different. (b) The operation (1) and the operation (2) are alternately repeated. (c) The ratio of the operation time of (1) to the operation time of (2) is set to be a constant ratio within a predetermined time.

【0026】例えば、高周波電力を供給する時間の総計
が30分間の場合において、(1)の動作時間と(2)
の動作時間の割合との比率を1:2とする場合、 ・(1)の動作時間を10分とし、(2)の動作時間を
20分とする。 ・(1)の動作時間を1分として、(2)の動作時間を
2分とする。そして、交互に10回この動作を繰り返
す。 ・(1)の動作を1msecとし、(2)の動作を2m
secとする。そして、交互にこの動作を600回繰り
返す。 といいった動作モードが考えられる。
For example, when the total time of supplying the high frequency power is 30 minutes, the operation time of (1) and the operation time of (2)
When the ratio to the ratio of the operation time of is set to 1: 2, the operation time of (1) is set to 10 minutes and the operation time of (2) is set to 20 minutes. -The operation time of (1) is 1 minute and the operation time of (2) is 2 minutes. Then, this operation is alternately repeated 10 times.・ The operation of (1) is 1 msec, and the operation of (2) is 2 m
Let be sec. Then, this operation is alternately repeated 600 times. The operation mode called is conceivable.

【0027】また、位相差放電の組み合わせの方法とし
ては、2種類の位相差の組み合わせに限られるものでは
ない。例えば、0度の位相差、180度の位相差、60
度の位相差、240度の位相差、での放電を1分づつ行
い、計4分間の気相反応を行うこともできる。
The method of combining the phase difference discharges is not limited to the combination of two types of phase difference discharges. For example, 0 degree phase difference, 180 degree phase difference, 60
It is also possible to perform the gas phase reaction for a total of 4 minutes by performing discharge for 1 minute at a phase difference of 240 degrees and a phase difference of 240 degrees.

【0028】また、位相差が連続的に変化させる方法を
採用してもよい。例えば、一対の電極に加えられる高周
波電力の位相差が放電開始時に0度であり、放電終了時
に360度である1つのサイクルを考える。この場合、
始めは位相差0つまり同位相であるが、徐々に1度,2
度,3度と位相差がずれていき、360度の位相差すな
わち0度で同位相の戻る。
Further, a method of continuously changing the phase difference may be adopted. For example, consider one cycle in which the phase difference of the high frequency power applied to the pair of electrodes is 0 degrees at the beginning of discharge and 360 degrees at the end of discharge. in this case,
Initially, the phase difference is 0, that is, the same phase, but gradually 1 degree, 2
The phase difference deviates from 3 degrees, and the same phase returns with a phase difference of 360 degrees, that is, 0 degree.

【0029】実際には、上記のサイクル(位相差が0度
〜360度まで変化するのを1サイクルとする)が多数
回繰り返されて気相反応が行われる。
In practice, the above-described cycle (a cycle in which the phase difference changes from 0 ° to 360 ° is defined as one cycle) is repeated many times to perform the gas phase reaction.

【0030】上記構成を実現する方法としては、以下の
ような構成を考えることができる。一方の電極の電極に
供給さえる高周波電力と他方の電極に供給される高周波
電力との周波数を僅かに異ならせて気相反応をさせる。
このようにすると、それぞれの高周波電力の位相差が除
々に変化していき、位相差を連続して変化させる場合と
同様な効果を得ることができる。この高周波電力の周波
数の違いは、20%程度以下であることが望ましい。
The following configuration can be considered as a method for realizing the above configuration. The frequency of the high-frequency power supplied to the electrode of one electrode and the high-frequency power supplied to the other electrode is slightly different from each other to cause a gas phase reaction.
By doing so, the phase difference between the respective high-frequency powers gradually changes, and the same effect as in the case of continuously changing the phase difference can be obtained. The difference in the frequency of the high frequency power is preferably about 20% or less.

【0031】本発明においては、一対の電極間に電磁エ
ネルギーを供給し、高周波放電を生じさせるものである
が、高周波の周波数は、特に限定されるものではない。
また、気相反応によって、薄膜の成膜を行うことが極め
て有効であり、膜厚分布の良好な薄膜形成を行うことが
できる。しかし、これは気相反応が均一に行われている
ことでもあるので、この気相反応方法を利用して気相エ
ッチングを行うことも有効である。
In the present invention, electromagnetic energy is supplied between the pair of electrodes to generate high frequency discharge, but the frequency of the high frequency is not particularly limited.
Further, it is extremely effective to form a thin film by a gas phase reaction, and a thin film having a good film thickness distribution can be formed. However, since this also means that the gas phase reaction is carried out uniformly, it is also effective to carry out gas phase etching using this gas phase reaction method.

【0032】[0032]

【作用】放電を間欠的に行うこと(一般にパルス放電と
いう)によって、反応性気体の有効利用を計り、反応性
気体の流れる方向における気相反応の均一性を高めるこ
とができる。特に、気相反応によって成膜を行う場合に
は、反応性気体の流れる方向における膜厚分布を著しく
向上させることができる。
By performing the discharge intermittently (generally referred to as pulse discharge), it is possible to effectively use the reactive gas and enhance the uniformity of the gas phase reaction in the flowing direction of the reactive gas. In particular, when the film is formed by the gas phase reaction, the film thickness distribution in the flowing direction of the reactive gas can be significantly improved.

【0033】一対の電極間に加えられる高周波エネルギ
ーの位相差を少なくとも2つ用い、その第1の位相差を
X度、第2の位相差を(X±180)度とすることによ
って、電極間方向における気相反応の均一性を向上させ
ることができる。特に、気相反応によって、成膜を行う
場合には、電極間方向における膜厚分布を著しく改善す
ることができる。
By using at least two phase differences of the high-frequency energy applied between the pair of electrodes, the first phase difference being X degrees and the second phase difference being (X ± 180) degrees, the electrodes The uniformity of the gas phase reaction in the direction can be improved. In particular, when the film is formed by the gas phase reaction, the film thickness distribution in the direction between the electrodes can be remarkably improved.

【0034】[0034]

【実施例】〔実施例1〕本実施例では、図1に示すプラ
ズマCVD装置において、y方向の膜厚分布を改善する
例を示す。本実施例においては、図1に示すプラズマC
VD装置において、図6にそのブロック図を示すような
放電系を採用したこと特徴とする。
[Embodiment 1] This embodiment shows an example of improving the film thickness distribution in the y direction in the plasma CVD apparatus shown in FIG. In this embodiment, the plasma C shown in FIG.
The VD device is characterized by adopting a discharge system whose block diagram is shown in FIG.

【0035】本実施例は、一対の電極14、15から反
応空間(一対の電極間に形成される)に対して行われる
放電をパルス放電とするものである。
In this embodiment, the discharge performed from the pair of electrodes 14 and 15 to the reaction space (formed between the pair of electrodes) is a pulse discharge.

【0036】このために、図6に示すパルス発振器から
の信号を用いて、2つの高周波電源からの高周波をパル
ス発振させる。図6に示す放電系以外の構成は、図1〜
図3に示すのと同様である。
For this purpose, the signals from the pulse oscillator shown in FIG. 6 are used to pulse-oscillate the high frequencies from the two high-frequency power sources. Configurations other than the discharge system shown in FIG.
It is similar to that shown in FIG.

【0037】図6に示す放電系を用いると、高周波電源
をパルス放電させるための基準パルスをパルス発生器で
行ない、その信号によって2台の高周波電源をパルス放
電させることができる。2台の高周波電源から発振され
る高周波電力の位相差は、位相信号発生器によって制御
される。また、電極(14または15)と高周波電源と
の間には整合器があるため、電極上における位相差が制
御値からずれる可能性がある。従って、整合器の出口の
ところでの位相差を位相信号発生器にフィードバックさ
せて、位相制御を行う構成としている。
When the discharge system shown in FIG. 6 is used, the reference pulse for pulse-discharging the high-frequency power source can be generated by the pulse generator, and the two high-frequency power sources can be pulse-discharged by the signal. The phase difference between the high frequency powers oscillated from the two high frequency power supplies is controlled by the phase signal generator. Further, since there is a matching device between the electrode (14 or 15) and the high frequency power source, the phase difference on the electrode may deviate from the control value. Therefore, the phase control is performed by feeding back the phase difference at the exit of the matching device to the phase signal generator.

【0038】パルス発生器は、高周波電源をパルス駆動
するためのものである。パルス発生器によって、どの様
な高周波電力が出力されるかを図7に示す。パルス発生
器からの信号によって、高周波電源がON,OFFさ
れ、パルス状に高周波電力が一対の電極に印加される。
The pulse generator is for pulse driving the high frequency power supply. FIG. 7 shows what kind of high frequency power is output by the pulse generator. A high-frequency power source is turned on and off by a signal from the pulse generator, and high-frequency power is applied to the pair of electrodes in a pulse shape.

【0039】このシステムでは、−10Vがパルス発生
器から出力された場合に、高周波電源がON状態にな
る。この様子を図7に示す。また、本実施例において
は、一対の電極14と15に供給される高周波電力の位
相差は180度に固定してある。
In this system, the high frequency power supply is turned on when -10 V is output from the pulse generator. This state is shown in FIG. Further, in the present embodiment, the phase difference of the high frequency power supplied to the pair of electrodes 14 and 15 is fixed to 180 degrees.

【0040】成膜に当たっては、図1〜図3に示すよう
に、ガラス基板(400mm×300mm)を2枚一組
で配置し、計12枚の基板に同時に成膜する構成とし
た。
For film formation, as shown in FIGS. 1 to 3, two glass substrates (400 mm × 300 mm) were arranged in a set, and a total of 12 substrates were formed simultaneously.

【0041】以下に成膜条件を示す。 反応性基体 SiH4 /NH3 =200/1000s
ccm 高周波電力 4kW(13.56MHz)×2 位相差 180度 パルス周波数 100Hz(duty比50%) 加熱温度 350℃ 上記成膜条件は、図7に示すような放電形態において、
放電時間を5msecとして、休止時間を5msecと
した場合である。この放電形態は、duty比が50%のパ
ルス放電を100Hzの繰り返し周波数、あるいはパル
ス周波数で行ったものといえる。duty比とは、(放電時
間/(放電時間+休止時間))を示すものである。例え
ば、パルス周波数100Hzでduty比を10%としたパ
ルス放電の場合は、1msecの放電と9msecの休
止とを繰り返す放電形態となる。
The film forming conditions are shown below. Reactive substrate SiH 4 / NH 3 = 200 / 1000s
ccm High frequency power 4 kW (13.56 MHz) × 2 Phase difference 180 degrees Pulse frequency 100 Hz (duty ratio 50%) Heating temperature 350 ° C. The film forming conditions are as follows in the discharge mode as shown in FIG.
This is a case where the discharge time is 5 msec and the rest time is 5 msec. It can be said that this discharge form is a pulse discharge having a duty ratio of 50% at a repetition frequency of 100 Hz or a pulse frequency. The duty ratio indicates (discharge time / (discharge time + pause time)). For example, in the case of pulse discharge with a pulse frequency of 100 Hz and a duty ratio of 10%, a discharge mode in which discharge of 1 msec and pause of 9 msec are repeated.

【0042】上記条件により成膜されたy方向の膜厚分
布を図4の黒丸印で示す。図4を見れば明らかなよう
に、y方向の膜厚分布は大きく改善することができる。
The film thickness distribution in the y direction formed under the above conditions is shown by black circles in FIG. As is clear from FIG. 4, the film thickness distribution in the y direction can be greatly improved.

【0043】また上記条件において成膜を行った際のx
方向の膜厚分布を図5の白四角印と黒四角印とで示す。
図4に示すようにy方向の膜厚分布のバラツキが改善さ
れたことを反映して、上側の基板と下側の基板とで、ほ
とんど同じ膜厚分布を示している。しかし、図5に示す
x方向の波打った膜厚分布は改善されていない。
Further, x when the film is formed under the above conditions
The film thickness distribution in the direction is shown by the white square marks and the black square marks in FIG.
As shown in FIG. 4, reflecting the improvement in the variation in the film thickness distribution in the y direction, the upper substrate and the lower substrate show almost the same film thickness distribution. However, the wavy film thickness distribution in the x direction shown in FIG. 5 is not improved.

【0044】上記ようにパルス放電とすることで、y方
向の膜厚分布の改善、即ち反応性気体の流れる方向にお
ける膜厚分布の改善が得られることが分かる。一方x方
向、即ち反応性気体の流れる方向と垂直な方向における
膜厚分布は、ほとんど改善されないことが分かる。
It is understood that the pulse discharge as described above can improve the film thickness distribution in the y direction, that is, the film thickness distribution in the direction in which the reactive gas flows. On the other hand, it can be seen that the film thickness distribution in the x direction, that is, in the direction perpendicular to the flowing direction of the reactive gas, is hardly improved.

【0045】以上のことから、以下のことが結論され
る。 1.パルス放電は、反応性気体の流れる方向における膜
厚分布を改善し、この方向における平坦な膜厚分布を実
現するのに大きな効果がある。 2.パルス放電は、反応性気体の流れる方向と垂直な方
向における膜厚分布には、ほとんど影響を与えない。
From the above, the following can be concluded. 1. The pulse discharge has a great effect in improving the film thickness distribution in the direction in which the reactive gas flows and realizing a flat film thickness distribution in this direction. 2. The pulse discharge has almost no effect on the film thickness distribution in the direction perpendicular to the direction in which the reactive gas flows.

【0046】〔パルス放電の作用効果について〕以下に
おいて、パルス放電の作用効果について考察する。ま
ず、図1〜図3に示す装置において、y方向の膜厚分布
が図4の白丸印で示されるようになる現象について考察
する。図1〜図3に示す装置においては、反応性気体が
ガス導入系12から図2のスリット27で示される部分
を通して、反応室内に導入される。そして、反応室内を
y方向に移動しながら、排気系13から排気される。
[Operational Effect of Pulse Discharge] The operational effect of pulsed discharge will be discussed below. First, in the apparatus shown in FIGS. 1 to 3, a phenomenon in which the film thickness distribution in the y direction becomes as indicated by the white circles in FIG. 4 will be considered. In the apparatus shown in FIGS. 1 to 3, the reactive gas is introduced into the reaction chamber from the gas introduction system 12 through the portion indicated by the slit 27 in FIG. Then, the gas is exhausted from the exhaust system 13 while moving in the reaction chamber in the y direction.

【0047】この際反応性気体は、基板表面に沿う方向
で移動していき、一対の電極14、15から印加される
高周波によってプラズマ化(一般に活性化といわれる)
され、基板表面に薄膜として堆積されていく。この際、
反応空間(電極間の空間)において、反応性気体は図8
に示されるような様子で減少していくと考えられる。即
ち、反応性気体が移動していくに従って、徐々に膜とし
て堆積する分、反応性気体の残量は減少していくものと
考えられる。また換言すれば、薄膜に寄与する反応性気
体の成分は、図7に示すように移動に従って徐々に減少
していくと考えられる。
At this time, the reactive gas moves in a direction along the surface of the substrate and is turned into plasma (generally called activation) by the high frequency applied from the pair of electrodes 14 and 15.
And is deposited as a thin film on the surface of the substrate. On this occasion,
In the reaction space (the space between the electrodes), the reactive gas is shown in FIG.
It is thought that the number will decrease as shown in. That is, it is considered that as the reactive gas moves, the residual amount of the reactive gas decreases as much as the film is deposited as a film. In other words, it is considered that the reactive gas components that contribute to the thin film gradually decrease as they move, as shown in FIG.

【0048】この結果、図4の白丸印で示されるよう
に、y方向に向かって徐々に成膜速度(膜厚に対応す
る)が低下した分布が得られるものと考えられる。例え
ば、前述のように反応性気体としてSiH4 とNH3
用い、その流量を200/1000sccmとした場
合、反応性気体が反応空間を通り過ぎるのは、約2秒と
計算されるが、この約2秒の間に反応性気体は徐々に消
費されていき、結果として図4の白丸印で示されるよう
な成膜速度が観察されると考えられる。
As a result, as indicated by the white circles in FIG. 4, it is considered that a distribution in which the film formation rate (corresponding to the film thickness) gradually decreases in the y direction can be obtained. For example, when SiH 4 and NH 3 are used as the reactive gas and the flow rate is set to 200/1000 sccm as described above, it is calculated that the reactive gas passes through the reaction space for about 2 seconds. It is considered that the reactive gas is gradually consumed during 2 seconds, and as a result, the film formation rate as indicated by the white circles in FIG. 4 is observed.

【0049】ここでパルス放電を行った場合について考
察する。パルス放電を行った場合、所定時間内において
反応性気体に電磁エネルギーが供給され、その後所定時
間放電が停止し、その間は電磁エネルギーの供給が停止
する。この放電が停止している間は反応性気体の消費は
ほとんどされない。従って、単純に考えても反応性気体
の消費率は約50%減少する。
Here, the case where pulse discharge is performed will be considered. When pulse discharge is performed, electromagnetic energy is supplied to the reactive gas within a predetermined time, and then discharge is stopped for a predetermined time, during which the supply of electromagnetic energy is stopped. The reactive gas is scarcely consumed while the discharge is stopped. Therefore, even if simply considered, the consumption rate of the reactive gas is reduced by about 50%.

【0050】以上の考察から、図4の白丸印で示される
膜厚分布が改善されることが理解される。しかし、上記
の理由のみによって、図4の黒丸印で示されるようにy
方向(反応性気体の流れる方向)の膜厚分布が改善され
ると考えにくい。
From the above consideration, it is understood that the film thickness distribution shown by the white circles in FIG. 4 is improved. However, for the above reasons only, as indicated by the black circles in FIG.
It is unlikely that the film thickness distribution in the direction (the direction in which the reactive gas flows) will be improved.

【0051】そこで以下のようなことが考えられる。連
続放電においては、成膜空間中に形成される大きな粒子
(クラスタ状の粒子)がつぎつぎに成長しその多くがパ
ーティクル(塵)となる。このパーティクルは、成膜に
直接寄与せずに消費される。一方、パルス放電(間欠放
電)を行った場合には、大きな粒子が形成される時間が
制限されるので、パーティクルとして消費される反応性
気体の損失が少なく、成膜に寄与する原料成分が多くな
るものと考えられる。従って、y方向に反応性気体が移
動していっても反応性気体の損失が少なく、図4の黒丸
印で示すような均一な膜厚分布が得られるものと考えら
れる。
Therefore, the following can be considered. In continuous discharge, large particles (cluster-shaped particles) formed in the film formation space grow one after another, and most of them become particles (dust). The particles are consumed without directly contributing to the film formation. On the other hand, when pulse discharge (intermittent discharge) is performed, the time during which large particles are formed is limited, so there is little loss of reactive gas consumed as particles, and there are many raw material components that contribute to film formation. It is supposed to be. Therefore, it is considered that even if the reactive gas moves in the y direction, the loss of the reactive gas is small and a uniform film thickness distribution as shown by the black circles in FIG. 4 can be obtained.

【0052】また、パルス放電によって膜として堆積し
やすい短寿命のラジカルの生成率が低下し、相対的に長
寿命のラジカルの数が多くなるので、先に消費されてし
まう短寿命のラジカル成分の影響を抑制することがで
き、結果として、図4の黒丸印で示されるような平坦な
膜厚分布が得られるものと考えることもできる。
Further, the generation rate of short-lived radicals that are easily deposited as a film by the pulse discharge is reduced, and the number of relatively long-lived radicals is increased. It can be considered that the influence can be suppressed, and as a result, the flat film thickness distribution as shown by the black circles in FIG. 4 can be obtained.

【0053】本実施例においては、放電時間を5mms
ec、休止時間を5msecとして、duty比を50%、
周波数100Hzのパルス放電としたが。duty比や周波
数を他の値としてもよい。さらには、放電間隔と休止間
隔とが変化するようなパルス放電形態を採用してもよ
い。また成膜される薄膜も特に制限されるものではな
く、一般にプラズマ気相法で成膜される薄膜の形成に適
用することができる。即ち、反応性気体としては、Si
4 やNH3 に限定されるものではなく、公知の反応性
気体を利用することができる。また、公知のエッチング
用の反応性気体を利用すれば、エッチングも可能であ
る。
In this embodiment, the discharge time is 5 mms.
ec, rest time 5 msec, duty ratio 50%,
Although a pulse discharge having a frequency of 100 Hz was used. The duty ratio and frequency may be other values. Furthermore, a pulse discharge mode in which the discharge interval and the rest interval change may be adopted. The thin film to be formed is not particularly limited, and can be generally applied to the formation of a thin film formed by the plasma vapor phase method. That is, as the reactive gas, Si
The reactive gas is not limited to H 4 and NH 3 , and a known reactive gas can be used. Further, etching can be performed by using a known reactive gas for etching.

【0054】〔実施例2〕本実施例は、実施例1に示し
たパルス放電によって、成膜される膜のステップカバレ
ージ(段差被覆性)が改善されることに関する。一般に
プラズマCVD法で薄膜を成膜する場合、ステップカバ
レージが問題となる。
[Embodiment 2] This embodiment relates to improvement of the step coverage (step coverage) of a film to be formed by the pulse discharge shown in Embodiment 1. Generally, when forming a thin film by the plasma CVD method, step coverage becomes a problem.

【0055】例えば、図1〜図3に示すプラズマCVD
装置においても同様の問題がある。以下において、図1
〜図3に示すプラズマCVD装置を用い、窒化珪素膜を
形成した例について以下に説明する。
For example, the plasma CVD shown in FIGS.
The same problem occurs in the device. In the following, FIG.
~ An example of forming a silicon nitride film using the plasma CVD apparatus shown in Fig. 3 will be described below.

【0056】まず成膜条件について説明する。 圧力 15mTorr 高周波電力 500W(13.56MHz)×2 反応性気体 SiH4 /NH3 =27/263scc
m 位相差 180度 加熱温度 350℃
First, the film forming conditions will be described. Pressure 15 mTorr High frequency power 500 W (13.56 MHz) × 2 Reactive gas SiH 4 / NH 3 = 27/263 scc
m Phase difference 180 degrees Heating temperature 350 ° C

【0057】上記成膜条件によって、ガラス基板上に形
成された島状のタンタルのパターン(以下アイランドと
いう)に5000Åの厚さに窒化珪素膜を成膜した模式
図を図9に示す。図9(A)には、ガラス基板91上に
形成された厚さ3000Åのタンタルのアイランド92
の表面を覆って窒化珪素膜93を成膜した場合の状態が
示されている。
FIG. 9 shows a schematic view in which a silicon nitride film having a thickness of 5000 Å is formed on an island-shaped tantalum pattern (hereinafter referred to as an island) formed on a glass substrate under the above film forming conditions. FIG. 9A shows a 3000 Å-thick tantalum island 92 formed on a glass substrate 91.
The state in which the silicon nitride film 93 is formed so as to cover the surface of is shown.

【0058】図9(A)に示すように、アイランド92
を覆って形成された窒化珪素膜93は、アイランド端部
94において、そのステップカバレージ(段差被覆性)
が非常に悪くなる。
As shown in FIG. 9A, the island 92
The silicon nitride film 93 formed so as to cover the surface of the island has a step coverage (step coverage) at the island end portion 94.
Becomes very bad.

【0059】一般にステップカバレージは、成膜圧力が
高いと良くなり、成膜圧力が低いと悪くなる傾向があ
る。これは、成膜圧力が高いと、分子やラジカルの平均
自由工程が短くなるので、アイランドの側面にも分子や
ラジカルが入り込みやすくなり、被覆性が改善されるか
らである。逆に、成膜圧力が低いと、分子やラジカルの
平均自由工程が長くなるので、アイランドの側面に分子
やラジカルが入り込みにくくなり、ステップカバレージ
は悪化する。
In general, the step coverage tends to be improved when the film forming pressure is high, and deteriorated when the film forming pressure is low. This is because when the film forming pressure is high, the mean free path of the molecules and radicals is shortened, so that the molecules and radicals easily enter the side surfaces of the island and the coverage is improved. On the contrary, when the film forming pressure is low, the mean free path of molecules and radicals becomes long, so that it becomes difficult for molecules and radicals to enter the side surface of the island, and the step coverage deteriorates.

【0060】以上の議論から、成膜圧力を高くすること
によって、ステップカバレージを改善する方法が考えら
れる。しかしながら、上記成膜条件において成膜圧力を
15mTorrから100mTorrとして成膜実験を
行ってみても、ステップカバレージはそれほど改善され
ないことが確認されている。
From the above discussion, a method of improving the step coverage by increasing the film forming pressure can be considered. However, it has been confirmed that the step coverage is not improved so much even when a film forming experiment is performed under the above film forming conditions with the film forming pressure changed from 15 mTorr to 100 mTorr.

【0061】そこで、以下の成膜条件によって成膜を行
ったところ、図9(B)に示すように、良好なステップ
カバレージを実現できることが確認された。 圧力 100mTorr 高周波波力 500W(13.56MHz)×2 反応性気体 SiH4 /NH3 =27/263scc
m 位相差 180度 加熱温度 350℃ パルス周波数 100Hz(duty比50%)
Therefore, when film formation was performed under the following film formation conditions, it was confirmed that good step coverage could be realized as shown in FIG. 9 (B). Pressure 100mTorr High frequency wave power 500W (13.56MHz) × 2 Reactive gas SiH 4 / NH 3 = 27 / 263scc
m Phase difference 180 degrees Heating temperature 350 ° C Pulse frequency 100Hz (duty ratio 50%)

【0062】上記の成膜条件で得られた窒化珪素膜のス
テップカバレージが良好であった理由は、以下のように
考えられる。
The reason why the step coverage of the silicon nitride film obtained under the above film forming conditions is good is considered as follows.

【0063】パルス放電を行うことによって、被膜形成
物表面のイオンシースが間欠的に消滅する状態が実現さ
れるので、イオンシースによってプラズマ空間から被形
成面に向かって加速されるイオンが少なくなり、結果と
してラジカルの回り込みを高めることができる。
By performing pulse discharge, a state where the ion sheath on the surface of the coating film disappears intermittently is realized, so that the number of ions accelerated from the plasma space toward the surface to be formed by the ion sheath decreases, As a result, the wraparound of radicals can be increased.

【0064】即ち、成膜圧力を低くし、しかもパルス放
電を行うことによって、ラジカルが図9に示すアイラン
ド92の端部側面に回り込む状態が実現されるので、ス
テップカバレージが改善されると考えることができる。
That is, by reducing the film forming pressure and performing the pulse discharge, the radicals are allowed to wrap around the side surfaces of the ends of the island 92 shown in FIG. 9, and it is considered that the step coverage is improved. You can

【0065】また、成膜圧力を15mTorrとしたま
までパルス放電(パルス周波数100Hz、duty比50
%)を行った場合にも、図9(B)程の顕著なステップ
カバレージの改善は得られなかったが、かなり良好なス
テップカバレージを得ることができた。このような効果
が得られたのは、パルス放電によって、ラジカルがアイ
ランド92の端部側面に回り込む為と考えられる。
Pulse discharge (pulse frequency: 100 Hz, duty ratio: 50) with the film forming pressure kept at 15 mTorr.
%), The remarkable improvement in step coverage as in FIG. 9B was not obtained, but a fairly good step coverage could be obtained. It is considered that such an effect is obtained because the radicals wrap around to the side surface of the end portion of the island 92 by the pulse discharge.

【0066】〔実施例3〕本実施例は、図1〜図3のx
方向における膜厚分布の不均一性を改善する構成に関す
る。まず、図1〜図3に示す装置において、図6に示す
放電系を使用し、一対の電極17と18とに加えられる
高周波電力の位相差を0〜270度の間で変化させた場
合の、x方向における珪素薄膜の膜厚分布を図10に示
す。この際の成膜条件を以下に示す。 反応性気体 SiH4 =300sccm 高周波電力 500W(13.56MHz)×2 加熱温度 250℃ 成膜圧力 10mTorr パルス周波数 100Hz(duty比50%)
[Embodiment 3] This embodiment is based on x in FIGS.
The present invention relates to a configuration for improving nonuniformity of film thickness distribution in the direction. First, in the device shown in FIGS. 1 to 3, when the discharge system shown in FIG. 6 is used and the phase difference of the high frequency power applied to the pair of electrodes 17 and 18 is changed between 0 and 270 degrees. 10 shows the film thickness distribution of the silicon thin film in the x and x directions. The film forming conditions at this time are shown below. Reactive gas SiH 4 = 300 sccm High frequency power 500 W (13.56 MHz) × 2 Heating temperature 250 ° C. Film forming pressure 10 mTorr Pulse frequency 100 Hz (duty ratio 50%)

【0067】図10において、φは位相差を表し、uppe
r substrate は上側の基板、lowersubstrate は下側の
基板を示す。基板は、400mm×300mmのものを
用い、図1〜図3に示すように、2枚を1組として縦に
並べて基板ホルダー25に配置される。
In FIG. 10, φ represents a phase difference, and uppe
r substrate is the upper substrate and lower substrate is the lower substrate. A substrate having a size of 400 mm × 300 mm is used, and as shown in FIGS. 1 to 3, two substrates are set as a set and arranged vertically in a substrate holder 25.

【0068】図10を見るれば明らかなように、上側の
基板23(図1参照)と下側の基板(図1参照)とで、
ほとんど同じ膜厚分布となっている。これは、パルス放
電の効果によるものと考えられる。
As is apparent from FIG. 10, the upper substrate 23 (see FIG. 1) and the lower substrate (see FIG. 1)
The film thickness distribution is almost the same. This is considered to be due to the effect of pulse discharge.

【0069】さらに図10見ると、一対の電極14と1
5とに加えられる高周波電力の位相差を変化させること
で、膜厚分布の形状が位相差に従ってシフトする様子が
分かる。
Further referring to FIG. 10, a pair of electrodes 14 and 1
It can be seen that the shape of the film thickness distribution shifts according to the phase difference by changing the phase difference of the high-frequency power applied to 5 and 5.

【0070】また、上記成膜条件において、位相差を0
度にして5分間成膜を行い、次に位相差を180度にし
て5分間の成膜を行った場合のx方向の膜厚分布を図1
1に示す。図11を見ればわかるように、0度の位相差
と180度の位相差とを組み合わせることにより、x方
向、即ち電極間方向における均一な膜厚分布を得られる
ことが分かる。
Under the above film forming conditions, the phase difference is 0.
FIG. 1 shows a film thickness distribution in the x direction when a film is formed for 5 minutes at a temperature of 5 degrees, and then for 5 minutes at a phase difference of 180 degrees.
Shown in 1. As can be seen from FIG. 11, it can be seen that a uniform film thickness distribution in the x direction, that is, the direction between the electrodes can be obtained by combining the phase difference of 0 degree and the phase difference of 180 degrees.

【0071】ここでは、位相差を0度にして所定時間の
成膜を行い、つぎに位相差を180度にして同じ所定時
間の成膜を行った例を示した。しかし、例えばパルス周
波数100Hzのパルス放電を行う場合において、n回
目のパルスの時を0度の位相差とし、n+1回目のパル
スを180度の位相差とし、さらにn+2回目のパルス
を0度の位相差とする、という様にパルスの繰り返しに
応じてそれぞれの位相差で交互に放電を行う方法でも同
様な効果を得ることができる。また、所定時間内におい
て、0度の位相差の放電と180度位相差の放電とが同
じ回数になるようにパルス放電を行うのでもよい。
Here, an example is shown in which the phase difference is 0 degree and film formation is performed for a predetermined time, and then the phase difference is 180 degree and film formation is performed for the same predetermined time. However, for example, in the case of performing pulse discharge at a pulse frequency of 100 Hz, the nth pulse has a phase difference of 0 degree, the (n + 1) th pulse has a phase difference of 180 degrees, and the (n + 2) th pulse has a phase difference of 0 degree. The same effect can be obtained by a method of alternately discharging with each phase difference according to the repetition of the pulse, such as the phase difference. Further, the pulse discharge may be performed so that the discharge having the phase difference of 0 degree and the discharge having the phase difference of 180 degrees are the same number of times within a predetermined time.

【0072】また、それぞれの位相差における放電時
間、あるいは回数(パルス放電の回数)を異ならせて、
より平坦な膜厚分布が得られるようにしてもよい。例え
ば、図11の白または黒の三角印で示される膜厚分布
は、中央部でやや盛り上がっている。これは四角印で示
される位相差180度の場合の影響が大きいものと考え
ることができる。そこで、丸印で示される位相差0度の
放電時間(成膜時間)を長くすることで、より平坦な膜
厚分布を期待することができる。例えば、所定時間内の
パルス放電の回数の割合を、位相差180度:位相差0
度=9:10とすることによって、さらに平坦な膜厚分
布を得ることができる。
Further, the discharge time or the number of times (the number of pulse discharges) at each phase difference is made different,
A flatter film thickness distribution may be obtained. For example, the film thickness distribution indicated by white or black triangles in FIG. 11 is slightly raised in the central portion. This can be considered to have a large influence when the phase difference indicated by a square mark is 180 degrees. Therefore, by extending the discharge time (film formation time) indicated by a circle with a phase difference of 0 degrees, a flatter film thickness distribution can be expected. For example, the ratio of the number of times of pulse discharge within a predetermined time is calculated as phase difference 180 degrees: phase difference 0
By setting the degree = 9: 10, a flatter film thickness distribution can be obtained.

【0073】以上のように一対の電極に加えられる高周
波電力の位相差を異ならせた成膜条件を組み合わせるこ
とにより、電極間方向における膜厚分布を改善すること
ができる。
As described above, the film thickness distribution in the inter-electrode direction can be improved by combining the film forming conditions in which the phase difference of the high frequency power applied to the pair of electrodes is different.

【0074】一方、電極間方向に垂直な方向(図1でい
うとy方向)における膜厚分布には、一対の電極に加え
られる高周波電力の位相差を変化させても、ほとんどそ
の影響は見られない。
On the other hand, the film thickness distribution in the direction perpendicular to the direction between the electrodes (the y direction in FIG. 1) shows almost no effect even if the phase difference of the high frequency power applied to the pair of electrodes is changed. I can't.

【0075】このことから、上記一対の電極に加えられ
る高周波電力の位相差を変化させる手法は、当該電極間
方向における膜厚分布を独立に制御できるものであり、
その分布を大きく改善できることが結論される。
From this, the method of changing the phase difference of the high frequency power applied to the pair of electrodes can independently control the film thickness distribution in the direction between the electrodes,
It is concluded that the distribution can be greatly improved.

【0076】当然、上記の効果は、パルス放電を行わな
い場合でも得ることができる。この場合、図1〜図3の
y方向の膜厚分布が図4の白丸印で示されるように悪化
するだけで、x方向の膜厚分布は平坦とすることができ
る。例えば、パルス放電を行わずに図11に示す様な成
膜を行った場合、白の三角印のプロット点と黒の三角印
のプロット点とは平坦な膜厚分布を示すが、上下の基板
で膜厚が異なることになるので、それらのプロット点で
示される曲線の位置は異なることによる。これは、他の
丸印や四角印においても同様である。この場合、その曲
線の形を保ったままで、その位置がずれることになる。
Naturally, the above effect can be obtained even when the pulse discharge is not performed. In this case, the film thickness distribution in the x direction can be made flat by merely deteriorating the film thickness distribution in the y direction in FIGS. 1 to 3 as indicated by the white circles in FIG. For example, when the film formation as shown in FIG. 11 is performed without pulse discharge, the plot points of the white triangle marks and the plot points of the black triangle marks show a flat film thickness distribution, but the upper and lower substrates Since the film thickness is different at, the position of the curve indicated by those plot points is different. This also applies to other circles and squares. In this case, the position shifts while keeping the shape of the curve.

【0077】〔実施例4〕本実施例は、実施例3の構成
において、位相差φを+90度と−90度とした場合の
例である。位相差以外の成膜条件を以下に示す。
[Embodiment 4] This embodiment is an example in which the phase difference φ is +90 degrees and -90 degrees in the configuration of the third embodiment. The film forming conditions other than the phase difference are shown below.

【0078】(成膜条件) 反応性気体 SiH4 300sccm 高周波電力 500W(13.56MHz)×2 加熱温度 250℃ 成膜圧力 10mTorr パルス周波数 100Hz(duty比50%)(Film forming conditions) Reactive gas SiH 4 300 sccm High frequency power 500 W (13.56 MHz) × 2 Heating temperature 250 ° C. Film forming pressure 10 mTorr Pulse frequency 100 Hz (duty ratio 50%)

【0079】図12に示すように、上記成膜条件におい
て、+90度位相差の場合と−90度の位相差の場合と
では、そのx方向における膜厚分布が波打っている。そ
こで、+90度の位相差で5分間の成膜を行い、−90
度の位相差で5分間の成膜を行った場合の膜厚分布を三
角印で示す。
As shown in FIG. 12, under the above film forming conditions, the film thickness distribution in the x direction is wavy between the case of +90 degree phase difference and the case of −90 degree phase difference. Therefore, film formation is performed for 5 minutes with a phase difference of +90 degrees, and −90
The film thickness distribution when the film formation is performed for 5 minutes with the phase difference of 3 degrees is indicated by triangle marks.

【0080】図12から分かるように、+90度と−9
0度とで、同じ時間ずつ成膜を行うことによって、膜厚
分布が改善されることが分かる。
As can be seen from FIG. 12, +90 degrees and -9
It can be seen that the film thickness distribution is improved by performing film formation at 0 degree for the same time.

【0081】〔実施例5〕本実施例は、実施例3の構成
において、位相差を0度と180度とし、以下の条件で
窒化珪素膜を成膜した例である。
[Embodiment 5] This embodiment is an example of forming a silicon nitride film under the following conditions with a phase difference of 0 ° and 180 ° in the structure of Embodiment 3.

【0082】(成膜条件) 反応性気体 SiH4 /NH3 =500/1500s
ccm 高周波電力 4kW(13.56MHz)×2 成膜圧力 30mTorr 加熱温度 350℃ パルス周波数 100Hz(duty 比50%)
(Film Forming Conditions) Reactive Gas SiH 4 / NH 3 = 500 / 1500s
ccm High frequency power 4 kW (13.56 MHz) × 2 Film formation pressure 30 mTorr Heating temperature 350 ° C. Pulse frequency 100 Hz (duty ratio 50%)

【0083】図13において、黒と白の三角印で示され
ているのは、0度の位相差で10分間の成膜を行い、引
続いて180度の位相差で5分間の成膜を行った場合の
x方向の膜厚分布(正確には成膜速度)を示すものであ
る。図13を見れば明らかなように、位相差による成膜
速度の違いを反映させて成膜時間を異ならせることによ
って、x方向における平坦な膜厚分布を得ることができ
る。
In FIG. 13, black and white triangle marks indicate that film formation was performed for 10 minutes with a phase difference of 0 degree, and then film formation was performed for 5 minutes with a phase difference of 180 degrees. It shows the film thickness distribution in the x direction (to be exact, the film forming speed) when it is performed. As is clear from FIG. 13, a flat film thickness distribution in the x direction can be obtained by reflecting the difference in the film forming rate due to the phase difference and making the film forming time different.

【0084】また、0度のパルス放電の回数と180度
の放電回数との比率と2:1とすることによっても同様
の効果を得ることができる。
The same effect can be obtained by setting the ratio of the number of 0-degree pulse discharges to the number of 180-degree discharges to 2: 1.

【0085】〔実施例6〕本実施例3〜5においては、
異なる位相差の成膜を連続して行うことによって、平坦
な膜厚分布が実際に得られた。そこで、本実施例におい
ては、この位相差を変化させる手法をさらに改良した例
について説明する。
[Sixth Embodiment] In the third to fifth embodiments,
A flat film thickness distribution was actually obtained by continuously forming films with different retardations. Therefore, in the present embodiment, an example in which the method for changing the phase difference is further improved will be described.

【0086】実施例1に示したように、パルス放電を行
うことによって、反応性気体の流れる方向における膜厚
分布を改善することができる。このパルス放電というの
は、例えば、10msec放電し、10msec放電を
休止し、また10msec放電し、といったサイクルを
繰り返す放電方法である。
As shown in the first embodiment, pulse discharge can improve the film thickness distribution in the direction in which the reactive gas flows. The pulsed discharge is a discharge method in which, for example, a cycle of 10 msec discharge, 10 msec discharge pause, and 10 msec discharge is repeated.

【0087】一方、実施例3〜5においては、特定の位
相差で5分間成膜し、つぎに別の特定の位相差で5分間
成膜することによって、電極間方向における膜質を著し
く改善した例を示した。本実施例は、パルス放電の仕方
を改良することによって、実施例3〜5に示すのと同様
な効果を得る構成に関する。
On the other hand, in Examples 3 to 5, the film quality in the inter-electrode direction was remarkably improved by forming the film with a specific phase difference for 5 minutes and then forming the film with another specific phase difference for 5 minutes. An example was given. The present embodiment relates to a configuration in which the same effects as those of the third to fifth embodiments are obtained by improving the method of pulse discharge.

【0088】図14(A),(B)に本実施例の放電形
態を示す。図14(A),(B)に示すのは、パルス周
波数が100Hz、duty比が50%の場合、即ち放電時
間と休止時間とが同じであるが、放電形態が違う場合で
ある。
14A and 14B show the discharge mode of this embodiment. FIGS. 14A and 14B show the case where the pulse frequency is 100 Hz and the duty ratio is 50%, that is, the discharge time and the rest time are the same, but the discharge forms are different.

【0089】即ち、図14(A)に示すのは、10ms
ecの放電と10msecの休止とを交互に繰り返す場
合において、0度の位相差の放電と、180度の位相差
の放電とを繰り返して行う例である。また、図14
(B)に示すのは、10msecの放電と10msec
の休止とを交互に繰り返す場合において、0度の位相差
の放電と180度の位相差の放電とを2回づつ交互に繰
り返す場合の例である。
That is, FIG. 14A shows 10 ms.
This is an example in which the discharge of ec and the pause of 10 msec are alternately repeated, and the discharge of the phase difference of 0 degree and the discharge of the phase difference of 180 degree are repeatedly performed. In addition, FIG.
(B) shows 10 msec discharge and 10 msec
This is an example of a case in which the pause of 1 is alternately repeated, and the discharge having the phase difference of 0 degree and the discharge having the phase difference of 180 degrees are alternately repeated twice.

【0090】いずれの場合にしても、0度の位相差の放
電と180度の位相差の放電とを同じ時間行う場合と同
様な効果を得ることができる。
In any case, it is possible to obtain the same effect as in the case where the discharge with the phase difference of 0 degree and the discharge with the phase difference of 180 degree are performed for the same time.

【0091】図14に示すのは、パルス周波数が100
Hz、duty比が50%の場合の例である。しかし、他の値
のパルス周波数やduty比を選ぶこともできる。例えば、
パルス周波数が10Hz、duty比を10%とした場合
は、放電時間が70msec、放電休止時間が30ms
ecとなる。
FIG. 14 shows that the pulse frequency is 100
This is an example when the Hz and duty ratio is 50%. However, other values of pulse frequency and duty ratio can be chosen. For example,
When the pulse frequency is 10 Hz and the duty ratio is 10%, the discharge time is 70 msec and the discharge pause time is 30 ms.
It becomes ec.

【0092】また、図13に示すように、それぞれの位
相差での成膜時間を異ならせなければならない場合は、
それぞれの位相差における放電回数の割合を異ならせれ
ばよい。例えば、図13に示す場合は、位相差0度で1
0分間成膜を行い、つぎに位相差180度で5分間成膜
を行うことによって、図1のx方向における膜厚分布を
改善される例であるが、このような場合は、図15に示
すように、放電回数を(0度の位相差の場合):(18
0度の位相差の場合)=2:1となるように制御すれば
よい。
Further, as shown in FIG. 13, when the film forming time for each phase difference must be different,
The ratio of the number of discharges in each phase difference may be different. For example, in the case shown in FIG.
This is an example in which the film thickness distribution in the x direction in FIG. 1 is improved by performing film formation for 0 minutes and then for 5 minutes with a phase difference of 180 degrees. In such a case, FIG. As shown, the number of discharges (when the phase difference is 0 degree): (18
The phase difference may be 0 °) = 2: 1.

【0093】また、(0度の位相差での放電時間):
(180度の位相差での放電時間)=2:1となるよう
にしてもよい。例えば、0度の位相差で10秒放電し、
180度の位相差で5秒放電する、そしてこのサイクル
を繰り返す、といった放電形態を採用してもよい。
Also, (discharge time at a phase difference of 0 degree):
(Discharge time at a phase difference of 180 degrees) = 2: 1. For example, discharge for 10 seconds with a phase difference of 0 degree,
It is also possible to adopt a discharge form in which discharge is performed for 5 seconds with a phase difference of 180 degrees, and this cycle is repeated.

【0094】〔実施例7〕本実施例は、一対の電極に加
えられる高周波電力の周波数を異ならせることで、自動
的に位相差を変化させる構成に関する。
[Embodiment 7] This embodiment relates to a configuration in which the phase difference is automatically changed by changing the frequency of the high frequency power applied to the pair of electrodes.

【0095】ここで、珪素膜を成膜するとして、一対の
電極に印加される高周波電力の位相差を0度として5分
間成膜をし、さらに180度として5分間成膜をし、さ
らに位相差が90度で5分間成膜をし、270度(−9
0度)で5分間成膜した場合を考える。
Here, as the silicon film is formed, the phase difference of the high frequency power applied to the pair of electrodes is 0 degree for 5 minutes, and 180 degrees for 5 minutes. Film formation was carried out for 5 minutes at a phase difference of 90 degrees, and 270 degrees (-9
Consider the case where a film is formed at 0 degree for 5 minutes.

【0096】当然成膜された珪素膜は電極間方向に均一
性の良いものとなる。従って、0度と180度、10度
と190度、20度と200度、30度と210度・・
・・・・・・350度(−10度)と80度、といった
組み合わせで成膜を行っても電極間方向の均一性は改善
されることになる。
Naturally, the formed silicon film has good uniformity in the direction between the electrodes. Therefore, 0 and 180 degrees, 10 and 190 degrees, 20 and 200 degrees, 30 and 210 degrees ...
........ Even if the film formation is performed with a combination of 350 degrees (-10 degrees) and 80 degrees, the uniformity in the direction between the electrodes is improved.

【0097】そこで、図1に示すような気相反応装置に
おいて、一対の電極間に少しだけ異なる周波数の高周波
電力を加えた場合を考える。このような場合、2つの周
波数の違いが僅か(20%以下)であることが重要であ
る。なぜならば、周波数が異なりすぎると、その位相差
を議論することができないからである。
Therefore, let us consider a case where high-frequency power having a slightly different frequency is applied between the pair of electrodes in the gas-phase reaction device as shown in FIG. In such a case, it is important that the difference between the two frequencies is small (20% or less). This is because if the frequencies are too different, the phase difference cannot be discussed.

【0098】まず、反応開始時(高周波電力印加開始
時)において、2つの高周波電力の位相はそろっている
ものとする。時間が経過していくと、2つの高周波電力
はその位相が徐々にずれていき、その位相差は0度〜9
0度〜180度〜270度〜0度といったサイクルを繰
り返すことになる。
First, it is assumed that the two high frequency powers are in phase at the start of the reaction (at the start of high frequency power application). As time passes, the phases of the two high-frequency powers gradually shift, and the phase difference between them is 0 degrees to 9 degrees.
The cycle of 0 ° to 180 ° to 270 ° to 0 ° is repeated.

【0099】この一つのサイクルの中で、0度と180
度、90度と270度(−90度)、といった位相差の
違いが180度である組み合わせを考えることができ
る。この組み合わせについて考察すると、この組み合わ
せのそれぞれにおいて、当該電極間方向における膜厚分
布の均一化が図れることが理解される。従って、上記一
つのサイクルの間で膜厚分布の均一化を図ることができ
る。そして、このサイクルが繰り返されることによっ
て、電極間方向に均一な膜厚分布を有する薄膜を形成す
ることができる。ただし、上記のような成膜ができるの
は、図11や図12で示されるような、180度異なる
位相差で同じ時間成膜を行うことによって、電極間方向
における膜厚分布を均一にできる場合である。
In this one cycle, 0 degree and 180 degrees
A combination in which the phase difference is 180 degrees, such as 90 degrees and 270 degrees (-90 degrees), can be considered. Considering this combination, it is understood that the film thickness distribution in the inter-electrode direction can be made uniform in each of the combinations. Therefore, the film thickness distribution can be made uniform during the one cycle. Then, by repeating this cycle, a thin film having a uniform film thickness distribution in the direction between the electrodes can be formed. However, the film formation as described above is possible because the film thickness distribution in the inter-electrode direction can be made uniform by performing the film formation with the phase difference different by 180 degrees for the same time as shown in FIGS. This is the case.

【0100】具体的には、図1に示す気相反応装置にお
いて、一方の電極に13.56MHzの高周波電力を加
え、他方の電極に13.55MHzの高周波電力を加え
れば上記作用効果を得ることがでる。即ち、2つに周波
数の違いによって、一対の電極間に加えられる高周波電
力の位相差が0度〜360度まで除々に変化してき、こ
の1サイクルにおいて、電極間方向における均一な膜厚
分布を実現でき、さらにこのサイクルを繰り返すことに
よって、上記作用効果実現できる。
Specifically, in the gas-phase reaction apparatus shown in FIG. 1, if the high-frequency power of 13.56 MHz is applied to one electrode and the high-frequency power of 13.55 MHz is applied to the other electrode, the above-mentioned effects can be obtained. Get out. That is, the phase difference of the high-frequency power applied between the pair of electrodes gradually changes from 0 degree to 360 degrees due to the difference in frequency, and in this one cycle, a uniform film thickness distribution in the direction between the electrodes is realized. By repeating this cycle, it is possible to realize the above-mentioned effects.

【0101】本実施例においては、2つの高周波電力の
位相を制御する必要はない。また、実際には上記のサイ
クルが多数回繰り返されるから、放電開始時に位相差0
から出発する必要もない。また、上記構成にパルス放電
を組み合わせることは、反応性気体の流れる方向におけ
る膜厚分布を改善するのに効果がある。
In this embodiment, it is not necessary to control the phases of the two high frequency powers. In addition, since the above cycle is actually repeated many times, the phase difference becomes 0 when the discharge starts.
You don't even have to start from. In addition, combining pulse discharge with the above configuration is effective in improving the film thickness distribution in the direction in which the reactive gas flows.

【0102】〔実施例8〕本実施例は、電極間方向(電
界方向ともいう)と反応性気体が流れる方向を同一とし
た場合の例である。本実施例の構成を図16に示す。図
16に示されるように、一対の電極14と15の間に基
板23が平行に配置された基板ホルダー25が配置され
ている。この基板ホルダー25は、図2及び図3に示す
のとその基本的な構成は同じである。即ち、一対の電極
14、15と複数の基板の関係は、図1〜3の場合と同
様である。ただ異なるのは、基板ホルダー25の上側と
下側には、反応性気体が通るようにスリットが設けられ
ていることである。
[Embodiment 8] This embodiment is an example in which the direction between electrodes (also referred to as the electric field direction) and the direction in which the reactive gas flows are the same. The structure of this embodiment is shown in FIG. As shown in FIG. 16, a substrate holder 25 in which a substrate 23 is arranged in parallel is arranged between a pair of electrodes 14 and 15. The substrate holder 25 has the same basic structure as that shown in FIGS. That is, the relationship between the pair of electrodes 14 and 15 and the plurality of substrates is the same as in the case of FIGS. The only difference is that the upper and lower sides of the substrate holder 25 are provided with slits through which the reactive gas passes.

【0103】放電は、一対の電極14と15との間で行
われる。一対の電極14と15のそれぞれには、13.
56MHzの高周波電源20と21が接続されている。
また図示はしないが、電源系は図6に示すのと同様な構
成を有しており、パルス放電、さらには電極14と15
とに位相差をもたせた放電を行うことができる。勿論、
一対の電極14と15に加えられる高周波電力の周波数
を異ならせることもできる。
The discharge is performed between the pair of electrodes 14 and 15. For each of the pair of electrodes 14 and 15, 13.
56 MHz high frequency power supplies 20 and 21 are connected.
Although not shown, the power supply system has a structure similar to that shown in FIG.
It is possible to perform discharge with a phase difference between and. Of course,
The frequency of the high frequency power applied to the pair of electrodes 14 and 15 may be different.

【0104】図16に示す構成においては、電極14と
15がメッシュ構造になっている。反応性気体はガス供
給系12から供給され、メッシュ電極14を通して反応
空間(ここには基板ホルダー25が設けられている)に
到達し、プラズマ気相反応が行われる。そして不要とな
った反応性気体は真空ポンプ22が設けられた排気系1
3より排気される。なお、反応空間とは、一対の電極1
4と15との間の放電が行われる空間のことである。
In the structure shown in FIG. 16, the electrodes 14 and 15 have a mesh structure. The reactive gas is supplied from the gas supply system 12, reaches the reaction space (here, the substrate holder 25 is provided) through the mesh electrode 14, and the plasma gas phase reaction is performed. The reactive gas that is no longer needed is an exhaust system 1 provided with a vacuum pump 22.
Exhausted from 3. The reaction space is a pair of electrodes 1.
It is a space in which a discharge between 4 and 15 takes place.

【0105】図16に示す構成を採用した場合には、電
極間方向、即ち電界の方向と反応性気体が流れる方向と
が同一の方向となる。従って、 (1) 反応性気体の流れる方向における膜厚分布の均一化
を得られる。 (2) 電極間方向における膜厚分布の均一化を得られる。
といった効果を相乗して得ることができる。
When the structure shown in FIG. 16 is adopted, the direction between the electrodes, that is, the direction of the electric field and the direction in which the reactive gas flows are the same. Therefore, (1) it is possible to obtain a uniform film thickness distribution in the direction in which the reactive gas flows. (2) A uniform film thickness distribution in the direction between the electrodes can be obtained.
These effects can be synergistically obtained.

【0106】[0106]

【効果】一対の電極間に基板面を垂直に配置した気相成
膜装置において、 (1) パルス放電を行うことによって、反応性気体の流れ
る方向における膜厚分布を改善することができる。 (2) 位相差放電を行うことによって、電極間方向におけ
る膜厚分布を改善することができる。
[Effect] In a vapor phase film forming apparatus in which a substrate surface is vertically arranged between a pair of electrodes, (1) pulse discharge is performed to improve the film thickness distribution in the direction in which the reactive gas flows. (2) By performing the phase difference discharge, the film thickness distribution in the inter-electrode direction can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例の構成を示す。FIG. 1 shows the configuration of an embodiment.

【図2】 実施例の構成を示す。FIG. 2 shows a configuration of an example.

【図3】 実施例の構成を示す。FIG. 3 shows a configuration of an example.

【図4】 膜厚分布を示す。FIG. 4 shows a film thickness distribution.

【図5】 膜厚分布を示す。FIG. 5 shows a film thickness distribution.

【図6】 実施例の放電系を示す。FIG. 6 shows a discharge system of an example.

【図7】 パルス放電の状態を示す。FIG. 7 shows a state of pulse discharge.

【図8】 反応空間における反応性気体の残量を示
す。
FIG. 8 shows the remaining amount of reactive gas in the reaction space.

【図9】 スッテプカバレージの状態を示す。FIG. 9 shows a state of step coverage.

【図10】 膜厚分布を示す。FIG. 10 shows a film thickness distribution.

【図11】 膜厚分布を示す。FIG. 11 shows a film thickness distribution.

【図12】 膜厚分布を示す。FIG. 12 shows a film thickness distribution.

【図13】 膜厚分布を示す。FIG. 13 shows a film thickness distribution.

【図14】 パルス放電の状態を示す。FIG. 14 shows a state of pulse discharge.

【図15】 パルス放電の状態を示す。FIG. 15 shows a state of pulse discharge.

【図16】 実施例の構成を示す。FIG. 16 shows a configuration of an example.

【符号の説明】[Explanation of symbols]

11・・・・真空容器 12・・・・ガス導入系 13・・・・排気系 14・・・・電極 15・・・・電極 17・・・・整合器 18・・・・整合器 19・・・・位相制御器 20・・・・高周波電源 21・・・・高周波電源 22・・・・真空ポンプ 23・・・・基板 24・・・・基板 25・・・・基板ホルダー 27・・・・スリット 11 ... Vacuum container 12 ... Gas introduction system 13 ... Exhaust system 14 ... Electrode 15 ... Electrode 17 ... Matching device 18 ... Matching device 19 ...・ ・ ・ Phase controller 20 ・ ・ ・ High frequency power source 21 ・ ・ ・ High frequency power source 22 ・ ・ ・ ・ Vacuum pump 23 ・ ・ ・ ・ Substrate 24 ・ ・ ・ ・ ・ ・ Substrate 25 ・ ・ ・ ・ ・ ・ Substrate holder 27 ・ ・ ・·slit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川野 篤 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内 (72)発明者 柳 雄二 新潟県長岡市東高見2丁目2番31号 トッ キ株式会社長岡工場内 (72)発明者 神保 敏浩 新潟県長岡市東高見2丁目2番31号 トッ キ株式会社長岡工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Kawano 398 Hase, Atsugi City, Kanagawa Prefecture Semiconductor Conductor Research Institute Co., Ltd. (72) Inventor Yuji Yanagi 2-32 Higashitakami, Nagaoka City, Niigata Prefecture Tokki Co., Ltd. Nagaoka Factory (72) Inventor Toshihiro Jimbo 2-32 Higashitakami, Nagaoka City, Niigata Prefecture Tokki Co., Ltd. Nagaoka Factory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 一対の電極と、 該電極間に少なくとも一枚の基板を電極面と垂直に配置
する手段と、 前記一対の電極に位相差がX度、及び(X±180)度
の高周波電力を加える手段と、 を有する気相反応装置。
1. A pair of electrodes, a means for arranging at least one substrate between the electrodes perpendicularly to the electrode surface, and a high frequency with a phase difference of X degrees and (X ± 180) degrees between the pair of electrodes. A gas phase reaction device comprising: a means for applying electric power.
【請求項2】 一対の電極と、 該電極間に少なくとも一枚の基板を電極面と垂直に配置
する手段と、 前記一対の電極間において間欠的に放電を生じさせる手
段と、 を有する気相反応装置。
2. A gas phase comprising a pair of electrodes, means for arranging at least one substrate between the electrodes perpendicularly to an electrode surface, and means for intermittently generating a discharge between the pair of electrodes. Reactor.
【請求項3】 一対の電極と、 該電極間に少なくとも一枚の基板を電極面と垂直に配置
する手段と、 前記一対の電極に位相差がX度、及び(X±180)度
の高周波電力を加える手段と、 前記一対の電極においてパルス放電を生じさせる手段
と、 を有する気相反応装置。
3. A pair of electrodes, a means for arranging at least one substrate between the electrodes perpendicularly to the electrode surface, and a high frequency having a phase difference of X degrees and (X ± 180) degrees between the pair of electrodes. A gas phase reaction apparatus comprising: a unit for applying electric power; and a unit for generating pulsed discharge in the pair of electrodes.
【請求項4】 電磁エネルギーによって気相反応を生じ
させる方法であって、 電磁エネルギーを間欠的に供給することによって、 反応性気体の移動方向における気相反応を均一化するこ
とを特徴とする気相反応方法。
4. A method for causing a gas phase reaction by electromagnetic energy, characterized by homogenizing a gas phase reaction in a moving direction of a reactive gas by intermittently supplying electromagnetic energy. Phase reaction method.
【請求項5】 一対の電極間において放電を起こし、気
相反応を生じさせる方法であって、 それぞれの電極にX度の位相差で高周波電力を供給する
動作と、 それぞれの電極に(X+180)度の位相差で高周波電
力を供給する動作と、 を有することを特徴とする気相反応方法。
5. A method of causing a gas phase reaction by causing a discharge between a pair of electrodes, the operation of supplying high frequency power with a phase difference of X degrees to each electrode, and (X + 180) to each electrode. And a step of supplying high-frequency power with a phase difference of 10 degrees, and a gas phase reaction method comprising:
【請求項6】 請求項5において、放電を間欠的に行う
ことを特徴とする気相反応方法。
6. The gas phase reaction method according to claim 5, wherein the discharge is performed intermittently.
【請求項7】 一対の電極間に放電を起こし、気相反応
を生じさせる方法であって、 一方の電極に供給する高周波電力と他方の電極に供給す
る高周波電力との位相差が、時間が経過するに従って徐
々に変化するようにしたことを特徴とする気相反応方
法。
7. A method of causing a gas phase reaction by causing a discharge between a pair of electrodes, wherein the phase difference between the high frequency power supplied to one electrode and the high frequency power supplied to the other electrode is A gas-phase reaction method characterized in that it gradually changes as time passes.
【請求項8】 一対の電極間に放電を起こし、気相反応
を生じさせる方法であって、 一方の電極に供給する高周波の周波数と、他方の電極に
供給する高周波の周波数とが異なっていることを特徴と
する気相反応方法。
8. A method for causing a gas phase reaction by causing a discharge between a pair of electrodes, wherein a high frequency frequency supplied to one electrode and a high frequency frequency supplied to the other electrode are different. A gas phase reaction method characterized by the above.
【請求項9】 一対の電極と、 前記一対の電極のそれぞれに高周波電力を供給する手段
と、 を有し、 前記高周波電力の一方の周波数と他方の周波数とは、異
なっていることを特徴とする気相反応装置。
9. A pair of electrodes, and means for supplying high frequency power to each of the pair of electrodes, wherein one frequency and the other frequency of the high frequency power are different. Gas phase reactor.
JP23914593A 1993-08-31 1993-08-31 Gas phase reaction apparatus and gas phase reaction method Expired - Fee Related JP3576188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23914593A JP3576188B2 (en) 1993-08-31 1993-08-31 Gas phase reaction apparatus and gas phase reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23914593A JP3576188B2 (en) 1993-08-31 1993-08-31 Gas phase reaction apparatus and gas phase reaction method

Publications (2)

Publication Number Publication Date
JPH0774162A true JPH0774162A (en) 1995-03-17
JP3576188B2 JP3576188B2 (en) 2004-10-13

Family

ID=17040430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23914593A Expired - Fee Related JP3576188B2 (en) 1993-08-31 1993-08-31 Gas phase reaction apparatus and gas phase reaction method

Country Status (1)

Country Link
JP (1) JP3576188B2 (en)

Cited By (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107244A (en) * 1999-10-06 2001-04-17 Kanegafuchi Chem Ind Co Ltd Method and equipment for cleaning semiconductor film deposition system
JP2001274099A (en) * 2000-03-24 2001-10-05 Mitsubishi Heavy Ind Ltd Power supply method to discharge electrode, high- frequency plasma generation method, and semiconductor- manufacturing method
JP2003264152A (en) * 2002-03-11 2003-09-19 Mitsubishi Heavy Ind Ltd Removing method for silicon deposition film
JP2004030931A (en) * 2002-06-21 2004-01-29 Hitachi High-Technologies Corp High-frequency power supply device for plasma generation device
JP2004111432A (en) * 2002-09-13 2004-04-08 Hitachi High-Technologies Corp Apparatus and method for plasma processing
JP2016199810A (en) * 2011-01-12 2016-12-01 株式会社半導体エネルギー研究所 Film formation device and production device
JP2020004971A (en) * 2018-06-29 2020-01-09 エーエスエム アイピー ホールディング ビー.ブイ. Thin film deposition method and manufacturing method of semiconductor device
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US12027365B2 (en) 2020-11-24 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices
US12033885B2 (en) 2020-01-06 2024-07-09 Asm Ip Holding B.V. Channeled lift pin
US12051567B2 (en) 2020-10-07 2024-07-30 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including gas supply unit
US12057314B2 (en) 2020-05-15 2024-08-06 Asm Ip Holding B.V. Methods for silicon germanium uniformity control using multiple precursors
US12074022B2 (en) 2020-08-27 2024-08-27 Asm Ip Holding B.V. Method and system for forming patterned structures using multiple patterning process
US12087586B2 (en) 2020-04-15 2024-09-10 Asm Ip Holding B.V. Method of forming chromium nitride layer and structure including the chromium nitride layer
US12106944B2 (en) 2020-06-02 2024-10-01 Asm Ip Holding B.V. Rotating substrate support
US12107005B2 (en) 2020-10-06 2024-10-01 Asm Ip Holding B.V. Deposition method and an apparatus for depositing a silicon-containing material
US12112940B2 (en) 2019-07-19 2024-10-08 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US12125700B2 (en) 2020-01-16 2024-10-22 Asm Ip Holding B.V. Method of forming high aspect ratio features
US12129545B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Precursor capsule, a vessel and a method
US12131885B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Plasma treatment device having matching box

Cited By (270)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107244A (en) * 1999-10-06 2001-04-17 Kanegafuchi Chem Ind Co Ltd Method and equipment for cleaning semiconductor film deposition system
JP2001274099A (en) * 2000-03-24 2001-10-05 Mitsubishi Heavy Ind Ltd Power supply method to discharge electrode, high- frequency plasma generation method, and semiconductor- manufacturing method
JP2003264152A (en) * 2002-03-11 2003-09-19 Mitsubishi Heavy Ind Ltd Removing method for silicon deposition film
JP2004030931A (en) * 2002-06-21 2004-01-29 Hitachi High-Technologies Corp High-frequency power supply device for plasma generation device
JP2004111432A (en) * 2002-09-13 2004-04-08 Hitachi High-Technologies Corp Apparatus and method for plasma processing
JP2016199810A (en) * 2011-01-12 2016-12-01 株式会社半導体エネルギー研究所 Film formation device and production device
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US12000042B2 (en) 2016-12-15 2024-06-04 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11970766B2 (en) 2016-12-15 2024-04-30 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US12043899B2 (en) 2017-01-10 2024-07-23 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US12106965B2 (en) 2017-02-15 2024-10-01 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11976361B2 (en) 2017-06-28 2024-05-07 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US12033861B2 (en) 2017-10-05 2024-07-09 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11972944B2 (en) 2018-01-19 2024-04-30 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US12119228B2 (en) 2018-01-19 2024-10-15 Asm Ip Holding B.V. Deposition method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US12020938B2 (en) 2018-03-27 2024-06-25 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US10914004B2 (en) 2018-06-29 2021-02-09 Asm Ip Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
JP2020004971A (en) * 2018-06-29 2020-01-09 エーエスエム アイピー ホールディング ビー.ブイ. Thin film deposition method and manufacturing method of semiconductor device
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11959171B2 (en) 2019-01-17 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US12107000B2 (en) 2019-07-10 2024-10-01 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11996304B2 (en) 2019-07-16 2024-05-28 Asm Ip Holding B.V. Substrate processing device
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US12129548B2 (en) 2019-07-18 2024-10-29 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US12112940B2 (en) 2019-07-19 2024-10-08 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US12033849B2 (en) 2019-08-23 2024-07-09 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by PEALD using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US12119220B2 (en) 2019-12-19 2024-10-15 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US12033885B2 (en) 2020-01-06 2024-07-09 Asm Ip Holding B.V. Channeled lift pin
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US12125700B2 (en) 2020-01-16 2024-10-22 Asm Ip Holding B.V. Method of forming high aspect ratio features
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US12087586B2 (en) 2020-04-15 2024-09-10 Asm Ip Holding B.V. Method of forming chromium nitride layer and structure including the chromium nitride layer
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US12130084B2 (en) 2020-04-24 2024-10-29 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US12057314B2 (en) 2020-05-15 2024-08-06 Asm Ip Holding B.V. Methods for silicon germanium uniformity control using multiple precursors
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US12106944B2 (en) 2020-06-02 2024-10-01 Asm Ip Holding B.V. Rotating substrate support
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US12055863B2 (en) 2020-07-17 2024-08-06 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US12074022B2 (en) 2020-08-27 2024-08-27 Asm Ip Holding B.V. Method and system for forming patterned structures using multiple patterning process
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12107005B2 (en) 2020-10-06 2024-10-01 Asm Ip Holding B.V. Deposition method and an apparatus for depositing a silicon-containing material
US12051567B2 (en) 2020-10-07 2024-07-30 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including gas supply unit
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US12027365B2 (en) 2020-11-24 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US12129545B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Precursor capsule, a vessel and a method
US12131885B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Plasma treatment device having matching box
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Also Published As

Publication number Publication date
JP3576188B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
JPH0774162A (en) Apparatus and method for vapor phase reaction
US7223446B2 (en) Plasma CVD apparatus and dry cleaning method of the same
JP2601127B2 (en) Plasma CVD equipment
KR20010030991A (en) Dual frequency excitation of plasma for film deposition
TW201624589A (en) Methods and systems to enhance process uniformity
JP2000038688A (en) Method and device for plasma treating
JP2001257098A (en) Supply method to discharge electrode, high frequency plasma forming method and semiconductor manufacturing method
KR101353684B1 (en) Apparatus and method for generation a plasma
KR101197020B1 (en) Substrate processing apparatus for uniform plasma discharge and method of adjusting strength of plasma discharge
JP2000068227A (en) Method for processing surface and device thereof
JPH06318552A (en) Plasma processing and its apparatus
JP2002069653A (en) Thin film forming method, thin film forming apparatus and solar cell
JP2010212277A (en) Film forming apparatus
JP2002313744A (en) Plasma treating equipment, plasma treating method, thin film formed by the equipment and the method, substrate and semiconductor device
JPH0456770A (en) Method for cleaning plasma cvd device
KR20080047141A (en) Apparatus and method for generation a plasma
JP2002313743A (en) Plasma treating equipment, plasma treating method, thin film formed by the equipment and the method, substrate and semiconductor device
JP4546675B2 (en) Multistage discharge plasma processing method and apparatus
JP3420960B2 (en) Electronic device manufacturing apparatus and electronic device manufacturing method
JPH0820874A (en) Formation of film by plasma cvd method
JP2003059840A (en) Apparatus and method for plasma treatment
JP3581813B2 (en) Thin film manufacturing method and thin film solar cell manufacturing method
JPH0119467B2 (en)
JPH07183236A (en) Method and device for plasma cvd
JP3836032B2 (en) Plasma CVD equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040706

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040707

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110716

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120716

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120716

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130716

LAPS Cancellation because of no payment of annual fees