JPH0773997A - Plasma cvd device and cvd processing method employing the device and cleaning method for inside of the device - Google Patents

Plasma cvd device and cvd processing method employing the device and cleaning method for inside of the device

Info

Publication number
JPH0773997A
JPH0773997A JP6060681A JP6068194A JPH0773997A JP H0773997 A JPH0773997 A JP H0773997A JP 6060681 A JP6060681 A JP 6060681A JP 6068194 A JP6068194 A JP 6068194A JP H0773997 A JPH0773997 A JP H0773997A
Authority
JP
Japan
Prior art keywords
vacuum container
sample
plasma
dielectric window
cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6060681A
Other languages
Japanese (ja)
Inventor
Toshihiro Kugimiya
敏洋 釘宮
Hiroichi Ueda
博一 上田
Masakazu Kuwata
正和 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6060681A priority Critical patent/JPH0773997A/en
Publication of JPH0773997A publication Critical patent/JPH0773997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To provide a CVD process device which has a plasma generating means constituted by an ICP, and allow a condition for forming a film to be observed from the outside. CONSTITUTION:CDV process gas is introduced into a vacuum container 4 out of a process gas introducing port 6, and when high frequency electric power is applied to an antenna 3b provided in the vicinity of a dielectrics window 2, a high frequency electric field is induced within the vacuum container 4 by means of electromagnetic waves from the antenna 3b, and CVD process gas is formed into plasma, so that a film is formed over a specimen 9 by the accumulating of decomposition products. The antenna 3b, the dielectrics window 2 and a specimen stand 8 are set over the same shaft of the vacuum container 4 while being aligned in a plane direction, and the antenna 3b and the dielectrics window 2 are made larger in diameter than the specimen 6, so that the film is thereby uniformly formed. Besides, since the dielectrics window 2 is made of transparent material, a proceeding condition for forming the film can be observed from the outside, the film thickness can thereby be measured and controlled by a film thickness measuring means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,半導体集積回路の製造
プロセス等に用いられるプラズマCVD装置に係り,詳
しくは,プラズマ発生手段として誘導結合型のプラズマ
であるICP(Inductively Coupled Plasma)を用いて
プラズマCVD装置を構成すると共に,CVDによる成
膜状態の観測を可能に構成して,成膜プロセスの進行を
自動制御できるようにしたプラズマCVD装置と該装置
を用いたCVD処理方法及び該装置の洗浄方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma CVD apparatus used in a manufacturing process of a semiconductor integrated circuit, and more specifically, using an ICP (Inductively Coupled Plasma) which is an inductively coupled plasma as a plasma generating means. A plasma CVD apparatus that configures a plasma CVD apparatus and is capable of observing a film formation state by CVD so as to automatically control the progress of a film formation process, a CVD processing method using the apparatus, and the apparatus Regarding the cleaning method.

【0002】[0002]

【従来の技術】半導体集積回路の製造プロセスにおける
CVD(Chemical Vapor Deposition−化学的気相堆積
法)処理に用いられる従来技術として,平行平板電極型
プラズマCVD装置あるいはECR(Electron Cyclotr
on Resonance−電子サイクロトロン共鳴)プラズマCV
D装置が知られている。上記平行平板電極型プラズマC
VD装置は,図12に概略構成図として示すように構成
される。図12において,平行平板電極型プラズマCV
D装置60は,真空容器64内に平板状に形成された上
部電極61と下部電極62とが平行に向かい合って配置
され,上部電極61に高周波電源65から高周波電力が
印加される。下部電極62上にはCVD処理を行う試料
63が載置され,該下部電極62は接地電位に接続され
る。図示するように,上部電極61に設けられた流路か
らCVD処理ガスが真空容器64内に導入されると,各
電極61,62間にプラズマが発生し,該プラズマによ
り生成されたCVD処理ガスの分解生成物が試料63上
に堆積され,試料63の表面に成膜が施される。又,上
記ECRプラズマCVD装置は,図13に概略構成図と
して示すように構成される。図13において,ECRプ
ラズマCVD装置66は,円筒状に形成された真空容器
67の軸方向に設けられた誘電体窓68からマイクロ波
が真空容器67内に導入されると共に,真空容器67と
同軸に配設された磁場発生コイル69から真空容器67
内に磁場が印加される。真空容器67の軸方向の所定位
置に配設された試料台70上に試料71を載置して,真
空容器67内にCVD処理ガスを導入すると,真空容器
67内にECRプラズマが発生し,該プラズマにより生
成されたCVD処理ガスの分解生成物が試料71上に堆
積され,試料71の表面に成膜が施される。
2. Description of the Related Art As a conventional technique used for a CVD (Chemical Vapor Deposition) process in a semiconductor integrated circuit manufacturing process, a parallel plate electrode type plasma CVD apparatus or an ECR (Electron Cyclotr) is used.
on Resonance-Electron Cyclotron Resonance) Plasma CV
D device is known. The parallel plate electrode type plasma C
The VD device is configured as shown in a schematic configuration diagram in FIG. In FIG. 12, parallel plate electrode type plasma CV
In the D device 60, an upper electrode 61 and a lower electrode 62 formed in a flat plate shape are arranged in parallel in a vacuum container 64 so as to face each other, and a high frequency power source 65 applies high frequency power to the upper electrode 61. A sample 63 to be subjected to a CVD process is placed on the lower electrode 62, and the lower electrode 62 is connected to the ground potential. As shown in the figure, when the CVD processing gas is introduced into the vacuum container 64 from the flow path provided in the upper electrode 61, plasma is generated between the electrodes 61 and 62, and the CVD processing gas generated by the plasma is generated. The decomposition products of the above are deposited on the sample 63, and a film is formed on the surface of the sample 63. Further, the ECR plasma CVD apparatus is configured as shown in a schematic configuration diagram in FIG. 13, in the ECR plasma CVD apparatus 66, microwaves are introduced into the vacuum vessel 67 through a dielectric window 68 provided in the axial direction of the vacuum vessel 67 formed in a cylindrical shape, and coaxial with the vacuum vessel 67. From the magnetic field generating coil 69 disposed in the vacuum container 67.
A magnetic field is applied inside. When the sample 71 is placed on the sample table 70 arranged at a predetermined position in the axial direction of the vacuum container 67 and the CVD processing gas is introduced into the vacuum container 67, ECR plasma is generated in the vacuum container 67, A decomposition product of the CVD process gas generated by the plasma is deposited on the sample 71, and a film is formed on the surface of the sample 71.

【0003】[0003]

【発明が解決しようとする課題】上記平行平板電極型プ
ラズマCVD装置においては,試料がプラズマ中に曝さ
れるため,プラズマによる副生成物が堆積膜中に混入す
る問題点,プラズマによって生成された分解生成物がパ
ーティクルとして電極部分に付着し,成膜中に試料上に
脱落するため成膜品質が低下する問題点,更に,電極が
プラズマ中に曝されるため,電極材料が成膜内に混入し
成膜品質を低下させる問題点があった。又,上記ECR
プラズマCVD装置においては,プラズマによる分解生
成物がマイクロ波を導入する誘電体窓に付着するため,
プラズマ密度の均一性が損なわれ,膜厚の不均一,ある
いは成膜速度の変化等として影響する問題点,サイクロ
トロン共鳴を行わせるために磁場発生コイルの設置等が
必要で非常に大型で高価な装置となる問題点,試料が大
口径化した場合に装置も大型化する問題点があった。更
に,従来のプラズマCVD装置では,成膜中の試料表面
を観測することは不可能であるため,CVDによる成膜
厚を設定するには,目標膜厚に成膜された装置の成膜速
度を算出して,目標成膜時間を設定しなければならない
問題点があった。本発明は,上記従来のプラズマCVD
装置の諸問題点を解決すべくなされたもので,ICPに
よりプラズマCVD装置を構成して,成膜内に不純物の
混入のない高品質の成膜を可能とすると共に,成膜中の
試料表面の観測及び膜厚測定を可能に構成し,成膜制御
を可能にしたプラズマCVD装置及び該装置を用いたC
VD処理方法を提供することを目的とする。
In the above parallel plate electrode type plasma CVD apparatus, since the sample is exposed to the plasma, there is a problem that a by-product of the plasma is mixed in the deposited film. Decomposition products adhere to the electrode part as particles and fall on the sample during film formation, which lowers the film formation quality. Furthermore, since the electrode is exposed to plasma, the electrode material is There is a problem that the quality of the film is deteriorated due to the mixing. Also, the above ECR
In the plasma CVD apparatus, the decomposition products of plasma adhere to the dielectric window that introduces microwaves,
The problem is that the uniformity of the plasma density is impaired, the film thickness becomes non-uniform, or the deposition rate changes, etc., and it is necessary to install a magnetic field generation coil to perform cyclotron resonance, which is very large and expensive. There was a problem in that it became a device, and the device also became larger when the sample size was increased. Further, since it is impossible to observe the sample surface during film formation by the conventional plasma CVD apparatus, the film formation speed of the apparatus formed to the target film thickness must be set in order to set the film formation thickness by CVD. There was a problem in that it was necessary to calculate and set the target film formation time. The present invention is based on the conventional plasma CVD described above.
It was made to solve various problems of the apparatus. A plasma CVD apparatus is configured by ICP to enable high quality film formation without impurities mixed in the film formation, and the sample surface during film formation. Plasma CVD apparatus and film forming control apparatus capable of observing the film thickness and measuring the film thickness and C using the apparatus.
It is an object to provide a VD processing method.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する第1の手段は,高周波電力が印加さ
れた真空容器内に所要のCVD処理ガスを導入してプラ
ズマ化し,該プラズマにより分解された上記CVD処理
ガスの分解生成物を上記真空容器内に配置された試料上
に堆積させるプラズマCVD装置において,上記真空容
器の外郭上に配設された誘電体窓と,上記真空容器外の
上記誘電体窓の近傍に配設されて真空容器内に高周波電
場を誘起させるアンテナと,上記試料を上記真空容器内
の所定位置に保持する試料台とを,上記真空容器の同一
軸上に,それぞれの平面方向を一致させて配設したこと
を特徴とするプラズマCVD装置として構成される。上
記構成において,誘電体窓を透明体により形成し,誘電
体窓及びアンテナの直径を試料の直径より大きく形成す
ることができる。又,第2の手段は,高周波電力が印加
された真空容器内に所要のCVD処理ガスを導入してプ
ラズマ化し,該プラズマにより分解された上記CVD処
理ガスの分解生成物を上記真空容器内に配置された試料
上に堆積させるプラズマCVD装置において,上記真空
容器の外郭上に配設され,誘電体により上記試料の直径
より大なる直径に形成され,上記CVD処理ガスの導入
ポートに接続されたガス通路と該ガス通路の処理ガスを
真空容器内に放出する複数のガス放出口とを具備してな
る誘電体窓と,上記真空容器外の上記誘電体窓の近傍に
配設されて真空容器内に高周波電場を誘起させるアンテ
ナと,上記試料を上記真空容器内の所定位置に保持する
試料台とを,上記真空容器の同一軸上に,それぞれの平
面方向を一致させて配設したことを特徴とするプラズマ
CVD装置として構成される。
In order to achieve the above object, the first means adopted by the present invention is to introduce a required CVD processing gas into a vacuum container to which high frequency power is applied and to generate plasma, In a plasma CVD apparatus for depositing a decomposition product of the CVD processing gas decomposed by plasma on a sample arranged in the vacuum container, a dielectric window arranged on the outer periphery of the vacuum container and the vacuum An antenna disposed outside the container in the vicinity of the dielectric window for inducing a high frequency electric field in the vacuum container, and a sample table for holding the sample at a predetermined position in the vacuum container are provided on the same axis of the vacuum container. The plasma CVD apparatus is characterized in that the respective planes are arranged so as to coincide with each other. In the above structure, the dielectric window can be made of a transparent material, and the diameter of the dielectric window and the antenna can be made larger than the diameter of the sample. Further, the second means introduces a required CVD processing gas into a vacuum container to which high frequency power is applied to generate plasma, and decomposes the decomposition product of the CVD processing gas by the plasma into the vacuum container. In a plasma CVD apparatus for depositing on a sample placed, the plasma CVD device is placed on the outer surface of the vacuum container, formed to have a diameter larger than that of the sample by a dielectric, and connected to the introduction port of the CVD processing gas. A dielectric window having a gas passage and a plurality of gas discharge ports for discharging the processing gas in the gas passage into the vacuum container, and a vacuum container disposed near the dielectric window outside the vacuum container. An antenna for inducing a high-frequency electric field therein and a sample stand for holding the sample at a predetermined position in the vacuum container are arranged on the same axis of the vacuum container with their plane directions aligned. Configured as a plasma CVD apparatus according to symptoms.

【0005】更に,第3の手段は,高周波電力が印加さ
れた真空容器内に所要のCVD処理ガスを導入してプラ
ズマ化し,該プラズマにより分解された上記CVD処理
ガスの分解生成物を上記真空容器内に配置された試料上
に堆積させるプラズマCVD装置において,上記真空容
器の外郭上に配設され,誘電体により上記試料の直径よ
り大なる直径に形成されてなる誘電体窓と,上記真空容
器外の上記誘電体窓の近傍に配設されて真空容器内に高
周波電場を誘起させるアンテナと,上記試料を上記真空
容器内の所定位置に保持する試料台とを上記真空容器の
同一軸上に,それぞれの平面方向を一致させて配設する
と共に,上記誘電体窓が配設された真空容器の外郭が開
閉可能に形成されてなることを特徴とするプラズマCV
D装置として構成される。更に,第4の手段は,高周波
電力が印加された真空容器内に所要のCVD処理ガスを
導入してプラズマ化し,該プラズマにより分解された上
記CVD処理ガスの分解生成物を上記真空容器内に配置
された試料上に堆積させるプラズマCVD装置におい
て,上記真空容器の外郭上に配設され,透明な誘電体に
より上記試料の直径より大なる直径に形成されてなる誘
電体窓と,上記真空容器外の上記誘電体窓の近傍に配設
されて真空容器内に高周波電場を誘起させるアンテナ
と,上記試料を上記真空容器内の所定位置に保持する試
料台とを,上記真空容器の同一軸上に,それぞれの平面
方向を一致させて配設すると共に,上記誘電体窓を通し
て上記試料に検査光を投射し,該試料表面に生成された
堆積膜から反射された反射光を受光できる位置に配設さ
れ,該反射光の分析により上記堆積膜の膜厚を測定する
膜厚測定装置を設けたことを特徴とするプラズマCVD
装置として構成される。上記第1及び第2,第3,第4
の手段において,上記処理ガスを構成するキャリアガス
を上記高周波電場の誘起領域に導入するキャリアガス導
入手段と,上記処理ガスを構成するCVD原料ガスを上
記プラズマに接する上記試料の上方空間に導入する原料
ガス導入手段とを具備させることができる。
Further, a third means is to introduce a required CVD processing gas into a plasma into a vacuum container to which high frequency power is applied, turn it into plasma, and decompose the decomposition product of the CVD processing gas into the vacuum. In a plasma CVD apparatus for depositing on a sample placed in a container, a dielectric window which is arranged on the outer shell of the vacuum container and has a diameter larger than that of the sample by a dielectric, and the vacuum. An antenna disposed outside the container near the dielectric window for inducing a high frequency electric field in the vacuum container and a sample table for holding the sample at a predetermined position in the vacuum container are on the same axis of the vacuum container. And the outer surface of the vacuum container in which the dielectric window is arranged is formed so as to be openable and closable, and the plasma CV is arranged in such a manner that the respective plane directions are aligned with each other.
It is configured as a D device. Further, the fourth means introduces a required CVD processing gas into a vacuum container to which high-frequency power is applied to generate plasma, and decomposes the decomposition product of the CVD processing gas into the vacuum container. In a plasma CVD apparatus for depositing on a placed sample, a dielectric window provided on the outer shell of the vacuum container and having a diameter larger than that of the sample by a transparent dielectric, and the vacuum container. An antenna disposed near the outside of the dielectric window for inducing a high frequency electric field in the vacuum container and a sample stand for holding the sample at a predetermined position in the vacuum container are on the same axis of the vacuum container. And the inspection light is projected onto the sample through the dielectric window so that the reflected light reflected from the deposited film generated on the sample surface can be received. Is set, a plasma CVD, characterized in that a thickness measuring apparatus for measuring the thickness of the deposited film by analysis of the reflected light
Configured as a device. The first, second, third and fourth
Means for introducing the carrier gas constituting the processing gas into the induction region of the high frequency electric field, and the CVD source gas constituting the processing gas into the space above the sample in contact with the plasma. A source gas introduction means may be provided.

【0006】又,上記第1及び第2,第3,第4の手段
において,上記真空容器内の排気が,上記試料位置を中
心とした円周上に設けられた複数の排気口からなされる
よう構成することができる。更に,本発明が採用する第
1の方法は,真空容器の外郭上に配設され,透明な誘電
体により上記真空容器内に配置される試料の直径より大
なる直径に形成されてなる誘電体窓と,上記真空容器外
の上記誘電体窓の近傍に配設されて真空容器内に高周波
電場を誘起させるアンテナと,上記試料を上記真空容器
内の所定位置に保持する試料台とを,上記真空容器の同
一軸上に,それぞれの平面方向を一致させて配設すると
共に,上記誘電体窓を通して上記試料に検査光を投射
し,該試料表面に生成された堆積膜から反射された反射
光を受光できる位置に配設され,該反射光の分析により
上記堆積膜の膜厚を測定する膜厚測定装置を具備して構
成され,上記真空容器内に導入された上記CVD処理ガ
スを上記アンテナにより真空容器内に誘起された高周波
電場によりプラズマ化し,該プラズマにより分解された
分解生成物を上記試料上に堆積させるプラズマCVD装
置を用いたプラズマCVD処理方法において,上記堆積
プロセス中の試料表面の堆積膜厚を上記膜厚測定装置に
より測定し,該測定値が所望の膜厚になったとき上記ア
ンテナへの高周波電力の供給を停止させることを特徴と
するプラズマCVD処理方法である。
Further, in the first, second, third and fourth means, the vacuum chamber is evacuated by a plurality of exhaust ports provided on the circumference of the sample center. Can be configured as follows. Further, the first method adopted by the present invention is a dielectric material which is arranged on the outer surface of a vacuum container and is formed of a transparent dielectric material with a diameter larger than the diameter of a sample arranged in the vacuum container. A window, an antenna arranged outside the vacuum container in the vicinity of the dielectric window for inducing a high frequency electric field in the vacuum container, and a sample stand for holding the sample at a predetermined position in the vacuum container. The reflected light reflected from the deposited film generated on the surface of the sample by arranging them on the same axis of the vacuum container with their respective plane directions aligned and projecting the inspection light on the sample through the dielectric window. And a film thickness measuring device for measuring the film thickness of the deposited film by analyzing the reflected light. The CVD processing gas introduced into the vacuum container is fed to the antenna. Induced in the vacuum vessel by In a plasma CVD processing method using a plasma CVD apparatus for plasma-degrading by a frequency electric field and depositing a decomposition product decomposed by the plasma on the sample, the film thickness of the deposited film on the sample surface during the deposition process is measured. A plasma CVD method characterized by stopping the supply of high-frequency power to the antenna when measured by an apparatus and the measured value reaches a desired film thickness.

【0007】更に,第2の方法は,真空容器の外郭上に
配設され,透明な誘電体により上記真空容器内に配置さ
れる試料の直径より大なる直径に形成されてなる誘電体
窓と,上記真空容器外の上記誘電体窓の近傍に配設され
て真空容器内に高周波電場を誘起させるアンテナと,上
記試料を上記真空容器内の所定位置に保持する試料台と
を,上記真空容器の同一軸上に,それぞれの平面方向を
一致させて配設すると共に,上記誘電体窓を通して上記
試料に検査光を投射し,該試料表面に生成された堆積膜
から反射された反射光を受光できる位置に配設され,該
反射光の分析により上記堆積膜の膜厚を測定する膜厚測
定装置を具備して構成され,上記真空容器内に導入され
た上記CVD処理ガスを上記アンテナにより真空容器内
に誘起された高周波電場によりプラズマ化し,該プラズ
マにより分解された分解生成物を上記試料上に堆積させ
るプラズマCVD装置を用いたプラズマCVD処理方法
において,上記膜厚測定装置により試料表面の堆積膜厚
を測定し,該測定値が所望の膜厚になったとき上記CV
D処理ガスを構成するCVD原料ガス,反応ガス,希釈
ガスの成分及び混合比の一方又は両方を変更して,異種
類のCVD膜堆積を連続して行うことを特徴とするプラ
ズマCVD処理方法である。更に,第3の方法は,真空
容器に設けられた誘電体窓の近傍に配設されたアンテナ
により該真空容器内に高周波電場を誘起させ,真空容器
内に導入されたCVD処理ガスをプラズマ化し,該プラ
ズマにより分解された分解生成物を上記真空容器内に配
置された試料上に堆積させるプラズマCVD装置の洗浄
方法において,上記真空容器内に所要のCVD処理ガス
を導入してプラズマCVD処理を行った後,上記真空容
器内にCVD処理ガスに代えてフッ化ガスを導入し,該
フッ化ガスによるプラズマにより上記CVD装置内の洗
浄を行うことを特徴とするプラズマCVD装置の洗浄方
法である。
Further, the second method is to dispose a dielectric window which is arranged on the outer surface of the vacuum container and which is made of a transparent dielectric material and has a diameter larger than that of the sample arranged in the vacuum container. An antenna disposed outside the vacuum container in the vicinity of the dielectric window for inducing a high frequency electric field in the vacuum container; and a sample table for holding the sample at a predetermined position in the vacuum container, the vacuum container Are arranged on the same axis so that their respective plane directions coincide with each other, project light is projected onto the sample through the dielectric window, and the reflected light reflected from the deposited film generated on the sample surface is received. The CVD processing gas introduced into the vacuum chamber is vacuumed by the antenna, and is provided with a film thickness measuring device for measuring the film thickness of the deposited film by analyzing the reflected light. High circumference induced in the container In a plasma CVD processing method using a plasma CVD apparatus in which a decomposition product decomposed by the plasma is deposited on the sample by an electric field, the deposited film thickness on the sample surface is measured by the film thickness measuring apparatus, When the measured value reaches the desired film thickness, the above CV
D) A plasma CVD processing method, characterized in that one or both of components and mixing ratios of a CVD raw material gas, a reaction gas, a diluent gas, which constitute the processing gas, are changed to continuously deposit different kinds of CVD films. is there. Further, the third method is to induce a high frequency electric field in the vacuum container by an antenna arranged in the vicinity of a dielectric window provided in the vacuum container, and to turn the CVD processing gas introduced into the vacuum container into plasma. In a method for cleaning a plasma CVD apparatus in which a decomposition product decomposed by the plasma is deposited on a sample arranged in the vacuum container, a plasma CVD process is performed by introducing a required CVD processing gas into the vacuum container. After that, a fluorinated gas is introduced into the vacuum vessel instead of the CVD processing gas, and the inside of the CVD apparatus is cleaned by plasma generated by the fluorinated gas. .

【0008】[0008]

【作用】本願の第1の発明によれば,真空容器の外郭に
設けられた誘電体窓の近傍に配設されたアンテナに高周
波電力を供給すると,アンテナからの電磁波により真空
容器内に高周波電場が誘起される。この高周波電場によ
り真空容器内に導入されたCVD処理ガスがプラズマ化
され,該プラズマによって生成された分解生成物を真空
容器内に配置した試料上に堆積させることにより,試料
表面に成膜がなされる。上記誘電体窓とアンテナと試料
台とは,真空容器の同一軸上に平面方向を一致させて配
設されるので,真空容器内に発生するプラズマが拡散
し,試料に対してプラズマによる分解生成物を堆積させ
るCVD作用が均一になされる。又,上記誘電体窓及び
アンテナの直径を試料の直径より大に形成することによ
り,試料に対するCVD作用が更に均一になされる。こ
の分解生成物の堆積による成膜の進行状態は,透明な誘
電体窓と試料台とが同一平面に配設されていることか
ら,誘電体窓を通して観測することが可能となる。請求
項1及び請求項2,3がこれに対応する。本願の第2の
発明によれば,上記第1の発明による構成に併せ,誘電
体窓にCVD処理ガスのガス通路と真空容器内へのガス
放出口が設けられ,CVD処理ガスは上記ガス通路とガ
ス放出口を通じて真空容器内に導入されるので,プラズ
マ発生領域に均一に処理ガスの供給がなされる。請求項
4がこれに対応する。本願の第3の発明によれば,上記
第1の発明による構成に併せ,上記誘電体窓が配設され
た真空容器の外郭が開閉可能に構成されることにより,
真空容器内への試料の出し入れ,真空容器の内壁面及び
誘電体窓内面の清掃等が容易に実施できる。請求項5が
これに対応する。本願の第4の発明によれば,上記第1
の発明の構成に併せ,膜厚測定装置が配設され,真空容
器内で進行する試料表面の成膜過程の膜厚を随時測定す
ることができる。従って,試料上の成膜厚の分布状態の
測定,あるいは所定の膜厚になったとき装置の動作を停
止させる制御などを実施することができる。請求項6が
これに対応する。
According to the first invention of the present application, when high frequency power is supplied to the antenna arranged near the dielectric window provided on the outer periphery of the vacuum container, the electromagnetic wave from the antenna causes a high frequency electric field in the vacuum container. Is induced. The high-frequency electric field converts the CVD processing gas introduced into the vacuum chamber into plasma, and the decomposition products generated by the plasma are deposited on the sample placed in the vacuum chamber to form a film on the sample surface. It Since the dielectric window, the antenna, and the sample stand are arranged on the same axis of the vacuum container with their plane directions aligned with each other, the plasma generated in the vacuum container is diffused and decomposed and generated by the plasma with respect to the sample. The CVD action of depositing an object is made uniform. Further, by forming the diameter of the dielectric window and the antenna to be larger than the diameter of the sample, the CVD action on the sample can be made more uniform. The progress of film formation due to the deposition of the decomposition products can be observed through the dielectric window because the transparent dielectric window and the sample stage are arranged on the same plane. Claims 1 and 2 and 3 correspond to this. According to the second invention of the present application, in addition to the configuration according to the first invention, a gas passage of the CVD processing gas and a gas discharge port into the vacuum container are provided in the dielectric window, and the CVD processing gas is provided with the gas passage. Since the gas is introduced into the vacuum chamber through the gas discharge port, the processing gas is uniformly supplied to the plasma generation region. Claim 4 corresponds to this. According to the third invention of the present application, in addition to the structure according to the first invention, the outer shell of the vacuum container in which the dielectric window is disposed can be opened and closed.
The sample can be easily taken in and out of the vacuum container, and the inner wall surface of the vacuum container and the inner surface of the dielectric window can be easily cleaned. Claim 5 corresponds to this. According to the fourth invention of the present application, the first
In addition to the configuration of the invention described above, a film thickness measuring device is provided, and it is possible to measure the film thickness during the film forming process on the sample surface which progresses in the vacuum container at any time. Therefore, it is possible to perform the measurement of the distribution state of the film thickness on the sample, or the control of stopping the operation of the apparatus when the predetermined film thickness is reached. Claim 6 corresponds to this.

【0009】上記第1及び第3,第4の発明において,
CVD処理ガスをキャリアガスとCVD原料ガスとに分
離して供給するキャリアガス導入手段と原料ガス導入手
段とを設けることにより,キャリアガスをアンテナから
の電磁波によりプラズマ化し,そのプラズマによりCV
D原料ガスを分解させることができるので,試料への成
膜はCVD原料ガスの分解生成物によって重点的になさ
れ,成膜品質を向上させることができる。請求項7がこ
れに対応する。又,真空容器内からの排気を試料位置を
中心とする円周上から均等に行うことによって,真空容
器内のガスの流れが試料に対して均一になり,均一な成
膜がなされると共に,誘電体窓や真空容器内への分解生
成物の付着が抑制される。請求項8がこれに対応する。
本願の第5の発明は,上記第4の発明による構成を用い
たCVD処理方法を示すもので,膜厚測定装置により試
料上の成膜厚を測定して,その測定値が所定の膜厚にな
ったとき,アンテナからの高周波電力の印加を停止させ
るよう制御すると,常に一定の膜厚での成膜が実施でき
るCVD処理方法が提供される。請求項9がこれに対応
する。本願の第6の発明は,上記第4の発明による構成
を用いて複数種の成膜を連続して実施するCVD処理方
法を示すもので,膜厚測定装置により試料上の成膜厚を
測定して,その測定値が所定の膜厚になったとき,CV
D処理ガスの成分及び混合比の一方又は両方を変更する
ことにより,異なる種類の成膜が引き続き実施できるC
VD処理方法が提供される。請求項10がこれに対応す
る。本願の第7の発明は,上記構成になるプラズマCV
D装置内の洗浄方法を示すもので,真空容器内にCVD
処理ガスを導入したCVD処理を行った後,CVD処理
ガスに代えてフッ素ガスを真空容器内に導入してプラズ
マ化させ,該プラズマにより真空容器の内壁及び誘電体
窓に付着したCVD膜をエッチング処理により除去す
る。この洗浄により誘電体窓の透明状態及び高周波電力
の導入状態が刷新される。この洗浄を随時行うことによ
り,安定したCVD成膜が持続される。請求項11がこ
れに対応する。
In the above first, third and fourth inventions,
By providing a carrier gas introduction means and a raw material gas introduction means for separately supplying the CVD processing gas into a carrier gas and a CVD source gas, the carrier gas is turned into plasma by electromagnetic waves from the antenna, and the CV is generated by the plasma.
Since the D source gas can be decomposed, the film formation on the sample is focused on by the decomposition products of the CVD source gas, and the film formation quality can be improved. Claim 7 corresponds to this. Further, by exhausting the gas from the inside of the vacuum container evenly from the circumference centered on the sample position, the gas flow in the vacuum container becomes uniform with respect to the sample, and uniform film formation is achieved. Adhesion of decomposition products to the dielectric window and the vacuum container is suppressed. Claim 8 corresponds to this.
A fifth invention of the present application shows a CVD processing method using the configuration according to the fourth invention, wherein a film thickness on a sample is measured by a film thickness measuring device and the measured value is a predetermined film thickness. Then, by controlling to stop the application of the high frequency power from the antenna, the CVD processing method can be provided in which the film can be always formed with a constant film thickness. Claim 9 corresponds to this. A sixth invention of the present application shows a CVD processing method for continuously carrying out film formation of a plurality of types by using the structure according to the fourth invention, wherein the film thickness on a sample is measured by a film thickness measuring device. Then, when the measured value reaches a predetermined film thickness, CV
D By changing one or both of the components of the processing gas and the mixing ratio, different types of film formation can be continuously performed C
A VD processing method is provided. Claim 10 corresponds to this. A seventh invention of the present application is a plasma CV having the above configuration.
This shows how to clean the inside of the D equipment.
After performing the CVD process in which the processing gas is introduced, fluorine gas is introduced into the vacuum container in place of the CVD processing gas to generate plasma, and the plasma is used to etch the CVD film attached to the inner wall of the vacuum container and the dielectric window. Remove by treatment. By this cleaning, the transparent state of the dielectric window and the introduction state of high frequency power are renewed. By performing this cleaning as needed, stable CVD film formation is maintained. Claim 11 corresponds to this.

【0010】[0010]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は本発明を具体化した一例であって,本発明
の技術的範囲を限定するものではない。ここに,図1は
本発明の第1実施例に係るプラズマCVD装置の構成を
示す模式図,図2は実施例に係るアンテナの構成を示す
平面図である。図1において,第1実施例に係るプラズ
マCVD装置1は,円筒状に形成され,ガス導入ポート
6と真空排気のための排気ポート11とを備えた真空容
器4と,該真空容器4の中心軸線上に設けられ,透明な
石英ガラスによって形成された誘電体窓2と,該誘電体
窓2の近傍に配置されたアンテナ3と,該アンテナ3に
高周波電力をマッチング回路5を介して供給する高周波
電源7と,上記真空容器4の中心軸線上の任意位置に移
動可能に配設され,試料9を載置する試料台8とを具備
して構成されている。上記構成において,上記アンテナ
3,誘電体窓2,試料台8,試料9は真空容器4の中心
軸上に,それぞれの平面方向を一致させて配設される。
又,誘電体窓2は,CVD処理される試料9の直径より
も充分に大きな直径に形成され,真空容器4の上部外郭
上に配設されている。又,アンテナ3は,図2(a)に
示す1ループもしくは図2(b)に示す渦巻き状のルー
プアンテナとして形成することができる。図1に示すプ
ラズマCVD装置1では,図2(b)に示す渦巻き状ル
ープの直径が試料9の直径より大きく形成されたアンテ
ナ3bを採用し,誘電体窓2を通して真空容器4内に該
真空容器4の中心軸線から内壁方向に同心円状に均一な
高周波電力を導入できるよう構成されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and do not limit the technical scope of the present invention. 1 is a schematic view showing the structure of the plasma CVD apparatus according to the first embodiment of the present invention, and FIG. 2 is a plan view showing the structure of the antenna according to the embodiment. In FIG. 1, the plasma CVD apparatus 1 according to the first embodiment is formed in a cylindrical shape, has a vacuum container 4 having a gas introduction port 6 and an exhaust port 11 for vacuum exhaust, and the center of the vacuum container 4. A dielectric window 2 provided on the axis and formed of transparent quartz glass, an antenna 3 arranged in the vicinity of the dielectric window 2, and high frequency power is supplied to the antenna 3 through a matching circuit 5. A high frequency power source 7 and a sample table 8 on which a sample 9 is placed are arranged so as to be movable at an arbitrary position on the central axis of the vacuum container 4. In the above structure, the antenna 3, the dielectric window 2, the sample stand 8 and the sample 9 are arranged on the central axis of the vacuum container 4 with their respective plane directions aligned.
Further, the dielectric window 2 is formed to have a diameter sufficiently larger than the diameter of the sample 9 to be subjected to the CVD process, and is arranged on the upper outer shell of the vacuum container 4. Further, the antenna 3 can be formed as one loop shown in FIG. 2A or a spiral loop antenna shown in FIG. 2B. The plasma CVD apparatus 1 shown in FIG. 1 employs the antenna 3b in which the diameter of the spiral loop shown in FIG. 2 (b) is formed larger than the diameter of the sample 9, and the vacuum is put in the vacuum container 4 through the dielectric window 2. It is configured so that uniform high-frequency power can be introduced concentrically from the central axis of the container 4 toward the inner wall.

【0011】上記構成により,真空容器4内を排気ポー
ト11から排気すると共に,ガス導入ポート6からCV
D処理ガスを導入し,高周波電源7から高周波電力をア
ンテナ3bに印加すると,アンテナ3bからの電磁波に
より真空容器4内に高周波電場が誘起され,この高周波
電場は自然放射線等によって真空容器4内に発生した電
子を加速し,CVD処理ガス中の中性原子と衝突して該
中性原子をイオン化してイオンと電子とを生成する。新
たに発生した電子は高周波電場により加速され,イオン
と電子を生成する過程を繰り返す。このようにしプラズ
マ密度がある程度以上上昇すると,プラズマ中の電子密
度が上昇してプラズマ中の電子の応答周波数を上昇さ
せ,プラズマはあたかも導電体のように作用して高周波
電界を遮断するかのように電流が流れて,電磁波を遮断
し始める。このとき,プラズマ固有の特殊なモード以外
はプラズマ内部に電磁波が入らないため,表面のプラズ
マのみがアンテナ3bからの電磁波のエネルギーを得て
プラズマ密度を更に上昇させ,プラズマ内部に拡散す
る。上記のようにして発生したプラズマ10により生成
される処理ガスの分解生成物は試料9上に堆積される。
試料9は試料台8を移動させてプラズマ10に直接曝さ
れない位置に試料表面(堆積膜を形成させたい部分)を
配置すれば,成膜中に不純物の混入がない緻密なCVD
膜が形成される。又,上記構成は図1に示すように,誘
電体窓2及びアンテナ3bの直径が試料9の直径より大
きく形成されており,誘電体窓2,アンテナ3b,試料
9がそれぞれ同一軸上に平面方向を一致させて配設され
ているので,透明な誘電体窓2から試料9を透視する
と,試料表面全体を観測することができる。この構成に
より,試料9表面に成膜がなされていく状態を随時観測
することが可能となる。上記第1実施例構成では,処理
ガスの導入が真空容器4の側面からなされていたが,真
空容器4内の所要位置での処理ガスの密度分布を均一化
することにより,CVDによる成膜をより均一化させる
ことができる。この処理ガスの密度分布の均一化を図っ
た構成を第2実施例として次に説明する。尚,上記第1
実施例の構成と同一の要素には同一の符号を付して,そ
の説明は省略する。
With the above structure, the inside of the vacuum container 4 is exhausted from the exhaust port 11 and the CV is introduced from the gas introduction port 6.
When D treatment gas is introduced and high frequency power is applied from the high frequency power source 7 to the antenna 3b, a high frequency electric field is induced in the vacuum container 4 by the electromagnetic wave from the antenna 3b, and this high frequency electric field is generated in the vacuum container 4 by natural radiation or the like. The generated electrons are accelerated and collide with neutral atoms in the CVD processing gas to ionize the neutral atoms to generate ions and electrons. The newly generated electrons are accelerated by the high-frequency electric field, and the process of generating ions and electrons is repeated. In this way, when the plasma density rises above a certain level, the electron density in the plasma rises, raising the response frequency of the electrons in the plasma, and the plasma acts as if it were a conductor and cuts off the high-frequency electric field. An electric current flows through and begins to block electromagnetic waves. At this time, since electromagnetic waves do not enter inside the plasma except for a special mode peculiar to plasma, only the plasma on the surface obtains the energy of the electromagnetic wave from the antenna 3b to further increase the plasma density and diffuse inside the plasma. The decomposition products of the processing gas generated by the plasma 10 generated as described above are deposited on the sample 9.
For the sample 9, if the sample surface (the portion where the deposited film is to be formed) is arranged at a position where the sample table 8 is moved so that the sample 9 is not directly exposed to the plasma 10, a dense CVD that does not contain impurities during film formation is performed.
A film is formed. Further, in the above-mentioned structure, as shown in FIG. 1, the diameter of the dielectric window 2 and the antenna 3b is formed larger than the diameter of the sample 9, and the dielectric window 2, the antenna 3b, and the sample 9 are flat on the same axis. Since they are arranged in the same direction, the entire surface of the sample can be observed when the sample 9 is seen through the transparent dielectric window 2. With this configuration, it is possible to observe the state where the film is being formed on the surface of the sample 9 at any time. In the configuration of the first embodiment, the processing gas is introduced from the side surface of the vacuum container 4, but by uniformizing the density distribution of the processing gas at the required position in the vacuum container 4, the film formation by CVD is performed. It can be made more uniform. A configuration in which the density distribution of the processing gas is made uniform will be described below as a second embodiment. In addition, the first
The same elements as those in the configuration of the embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0012】図3は第2実施例に係るプラズマCVD装
置20の構成を断面で示す模式図である。本構成では,
真空容器22内への処理ガスの導入は,誘電体窓21に
設けられたガス通路23と,このガス通路23から真空
容器22内に開口する多数のガス放出口24とからなさ
れる。図4(b)は誘電体窓21を真空容器22内から
見た平面図で,誘電体窓21の全面にほぼ均等にガス放
出口24,24…が配置されており,各ガス放出口24
は図4(a)に示すように,誘電体窓21内に形成され
たガス通路23に連通している。ガス通路23はガス導
入ポート25に接続されており,供給される処理ガスは
ガス導入ポート25からガス通路23を通って各ガス放
出口24から真空容器22内に導入される。本構成で
は,処理ガスは多数のガス放出口24から真空容器22
内に導入されるので,処理ガスのプラズマ生成領域にお
ける密度分布が均一になされる結果,プラズマの密度分
布も均一化され,CVDによる成膜も均一化される。特
に〜10Torr程度の中圧力において,試料9に対す
る処理ガスの均一な流れを作ることができるので,大面
積の試料に対しても均一な成膜が行うことができる。上
記処理ガスは,プラズマを発生させるためのキャリアガ
スと,成膜の材料となるCVD原料ガスとを含んで構成
されているが,このキャリアガスとCVD原料ガスとを
別々に真空容器内の所要領域に導入することにより,成
膜品質の向上を図ることができる。この構成を第3実施
例及び第4,第5実施例として次に説明する。尚,上記
第1及び第2実施例と共通する要素には同一の符号を付
して,その説明は省略する。ここに,図5は第3実施例
に係るプラズマCVD装置の構成を示す模式図,図6は
第4実施例に係るプラズマCVD装置の構成を示す模式
図,図7は実施例に係るシールドボックスの構成を示す
斜視図,図8は第5実施例に係るプラズマCVD装置の
構成を示す模式図である。
FIG. 3 is a schematic view showing a cross section of the structure of the plasma CVD apparatus 20 according to the second embodiment. With this configuration,
The process gas is introduced into the vacuum container 22 through a gas passage 23 provided in the dielectric window 21 and a large number of gas discharge ports 24 opened from the gas passage 23 into the vacuum container 22. FIG. 4B is a plan view of the dielectric window 21 as viewed from the inside of the vacuum container 22. Gas discharge ports 24, 24 ... Are arranged almost uniformly over the entire surface of the dielectric window 21, and each gas discharge port 24 is shown.
As shown in FIG. 4 (a), is communicated with a gas passage 23 formed in the dielectric window 21. The gas passage 23 is connected to the gas introduction port 25, and the supplied processing gas is introduced from the gas introduction port 25 through the gas passage 23 into each of the gas discharge ports 24 into the vacuum container 22. In this configuration, the processing gas is supplied from the multiple gas discharge ports 24 to the vacuum container 22.
Since it is introduced inside, the density distribution of the processing gas in the plasma generation region is made uniform, so that the plasma density distribution is also made uniform, and the film formation by CVD is also made uniform. Particularly, at a medium pressure of about -10 Torr, a uniform flow of the processing gas with respect to the sample 9 can be created, so that uniform film formation can be performed even on a large-area sample. The processing gas is configured to include a carrier gas for generating plasma and a CVD source gas which is a material for film formation. The carrier gas and the CVD source gas are separately required in a vacuum container. By introducing it into the region, it is possible to improve the film forming quality. This structure will be described below as a third embodiment, a fourth embodiment and a fifth embodiment. The same elements as those in the first and second embodiments are designated by the same reference numerals and the description thereof will be omitted. 5 is a schematic diagram showing the configuration of the plasma CVD apparatus according to the third embodiment, FIG. 6 is a schematic diagram showing the configuration of the plasma CVD apparatus according to the fourth embodiment, and FIG. 7 is a shield box according to the embodiment. FIG. 8 is a perspective view showing the configuration of FIG. 8 and FIG. 8 is a schematic diagram showing the configuration of the plasma CVD apparatus according to the fifth embodiment.

【0013】図5において,第3実施例に係るプラズマ
CVD装置26は,真空容器27内への処理ガスの導入
をキャリアガスとCVD原料ガスとに分離して行うよう
に構成されている。上記キャリアガスはキャリアガス導
入ポート28から真空容器27内に供給され,誘電体窓
2の下部空間に導入される。又,上記CVD原料ガスは
原料ガス導入ポート29から真空容器27内に供給さ
れ,試料9の上部空間に導入される。上記構成により,
キャリアガスはアンテナ3bから誘電体窓2を通して真
空容器27内に印加される電磁波によりプラズマ化さ
れ,このプラズマによりCVD原料ガスがプラズマ化さ
れる。この構成では先の実施例と異なり,キャリアガス
とCVD原料ガスとが混合された処理ガスをプラズマ化
するのではなく,成膜材料となるCVD原料ガスがキャ
リアガスのプラズマにより分解されるので,成膜はCV
D原料ガスの分解生成物によって重点的になされる結
果,不純物の混入が少ない高品質の成膜がなされる。上
記第3実施例構成におけるキャリアガスとCVD原料ガ
スとの真空容器27内における密度分布を均一化して,
成膜の均一化を向上させるために,図6に示すような構
成を採用することができる。図6において,第4実施例
に係るプラズマCVD装置30は,真空容器31内の誘
電体窓2の下部空間にキャリアガス導入リング32,試
料台8の上部空間に原料ガス導入リング33を配設し
て,それぞれキャリアガス導入ポート28,原料ガス導
入ポート29に接続して構成されている。上記キャリア
ガス導入リング32及び原料ガス導入リング33は,円
環状に形成されたパイプの内周面に多数のガス放出口を
均等に開口させて形成されており,それぞれのガスはガ
ス放出口から円環状リングの中心方向に放出される。従
って,各円環状リング内に均一な密度分布で各ガスが導
入される。
In FIG. 5, the plasma CVD apparatus 26 according to the third embodiment is constructed so that the processing gas is introduced into the vacuum chamber 27 by separating it into a carrier gas and a CVD source gas. The carrier gas is supplied from the carrier gas introduction port 28 into the vacuum container 27 and introduced into the space below the dielectric window 2. The CVD source gas is supplied from the source gas introduction port 29 into the vacuum container 27 and introduced into the upper space of the sample 9. With the above configuration,
The carrier gas is turned into plasma by electromagnetic waves applied from the antenna 3b through the dielectric window 2 into the vacuum container 27, and the plasma is used to turn the CVD source gas into plasma. In this configuration, unlike the previous embodiment, the processing gas in which the carrier gas and the CVD raw material gas are mixed is not made into plasma, but the CVD raw material gas that is the film forming material is decomposed by the plasma of the carrier gas. Film formation is CV
As a result of being focused on by the decomposition products of the D source gas, high quality film formation with less contamination of impurities is achieved. By making the density distribution of the carrier gas and the CVD source gas in the vacuum container 27 in the third embodiment uniform,
In order to improve the uniformity of film formation, a structure as shown in FIG. 6 can be adopted. In FIG. 6, a plasma CVD apparatus 30 according to the fourth embodiment has a carrier gas introduction ring 32 in a space below the dielectric window 2 in a vacuum container 31 and a source gas introduction ring 33 in a space above the sample stage 8. Then, they are connected to the carrier gas introduction port 28 and the source gas introduction port 29, respectively. The carrier gas introducing ring 32 and the raw material gas introducing ring 33 are formed by uniformly opening a large number of gas outlets on the inner peripheral surface of a pipe formed in an annular shape. It is emitted toward the center of the annular ring. Therefore, each gas is introduced into each annular ring with a uniform density distribution.

【0014】本構成では,誘電体窓2は真空容器31の
上部外郭に配設された円環状の支持部材34に装着され
ており,この支持部材34の誘電体窓支持位置の厚さを
変えることによって試料台8と誘電体窓2との距離を変
化させることができる。又,誘電体窓2の上方はアンテ
ナ3bを内包するシールドボックス35で覆われてい
る。このシールドボックス35は,アンテナ3bから真
空容器31の外方向に放射される電磁波を遮蔽するもの
で,図7に示すように構成されている。図7において,
シールドボックス35は,誘電体窓2側の下部にアンテ
ナ3bを収容する開口部36を設けて箱状に形成された
アルミニウム容器37の上部をアルミニウムネット38
及びアクリル板39により閉じて,電磁的シールド構造
に形成されている。このシールドボックス35を設ける
ことによって,真空容器31内で進行する成膜の観測の
際に,誘電体窓2の至近位置に近づく人体への電磁波の
影響を排除することができる。成膜の観測は,アンテナ
3bからの電磁波の放射を受けることなく,透明なアク
リル板39,アルミニウムネット38,誘電体窓2を通
して試料台8上の試料9を見ることでなされる。上記第
4実施例の構成では,導入ガスの密度分布の均一化が図
られるが,真空容器内からの排気構造を改良することに
より更なる均一化の向上を実現させることができる。図
8に示す第5実施例構成は,この排気構造の改良がなさ
れたものである。図8に示す第5実施例に係るプラズマ
CVD装置40では,真空容器41に該真空容器41の
中心軸に対して排気コンダクタンスが等しい排気構造を
形成することによって,排気の流れを均一化することが
なされる。他の構成は上記第4実施例構成と同等である
ので,その説明は省略する。
In this structure, the dielectric window 2 is mounted on an annular support member 34 arranged on the outer shell of the vacuum container 31, and the thickness of the support member 34 at the dielectric window support position is changed. As a result, the distance between the sample table 8 and the dielectric window 2 can be changed. Further, the upper part of the dielectric window 2 is covered with a shield box 35 including the antenna 3b. The shield box 35 shields electromagnetic waves emitted from the antenna 3b toward the outside of the vacuum container 31, and is configured as shown in FIG. In FIG.
The shield box 35 is provided with an opening 36 for accommodating the antenna 3b in a lower portion on the side of the dielectric window 2 and an upper portion of an aluminum container 37 formed in a box shape.
Also, it is closed by an acrylic plate 39 to form an electromagnetic shield structure. By providing this shield box 35, it is possible to eliminate the influence of electromagnetic waves on the human body approaching the closest position of the dielectric window 2 when observing the film formation proceeding in the vacuum container 31. The film formation is observed by observing the sample 9 on the sample table 8 through the transparent acrylic plate 39, the aluminum net 38, and the dielectric window 2 without receiving the electromagnetic wave radiation from the antenna 3b. In the configuration of the fourth embodiment described above, the density distribution of the introduced gas can be made uniform, but further improvement in uniformity can be realized by improving the exhaust structure from the vacuum container. The structure of the fifth embodiment shown in FIG. 8 is an improvement of this exhaust structure. In the plasma CVD apparatus 40 according to the fifth embodiment shown in FIG. 8, the exhaust flow is made uniform by forming an exhaust structure in the vacuum container 41 having the same exhaust conductance with respect to the central axis of the vacuum container 41. Is done. The other structure is the same as the structure of the fourth embodiment, and the description thereof is omitted.

【0015】図8において,真空容器41の中心軸43
上に,アンテナ3b,誘電体窓2,キャリアガス導入リ
ング32,原料ガス導入リング33,試料9,試料台4
2がそれぞれの中心軸を一致させると共に,それぞれの
平面方向を一致させて配設されている。排気ポート44
につながる真空容器41内の排気口45は,試料台42
の周囲に真空容器41の中心軸43を中心として均等配
置された複数の排気口45,45…として形成されてい
る。上記実施例では,排気口45を中心軸43に対して
4か所に対称に配置しているが,排気口径,形状,総
数,間隔は装置の状態に応じて変化させることができ
る。又,排気口45は試料台42の周囲に円環状に形成
し,試料台45の支持は別途しかるべき手段によって行
ってもよい。この構成により,試料9に対するCVD処
理ガスの流れが均一化され,プラズマによる分解生成物
の均一な流れにより試料9に対する均一な成膜が実施さ
れる。又,誘電体窓2や真空容器41への分解生成物の
付着が抑制される効果も同時に実現される。この排気構
造は,図8に示す第4実施例への適用だけでなく,他の
構成に適用しても,ガスの流れが試料台42を中心とし
て均等になるので,成膜の均一化が向上する。次に,上
記プラズマCVD装置30により,8インチのシリコン
ウェハーを試料9として,その表面にシリコン酸化膜を
成膜させる動作を実施した成果について以下に説明す
る。図6に示す誘電体窓2として,石英ガラスを直径2
9cm,厚さ2cmの円盤状に形成し,その上面に1/4イ
ンチの銅パイプを最大径20cmで3ターンの渦巻きルー
プに形成したアンテナ3bを配置して,所要周波数の高
周波電力が印加される。真空容器31内へのガス導入
は,直径35cmに形成されたキャリアガス導入リング3
2,原料ガス導入リング33を用いて,それぞれを試料
台8から13cm,1.5cmの位置に配設する。
In FIG. 8, the central axis 43 of the vacuum container 41
Antenna 3b, dielectric window 2, carrier gas introduction ring 32, source gas introduction ring 33, sample 9, sample stage 4
2 are arranged so that their central axes coincide with each other and their plane directions coincide with each other. Exhaust port 44
The exhaust port 45 in the vacuum container 41 connected to the
Are formed as a plurality of exhaust ports 45, 45, ... Evenly arranged around the central axis 43 of the vacuum container 41. In the above embodiment, the exhaust ports 45 are symmetrically arranged at four points with respect to the central axis 43, but the exhaust port diameter, shape, total number, and interval can be changed according to the state of the device. Further, the exhaust port 45 may be formed in an annular shape around the sample table 42, and the sample table 45 may be supported by an appropriate means. With this configuration, the flow of the CVD processing gas with respect to the sample 9 is made uniform, and a uniform film is formed on the sample 9 by the uniform flow of decomposition products due to plasma. In addition, the effect of suppressing the adhesion of the decomposition products to the dielectric window 2 and the vacuum container 41 is also realized at the same time. Even if this exhaust structure is applied not only to the fourth embodiment shown in FIG. 8 but also to other configurations, the gas flow becomes uniform around the sample table 42, so that uniform film formation is achieved. improves. Next, the results of performing the operation of forming a silicon oxide film on the surface of an 8-inch silicon wafer as the sample 9 by the plasma CVD device 30 will be described below. As the dielectric window 2 shown in FIG. 6, quartz glass having a diameter of 2
The antenna 3b is formed in the shape of a disk 9 cm thick and 2 cm thick, and a 1/4 inch copper pipe with a maximum diameter of 20 cm is formed in a spiral loop of 3 turns on the upper surface of the disk, and high frequency power of the required frequency is applied. It The gas is introduced into the vacuum container 31 by a carrier gas introducing ring 3 having a diameter of 35 cm.
2. Using the raw material gas introduction ring 33, each is arranged at a position 13 cm and 1.5 cm from the sample table 8.

【0016】上記構成のもとに,原料ガス導入ポート2
9からAr(アルゴン)バブリングによってTEOS
(珪酸エチル)蒸気を所定温度に保って5〜60scc
mのガス流量,キャリアガス導入ポート28からO
2 (酸素)を0〜200sccmのガス流量でそれぞれ
流量制御してガス導入すると共に,排気ポート11から
排気を行って,真空容器31内の成長圧は0.1〜1.
0Torrに制御する。又,アンテナ3への高周波電力
は200W〜2kW,試料台8の温度は室温〜400℃
に制御する。上記成膜条件によって成膜されたシリコン
酸化膜の屈折率は1.455となり,熱酸化膜と同程度
の値が示された。又,成膜速度は5000Å/minの
高速成膜が実現され,面内成膜分布は5%であった。更
に,シリコン酸化膜の耐HF性(HF水溶液に対するエ
ッチレート)は,従来報告されている平行平板型プラズ
マCVD装置,あるいはECRプラズマCVD装置を用
いた場合のTEOS−シリコン酸化膜に比べて,膜質を
飛躍的に向上させることができた。更に,シリコン酸化
膜の段差被覆性(ステップカバレージ)は,従来報告さ
れている平行平板型プラズマCVD装置による場合とほ
ぼ等しい結果が得られた。尚,上記成膜条件において,
キャリアガスにO2 とArの混合ガス,又はArのみを
使用した場合にも同等の結果が得られた。以上の結果
は,本発明になる装置構成及びプラズマ発生手段によっ
てのみなされるもので,従来,高密度のプラズマ発生手
段を有するプラズマCVD装置に高分子有機材料である
TEOSを原料ガスとした場合には優れた段差被覆性は
得られないとされてきたが,本構成になるプラズマCV
D装置では,優れた結果が得られることが実証された。
以上説明したように本実施例になるプラズマCVD装置
では,透明な誘電体窓を通して試料に施されるCVD成
膜の状態が観測できる特徴がある。この試料9の表面が
観測できる構成を利用して膜厚測定装置により,成膜過
程の膜厚の測定が可能となる。この構成を第6及び第7
実施例として以下に説明する。
Based on the above configuration, the raw material gas introduction port 2
TEOS by Ar (argon) bubbling from 9
(Ethyl silicate) 5-60scc by keeping the vapor at the specified temperature
m gas flow rate, O from carrier gas introduction port 28
2 (oxygen) is introduced at a gas flow rate of 0 to 200 sccm by controlling the flow rate of each gas, and is exhausted from the exhaust port 11, so that the growth pressure in the vacuum container 31 is 0.1 to 1.
Control to 0 Torr. Further, the high frequency power to the antenna 3 is 200 W to 2 kW, and the temperature of the sample stage 8 is room temperature to 400 ° C.
To control. The refractive index of the silicon oxide film formed under the above film forming conditions was 1.455, which was about the same value as the thermal oxide film. In addition, high-speed film formation with a film formation rate of 5000 Å / min was realized, and the in-plane film formation distribution was 5%. Furthermore, the HF resistance of the silicon oxide film (etch rate with respect to the HF aqueous solution) is higher than that of the TEOS-silicon oxide film when the parallel plate type plasma CVD apparatus or the ECR plasma CVD apparatus which has been conventionally reported is used. Was able to improve dramatically. Further, the step coverage of the silicon oxide film is almost equal to that obtained by the conventionally reported parallel plate type plasma CVD apparatus. Under the above film forming conditions,
Similar results were obtained when a mixed gas of O 2 and Ar or only Ar was used as a carrier gas. The above results are confirmed by the apparatus configuration and the plasma generation means according to the present invention. Conventionally, when TEOS, which is a high molecular organic material, is used as a source gas in a plasma CVD apparatus having a high density plasma generation means. Has not been able to obtain excellent step coverage, but the plasma CV with this configuration
It was demonstrated that excellent results were obtained with the D device.
As described above, the plasma CVD apparatus according to the present embodiment is characterized in that the state of CVD film formation on the sample can be observed through the transparent dielectric window. The film thickness measuring apparatus can measure the film thickness in the film forming process by utilizing the configuration in which the surface of the sample 9 can be observed. This configuration is the sixth and seventh
An example will be described below.

【0017】ここに,図9は第6実施例に係るプラズマ
CVD装置の構成を示す模式図,図10は第7実施例に
係るプラズマCVD装置の構成を示す模式図である。図
9において,第6実施例に係るプラズマCVD装置46
は,真空容器47の軸方向に膜厚測定装置12を配設し
て構成される。この膜厚測定装置12は,成膜表面から
の光反射スペクトルにより膜厚を測定するもので,測定
光を透明な誘電体窓2を通して試料9に投射し,その反
射光を捉え,反射光を分光して,分光スペクトルの周期
から計算機18により膜厚を演算する。本実施例で使用
した膜厚測定装置12は,1回の測定と膜厚の算出に要
する時間が約2秒であるため,2秒毎の膜厚と2秒毎の
成膜速度が計測される。上記膜厚測定装置12の測定値
出力により,成膜プロセスの制御を実施することができ
る。この構成を第7実施例として以下に説明する。図1
0において,第7実施例に係るプラズマCVD装置15
は,上記第6実施例による構成に併せて,制御装置17
を設けて構成されている。該制御装置17は,膜厚測定
装置12の測定データから膜厚を演算する計算機18の
出力値により動作して高周波電源7を制御する。膜厚測
定装置12及び計算機18により成膜過程の膜厚を測定
し,成膜厚が所定の膜厚になったとき,計算機18から
の出力信号により制御装置17は動作して,高周波電源
7の出力を停止させるので,アンテナ3から真空容器4
内に印加される高周波電力が停止し成膜が終了する。上
記構成は1種類の成膜の制御であるが,膜厚測定装置1
2により成膜厚が検出できることを利用して,複数種類
の成膜を連続して制御するCVD処理方法が実施でき
る。この方法を第8実施例として以下に説明する。本実
施例による連続成膜方法として,シリコンウェハー上に
NSG(シリコン酸化膜)を成膜した後,PSG膜(リ
ンが添加されたシリコン酸化膜)を形成する場合を例と
して示す。
FIG. 9 is a schematic diagram showing the structure of the plasma CVD apparatus according to the sixth embodiment, and FIG. 10 is a schematic view showing the structure of the plasma CVD apparatus according to the seventh embodiment. In FIG. 9, a plasma CVD apparatus 46 according to the sixth embodiment
Is constructed by disposing the film thickness measuring device 12 in the axial direction of the vacuum container 47. The film thickness measuring device 12 measures the film thickness based on the light reflection spectrum from the film-forming surface. The measuring light is projected onto the sample 9 through the transparent dielectric window 2 and the reflected light is captured to reflect the reflected light. The light is dispersed, and the film thickness is calculated by the computer 18 from the period of the spectrum. Since the film thickness measuring device 12 used in this embodiment takes about 2 seconds for one measurement and film thickness calculation, the film thickness every 2 seconds and the film forming rate every 2 seconds are measured. It The output of the measured value of the film thickness measuring device 12 can control the film forming process. This structure will be described below as a seventh embodiment. Figure 1
0, the plasma CVD apparatus 15 according to the seventh embodiment
In addition to the configuration according to the sixth embodiment, the controller 17
Is provided. The control device 17 operates according to the output value of the calculator 18 which calculates the film thickness from the measurement data of the film thickness measuring device 12, and controls the high frequency power supply 7. The film thickness measuring device 12 and the computer 18 measure the film thickness in the film forming process. When the film thickness reaches a predetermined film thickness, the controller 17 operates according to the output signal from the computer 18, and the high frequency power supply 7 Output from the antenna 3 to the vacuum container 4
The high-frequency power applied inside stops and film formation ends. Although the above-mentioned configuration is for controlling one kind of film formation, the film thickness measuring apparatus 1
By utilizing the fact that the film thickness can be detected by the method 2 described above, it is possible to implement a CVD processing method for continuously controlling a plurality of types of film formation. This method will be described below as an eighth embodiment. As a continuous film forming method according to this embodiment, an example will be shown in which an NSG (silicon oxide film) is formed on a silicon wafer and then a PSG film (silicon oxide film to which phosphorus is added) is formed.

【0018】シリコンウェハーを試料9として真空容器
47内に配置し,真空容器47内にCVD処理ガスとし
て,原料ガス導入ポート29からアルゴンバブリングに
よるTEOS(珪酸エチル)と,キャリアガス導入ポー
ト28からO2 (酸素)とを導入し,試料9の表面にシ
リコン酸化膜を形成させる。この成膜の膜厚が500Å
に成長するまで成膜を続け,次にプラズマを停止させず
に新たにPH3 (ホスフィン)を真空容器47内に添加
導入して,PSG膜を8000Å成膜する。この後,P
SG膜にリフロー(900℃以上の熱処理を施すことに
より堆積膜を流動させ平滑化する公知技術)を施し,平
坦な膜を形成する。上記方法によれば,プラズマの発生
を停止せずに成分及び混合比の異なった処理ガスによ
り,連続した複合膜を成膜するため,上記のようにNS
G−PSGの2種類の膜を成膜するときに,成膜行程が
簡略化でき,又,プラズマのオン・オフの繰り返しが減
少するため,特にプラズマの発生直後の不安定なプラズ
マに処理ガスが曝されることがなく,品質の安定したC
VD膜が得られる。以上説明したプラズマCVD装置に
おいて,プラズマに曝される誘電体窓2には成膜のため
の堆積物が付着して,試料9の透視あるいは膜厚測定装
置12の測定,更には,アンテナ3からの高周波電力の
印加が不均一となる。そこで,随時真空容器4内の清掃
又は洗浄を行うことで誘電体窓2のクリーニングを実施
する。この装置内の清掃が容易にできる構成及び装置内
の洗浄方法を第9実施例及び第10実施例として以下に
説明する。図11は第9実施例に係るプラズマCVD装
置48の構成を示し,真空容器49の上部外郭50が誘
電体窓2及びアンテナ3と共に開閉できるように構成さ
れている。
A silicon wafer is placed as a sample 9 in a vacuum container 47, and TEOS (ethyl silicate) by argon bubbling from a source gas introduction port 29 and O from a carrier gas introduction port 28 are used as a CVD processing gas in the vacuum container 47. 2 (oxygen) is introduced to form a silicon oxide film on the surface of the sample 9. The film thickness of this film is 500Å
The film formation is continued until the film grows up to pH 2, and then PH 3 (phosphine) is newly added and introduced into the vacuum container 47 without stopping the plasma to form a PSG film of 8000 Å. After this, P
The SG film is subjected to reflow (a known technique in which the deposited film is fluidized and smoothed by performing a heat treatment at 900 ° C. or higher) to form a flat film. According to the above method, a continuous composite film is formed by using process gases having different components and mixing ratios without stopping plasma generation.
When two kinds of G-PSG films are formed, the film forming process can be simplified and the number of times plasma is turned on and off is reduced. Of stable quality without being exposed to
A VD film is obtained. In the plasma CVD apparatus described above, deposits for film formation adhere to the dielectric window 2 exposed to plasma, and the sample 9 is seen through or the film thickness measuring apparatus 12 measures, and further the antenna 3 The application of the high frequency power becomes uneven. Therefore, the dielectric window 2 is cleaned by cleaning or cleaning the inside of the vacuum container 4 as needed. A configuration capable of easily cleaning the inside of the device and a cleaning method inside the device will be described below as a ninth embodiment and a tenth embodiment. FIG. 11 shows the structure of a plasma CVD apparatus 48 according to the ninth embodiment, in which an upper outer shell 50 of a vacuum container 49 is constructed so that it can be opened and closed together with a dielectric window 2 and an antenna 3.

【0019】図11において,真空容器49の上部外郭
50には支持部材51が取り付けられ,この支持部材5
1によって誘電体窓2が上部外郭50に装着される。誘
電体窓2には先に説明したシールドボックス35に囲ま
れてアンテナ3が配置されている。本構成では,上記支
持部材51に図示するように冷却水循環路52が設けら
れており,アンテナ3への高周波電力投入に伴う誘電体
窓2の温度上昇の抑制が図られている。上記のように誘
電体窓2及びアンテナ3が搭載された上部外郭50は,
真空容器49の一端を支点とする蝶番53により開閉可
能に真空容器49の本体に取り付けられる。上部外郭5
0を開閉構造とした真空容器49の気密構造を維持させ
るために,真空容器49に気密リング54が設けられ
る。図11に示すように,上部外郭50を開くと,真空
容器49の上部が開放されるので,試料9の出し入れが
容易になるばかりでなく,真空容器49の内壁及び誘電
体窓2の内面側の清掃が容易に実施できる。次いで,真
空容器内に発生させるプラズマにより真空容器内の洗浄
を行う方法を第10実施例として説明する。図6に示し
た第4実施例に係るプラズマCVD装置30により実施
する場合の例である。他の構成においても同様に実施す
ることができる。CVD膜の成膜が終了した時点で,真
空容器31内へキャリアガス導入ポート28からフッ化
ガスであるSF6 とO2 とを導入して,成膜時と同様に
プラズマを発生させ,該プラズマによるエッチングによ
り誘電体窓2及び真空容器31内に付着した堆積物を除
去する。ガス流量はSF6 を30sccm,O2 を30
sccmとし,真空容器31内の圧力を0.1Tor
r,アンテナ3への投入電力を2kWとし,30分間に
わたって洗浄動作を実行させる。この洗浄のためのプラ
ズマ発生により,真空容器31の内壁及び誘電体窓2の
内面に付着したシリコン酸化膜がプラズマのエッチング
作用により除去される。
In FIG. 11, a supporting member 51 is attached to the upper outer shell 50 of the vacuum container 49, and the supporting member 5
1, the dielectric window 2 is attached to the upper shell 50. The antenna 3 is arranged in the dielectric window 2 while being surrounded by the shield box 35 described above. In this configuration, a cooling water circulation path 52 is provided in the support member 51 as shown in the figure, and the temperature rise of the dielectric window 2 due to high frequency power input to the antenna 3 is suppressed. As described above, the upper shell 50 on which the dielectric window 2 and the antenna 3 are mounted is
A hinge 53 having one end of the vacuum container 49 as a fulcrum is openably and closably attached to the main body of the vacuum container 49. Upper shell 5
An airtight ring 54 is provided in the vacuum container 49 in order to maintain the airtight structure of the vacuum container 49 having the opening and closing structure of 0. As shown in FIG. 11, when the upper shell 50 is opened, the upper portion of the vacuum container 49 is opened, so that not only the sample 9 can be easily taken in and out, but also the inner wall of the vacuum container 49 and the inner surface of the dielectric window 2 Can be easily cleaned. Next, a method of cleaning the inside of the vacuum container with plasma generated in the vacuum container will be described as a tenth embodiment. This is an example of a case where the plasma CVD apparatus 30 according to the fourth embodiment shown in FIG. 6 is used. It can be similarly implemented in other configurations. When the formation of the CVD film is completed, SF 6 and O 2 which are fluorinated gases are introduced from the carrier gas introduction port 28 into the vacuum container 31, and plasma is generated in the same manner as during the film formation. The deposit adhered to the dielectric window 2 and the vacuum container 31 is removed by plasma etching. The gas flow rate is 30 sccm for SF 6 and 30 for O 2 .
sccm and the pressure inside the vacuum container 31 is 0.1 Torr
r, the input power to the antenna 3 is set to 2 kW, and the cleaning operation is performed for 30 minutes. By the generation of plasma for this cleaning, the silicon oxide film attached to the inner wall of the vacuum container 31 and the inner surface of the dielectric window 2 is removed by the etching action of plasma.

【0020】[0020]

【発明の効果】第1の発明によれば,誘導結合型のプラ
ズマ(ICP)をプラズマCVD装置として利用するこ
とを可能にすると共に,アンテナと誘電体窓と試料台と
を真空容器の同一軸上に平面方向を一致させて配設する
ことにより,均一な密度分布のプラズマによる均一な成
膜がなされる効果を奏する。(請求項1) 又,誘電体窓が透明体により形成され,誘電体窓と試料
台との平面方向が一致していることにより,成膜の進行
状態が誘電体窓を通して観測することができる。(請求
項2) 更に,アンテナ及び誘電体窓の直径が試料の直径より大
きく形成されるので,大面積の試料に対しても成膜の均
一化がなされる。(請求項3) 第2の発明によれば,誘電体窓にCVD処理ガスのガス
通路と真空容器内へのガス放出口が設けられ,CVD処
理ガスは上記ガス通路とガス放出口を通じて真空容器内
に導入されるので,プラズマ発生領域に均一に処理ガス
の供給がなされる。(請求項4) 本願の第3の発明によれば,上記第1の発明による構成
に併せ,上記誘電体窓が配設された真空容器の外郭が開
閉可能に構成されることにより,真空容器内への試料の
出し入れ,真空容器の内壁及び誘電体窓内面の清掃等が
容易に実施できる。(請求項5) 本願の第4の発明によれば,上記第1の発明の構成に併
せ,膜厚測定装置が配設され,真空容器内で進行する試
料表面の成膜過程の膜厚を随時測定することができる。
従って,試料上の成膜厚の分布状態の測定,あるいは所
定の膜厚になったとき装置の動作を停止させる制御など
を実施することができる。(請求項6)
According to the first aspect of the present invention, it is possible to use inductively coupled plasma (ICP) as a plasma CVD apparatus, and the antenna, the dielectric window, and the sample stage are provided on the same axis of the vacuum container. By arranging them so that the plane directions thereof coincide with each other, there is an effect that a uniform film is formed by plasma having a uniform density distribution. (Claim 1) Further, since the dielectric window is made of a transparent material and the plane directions of the dielectric window and the sample stand are aligned, the progress of film formation can be observed through the dielectric window. . (Claim 2) Furthermore, since the diameter of the antenna and the dielectric window is formed larger than the diameter of the sample, uniform film formation is achieved even for a sample having a large area. (Claim 3) According to the second aspect of the invention, the dielectric window is provided with a gas passage for the CVD processing gas and a gas discharge port into the vacuum container, and the CVD processing gas is supplied through the gas passage and the gas discharge port to the vacuum container. Since it is introduced inside, the processing gas is uniformly supplied to the plasma generation region. (Claim 4) According to the third invention of the present application, in addition to the structure according to the first invention, the outer wall of the vacuum container in which the dielectric window is disposed is configured to be openable and closable, thereby providing a vacuum container. The sample can be easily taken in and out, and the inner wall of the vacuum container and the inner surface of the dielectric window can be easily cleaned. (Claim 5) According to the fourth invention of the present application, in addition to the configuration of the first invention, a film thickness measuring device is provided, and the film thickness in the film forming process of the sample surface which progresses in the vacuum container is It can be measured at any time.
Therefore, it is possible to perform the measurement of the distribution state of the film thickness on the sample, or the control of stopping the operation of the apparatus when the predetermined film thickness is reached. (Claim 6)

【0021】上記第1及び第3,第4の発明において,
CVD処理ガスをキャリアガスとCVD原料ガスとに分
離して供給するキャリアガス導入手段と原料ガス導入手
段とを設けることにより,キャリアガスをアンテナから
の電磁波によりプラズマ化し,そのプラズマによりCV
D原料ガスを分解させることができるので,試料への成
膜はCVD原料ガスの分解生成物によって重点的になさ
れ,成膜品質を向上させることができる。(請求項7) 又,真空容器内からの排気を試料位置を中心とする円周
上から均等に行うことによって,真空容器内のガスの流
れが試料に対して均一になり,均一な成膜がなされると
共に,誘電体窓や真空容器内への分解生成物の付着が抑
制される。(請求項8) 本願の第5の発明によれば,膜厚測定装置により試料上
の成膜厚を測定して,その測定値が所定の膜厚になった
とき,アンテナからの高周波電力の印加を停止させるよ
う制御すると,常に一定の膜厚での成膜が実施できるC
VD処理方法が提供される。(請求項9) 本願の第6の発明によれば,膜厚測定装置により試料上
の成膜厚を測定して,その測定値が所定の膜厚になった
とき,CVD処理ガスの成分及び混合比の一方又は両方
を変更することにより,異なる種類の成膜が引き続き実
施できるCVD処理方法が提供される。(請求項10) 本願の第7の発明によれば,真空容器内にCVD処理ガ
スを導入したCVD処理を行った後,CVD処理ガスに
代えてフッ素ガスを真空容器内に導入してプラズマ化さ
せ,該プラズマにより誘電体窓に付着したCVD膜をエ
ッチング処理により除去する。この洗浄により誘電体窓
の透明状態及び高周波電力の導入状態が刷新される。こ
の洗浄を随時行うことにより,安定したCVD成膜が持
続される。(請求項11)
In the above first, third and fourth inventions,
By providing a carrier gas introduction means and a raw material gas introduction means for separately supplying the CVD processing gas into a carrier gas and a CVD source gas, the carrier gas is turned into plasma by electromagnetic waves from the antenna, and the CV is generated by the plasma.
Since the D source gas can be decomposed, the film formation on the sample is focused on by the decomposition products of the CVD source gas, and the film formation quality can be improved. (Claim 7) Further, by uniformly exhausting the gas from the inside of the vacuum container from the circumference around the sample position, the gas flow in the vacuum container becomes uniform with respect to the sample, and uniform film formation is achieved. In addition, the adhesion of decomposition products to the dielectric window and the vacuum container is suppressed. (Claim 8) According to the fifth invention of the present application, the film thickness on the sample is measured by the film thickness measuring device, and when the measured value reaches a predetermined film thickness, the high frequency power from the antenna is measured. By controlling to stop the application, it is possible to always form a film with a constant film thickness.
A VD processing method is provided. According to the sixth invention of the present application, the film thickness on the sample is measured by the film thickness measuring device, and when the measured value reaches a predetermined film thickness, the components of the CVD processing gas and By changing one or both of the mixing ratios, a CVD processing method is provided in which different types of film formation can be successively performed. (Claim 10) According to the seventh invention of the present application, after performing the CVD process in which the CVD process gas is introduced into the vacuum container, fluorine gas is introduced into the vacuum container in place of the CVD process gas to generate plasma. Then, the CVD film attached to the dielectric window by the plasma is removed by etching. By this cleaning, the transparent state of the dielectric window and the introduction state of high frequency power are renewed. By performing this cleaning as needed, stable CVD film formation is maintained. (Claim 11)

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1実施例に係るプラズマCVD装置の構成
を示す模式図。
FIG. 1 is a schematic diagram showing a configuration of a plasma CVD apparatus according to a first embodiment.

【図2】 実施例に係るアンテナの構成を示す平面図。FIG. 2 is a plan view showing the configuration of the antenna according to the example.

【図3】 第2実施例に係るプラズマCVD装置の構成
を示す模式図。
FIG. 3 is a schematic diagram showing a configuration of a plasma CVD apparatus according to a second embodiment.

【図4】 第2実施例に係る誘電体窓の構成を示す断面
図(a)と平面図(b)。
FIG. 4 is a sectional view (a) and a plan view (b) showing a structure of a dielectric window according to a second embodiment.

【図5】 第3実施例に係るプラズマCVD装置の構成
を示す模式図。
FIG. 5 is a schematic diagram showing a configuration of a plasma CVD apparatus according to a third embodiment.

【図6】 第4実施例に係るプラズマCVD装置の構成
を示す模式図。
FIG. 6 is a schematic diagram showing the configuration of a plasma CVD apparatus according to a fourth embodiment.

【図7】 第4実施例に係るシールドボックスの構成を
示す斜視図。
FIG. 7 is a perspective view showing a configuration of a shield box according to a fourth embodiment.

【図8】 第5実施例に係るプラズマCVD装置の構成
を示す模式図。
FIG. 8 is a schematic diagram showing the configuration of a plasma CVD apparatus according to a fifth embodiment.

【図9】 第6実施例に係るプラズマCVD装置の構成
を示す模式図。
FIG. 9 is a schematic diagram showing the configuration of a plasma CVD apparatus according to a sixth embodiment.

【図10】 第7実施例及び第8実施例に係るプラズマ
CVD装置の構成を示す模式図。
FIG. 10 is a schematic diagram showing a configuration of a plasma CVD apparatus according to a seventh embodiment and an eighth embodiment.

【図11】 第9実施例に係るプラズマCVD装置の構
成を示す模式図。
FIG. 11 is a schematic diagram showing the configuration of a plasma CVD apparatus according to a ninth embodiment.

【図12】 従来例に係る平行平板電極型プラズマCV
D装置の構成を示す模式図。
FIG. 12 is a parallel plate electrode type plasma CV according to a conventional example.
The schematic diagram which shows the structure of D apparatus.

【図13】 従来例に係るECRプラズマCVD装置の
構成を示す模式図。
FIG. 13 is a schematic diagram showing a configuration of an ECR plasma CVD apparatus according to a conventional example.

【符号の説明】[Explanation of symbols]

1,15,20,26,30,40,46,48…プラ
ズマCVD装置2,21…誘電体窓 3a,3b…アンテナ 4,22,27,31,41,47,49…真空容器 6,25…ガス導入ポート 7…高周波電源 8,42…試料台 9…試料 10…プラズマ 12…膜厚測定装置 17…制御装置 18…計算機 23…ガス通路 24…ガス放出口 28…キャリアガス導入ポート(キャリアガス導入手
段) 29…原料ガス導入ポート(原料ガス導入手段) 32…キャリアガス導入リング(キャリアガス導入手
段) 33…原料ガス導入リング(原料ガス導入手段) 43…中心軸 44…排気ポート 45…排気口 50…上部外郭 53…蝶番
1, 15, 20, 26, 30, 40, 46, 48 ... Plasma CVD apparatus 2, 21 ... Dielectric window 3a, 3b ... Antenna 4, 22, 27, 31, 41, 47, 49 ... Vacuum container 6, 25 ... Gas introduction port 7 ... High frequency power source 8, 42 ... Sample stage 9 ... Sample 10 ... Plasma 12 ... Film thickness measuring device 17 ... Control device 18 ... Computer 23 ... Gas passage 24 ... Gas discharge port 28 ... Carrier gas introduction port (carrier) Gas introduction means) 29 ... Raw material gas introduction port (raw material gas introduction means) 32 ... Carrier gas introduction ring (carrier gas introduction means) 33 ... Raw material gas introduction ring (raw material gas introduction means) 43 ... Central axis 44 ... Exhaust port 45 ... Exhaust port 50 ... Upper shell 53 ... Hinges

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 高周波電力が印加された真空容器内に所
要のCVD処理ガスを導入してプラズマ化し,該プラズ
マにより分解された上記CVD処理ガスの分解生成物を
上記真空容器内に配置された試料上に堆積させるプラズ
マCVD装置において, 上記真空容器の外郭上に配設された誘電体窓と, 上記真空容器外の上記誘電体窓の近傍に配設されて真空
容器内に高周波電場を誘起させるアンテナと, 上記試料を上記真空容器内の所定位置に保持する試料台
とを,上記真空容器の同一軸上に,それぞれの平面方向
を一致させて配設したことを特徴とするプラズマCVD
装置。
1. A required CVD processing gas is introduced into a vacuum container to which high-frequency power is applied to generate plasma, and a decomposition product of the CVD processing gas decomposed by the plasma is placed in the vacuum container. In a plasma CVD apparatus for depositing on a sample, a high frequency electric field is induced in the vacuum container by arranging the dielectric window outside the vacuum container and near the dielectric window outside the vacuum container. The plasma CVD, characterized in that the antenna to be operated and the sample stage for holding the sample at a predetermined position in the vacuum container are arranged on the same axis of the vacuum container with their plane directions aligned.
apparatus.
【請求項2】 高周波電力が印加された真空容器内に所
要のCVD処理ガスを導入してプラズマ化し,該プラズ
マにより分解された上記CVD処理ガスの分解生成物を
上記真空容器内に配置された試料上に堆積させるプラズ
マCVD装置において, 上記真空容器の外郭上に配設され,誘電体により上記試
料の直径より大なる直径に形成され,上記CVD処理ガ
スの導入ポートに接続されたガス通路と該ガス通路の処
理ガスを真空容器内に放出する複数のガス放出口とを具
備してなる誘電体窓と, 上記真空容器外の上記誘電体窓の近傍に配設されて真空
容器内に高周波電場を誘起させるアンテナと, 上記試料を上記真空容器内の所定位置に保持する試料台
とを,上記真空容器の同一軸上に,それぞれの平面方向
を一致させて配設したことを特徴とするプラズマCVD
装置。
2. A required CVD processing gas is introduced into a vacuum container to which high-frequency power is applied to form a plasma, and a decomposition product of the CVD processing gas decomposed by the plasma is placed in the vacuum container. In a plasma CVD apparatus for depositing on a sample, a gas passage is provided on the outer surface of the vacuum container, formed with a dielectric to have a diameter larger than the diameter of the sample, and connected to an inlet port of the CVD processing gas. A dielectric window provided with a plurality of gas discharge ports for discharging the processing gas in the gas passage into the vacuum container, and a high-frequency wave inside the vacuum container provided near the dielectric window outside the vacuum container. An antenna for inducing an electric field and a sample table for holding the sample at a predetermined position in the vacuum container are arranged on the same axis of the vacuum container with their plane directions aligned. Plasma CVD
apparatus.
【請求項3】 上記誘電体窓が配設された真空容器の外
郭が開閉可能に形成されてなる請求項1又は2記載のプ
ラズマCVD装置。
3. The plasma CVD apparatus according to claim 1, wherein an outer shell of the vacuum container in which the dielectric window is arranged is formed so as to be openable and closable.
【請求項4】 高周波電力が印加された真空容器内に所
要のCVD処理ガスを導入してプラズマ化し,該プラズ
マにより分解された上記CVD処理ガスの分解生成物を
上記真空容器内に配置された試料上に堆積させるプラズ
マCVD装置において, 上記真空容器の外郭上に配設され,透明な誘電体により
上記試料の直径より大なる直径に形成されてなる誘電体
窓と, 上記真空容器外の上記誘電体窓の近傍に配設されて真空
容器内に高周波電場を誘起させるアンテナと, 上記試料を上記真空容器内の所定位置に保持する試料台
とを,上記真空容器の同一軸上に,それぞれの平面方向
を一致させて配設すると共に, 上記誘電体窓を通して上記試料に検査光を投射し,該試
料表面に生成された堆積膜から反射された反射光を受光
できる位置に配設され,該反射光の分析により上記堆積
膜の膜厚を測定する膜厚測定装置を設けたことを特徴と
するプラズマCVD装置。
4. A desired CVD processing gas is introduced into a vacuum container to which high-frequency power is applied to form a plasma, and a decomposition product of the CVD processing gas decomposed by the plasma is placed in the vacuum container. In a plasma CVD apparatus for depositing on a sample, a dielectric window formed on the outer surface of the vacuum container and having a diameter larger than that of the sample by a transparent dielectric, and the dielectric window outside the vacuum container. An antenna arranged near the dielectric window for inducing a high-frequency electric field in the vacuum container and a sample holder for holding the sample at a predetermined position in the vacuum container are provided on the same axis of the vacuum container, respectively. And the inspection light is projected onto the sample through the dielectric window so that the reflected light reflected from the deposited film generated on the sample surface can be received. Is a plasma CVD apparatus characterized in that a thickness measuring apparatus for measuring the thickness of the deposited film by analysis of the reflected light.
【請求項5】 上記処理ガスを構成するキャリアガスを
上記高周波電場の誘起領域に導入するキャリアガス導入
手段と,上記処理ガスを構成するCVD原料ガスを上記
プラズマに接する上記試料の上方空間に導入する原料ガ
ス導入手段とを具備してなる請求項1〜4のいずれかに
記載のプラズマCVD装置。
5. A carrier gas introducing means for introducing a carrier gas constituting the processing gas into the induction region of the high frequency electric field, and a CVD source gas constituting the processing gas is introduced into an upper space of the sample in contact with the plasma. The plasma CVD apparatus according to any one of claims 1 to 4, further comprising:
【請求項6】 上記真空容器内の排気が,上記試料位置
を中心とした円周上に設けられた複数の排気口からなさ
れるよう構成された請求項1〜5のいずれかに記載のプ
ラズマCVD装置。
6. The plasma according to claim 1, wherein the vacuum chamber is evacuated by a plurality of exhaust ports provided on a circumference centered on the sample position. CVD equipment.
【請求項7】 上記誘電体窓が透明体により構成されて
なる請求項1〜6のいずれかに記載のプラズマCVD装
置。
7. The plasma CVD apparatus according to claim 1, wherein the dielectric window is made of a transparent material.
【請求項8】 上記誘電体窓の直径及び上記アンテナの
直径が上記試料の直径より大きく形成されてなる請求項
1〜7のいずれかに記載のプラズマCVD装置。
8. The plasma CVD apparatus according to claim 1, wherein the diameter of the dielectric window and the diameter of the antenna are larger than the diameter of the sample.
【請求項9】 真空容器の外郭上に配設され,透明な誘
電体により上記真空容器内に配置される試料の直径より
大なる直径に形成されてなる誘電体窓と,上記真空容器
外の上記誘電体窓の近傍に配設されて真空容器内に高周
波電場を誘起させるアンテナと,上記試料を上記真空容
器内の所定位置に保持する試料台とを,上記真空容器の
同一軸上に,それぞれの平面方向を一致させて配設する
と共に,上記誘電体窓を通して上記試料に検査光を投射
し,該試料表面に生成された堆積膜から反射された反射
光を受光できる位置に配設され,該反射光の分析により
上記堆積膜の膜厚を測定する膜厚測定装置を具備して構
成され,上記真空容器内に導入された上記CVD処理ガ
スを上記アンテナにより真空容器内に誘起された高周波
電場によりプラズマ化し,該プラズマにより分解された
分解生成物を上記試料上に堆積させるプラズマCVD装
置を用いたプラズマCVD処理方法において, 上記堆積プロセス中の試料表面の堆積膜厚を上記膜厚測
定装置により測定し,該測定値が所望の膜厚になったと
き上記アンテナへの高周波電力の供給を停止させること
を特徴とするプラズマCVD処理方法。
9. A dielectric window disposed on the outer surface of the vacuum container, the dielectric window being formed of a transparent dielectric material to have a diameter larger than the diameter of a sample placed in the vacuum container, and the outside of the vacuum container. An antenna arranged near the dielectric window for inducing a high frequency electric field in the vacuum container and a sample stand for holding the sample at a predetermined position in the vacuum container are provided on the same axis of the vacuum container, They are arranged so that their respective plane directions coincide with each other, and are arranged at positions where projection light is projected onto the sample through the dielectric window and reflected light reflected from the deposited film generated on the surface of the sample can be received. , A film thickness measuring device for measuring the film thickness of the deposited film by analysis of the reflected light is provided, and the CVD processing gas introduced into the vacuum container is induced in the vacuum container by the antenna. Plasma by high frequency electric field In the plasma CVD processing method using a plasma CVD apparatus that converts the decomposition products decomposed by the plasma onto the sample, the deposited film thickness on the sample surface during the deposition process is measured by the film thickness measuring apparatus. A plasma CVD processing method, characterized in that the supply of high-frequency power to the antenna is stopped when the measured value reaches a desired film thickness.
【請求項10】 真空容器の外郭上に配設され,透明な
誘電体により上記真空容器内に配置される試料の直径よ
り大なる直径に形成されてなる誘電体窓と,上記真空容
器外の上記誘電体窓の近傍に配設されて真空容器内に高
周波電場を誘起させるアンテナと,上記試料を上記真空
容器内の所定位置に保持する試料台とを,上記真空容器
の同一軸上に,それぞれの平面方向を一致させて配設す
ると共に,上記誘電体窓を通して上記試料に検査光を投
射し,該試料表面に生成された堆積膜から反射された反
射光を受光できる位置に配設され,該反射光の分析によ
り上記堆積膜の膜厚を測定する膜厚測定装置を具備して
構成され,上記真空容器内に導入された上記CVD処理
ガスを上記アンテナにより真空容器内に誘起された高周
波電場によりプラズマ化し,該プラズマにより分解され
た分解生成物を上記試料上に堆積させるプラズマCVD
装置を用いたプラズマCVD処理方法において, 上記膜厚測定装置により試料表面の堆積膜厚を測定し,
該測定値が所望の膜厚になったとき上記CVD処理ガス
を構成するCVD原料ガス,反応ガス,希釈ガスの成分
及び混合比の一方又は両方を変更して,異種類のCVD
膜堆積を連続して行うことを特徴とするプラズマCVD
処理方法。
10. A dielectric window disposed on the outer surface of the vacuum container, the dielectric window being formed of a transparent dielectric material to have a diameter larger than the diameter of a sample placed in the vacuum container, and the outside of the vacuum container. An antenna arranged near the dielectric window for inducing a high frequency electric field in the vacuum container and a sample stand for holding the sample at a predetermined position in the vacuum container are provided on the same axis of the vacuum container, They are arranged so that their respective plane directions coincide with each other, and are arranged at positions where projection light is projected onto the sample through the dielectric window and reflected light reflected from the deposited film generated on the surface of the sample can be received. , A film thickness measuring device for measuring the film thickness of the deposited film by analysis of the reflected light is provided, and the CVD processing gas introduced into the vacuum container is induced in the vacuum container by the antenna. Plas by high frequency electric field Plasma CVD in which a decomposition product that is decomposed by the plasma is deposited on the sample.
In the plasma CVD processing method using the apparatus, the deposited film thickness on the sample surface is measured by the above film thickness measuring apparatus,
When the measured value reaches a desired film thickness, one or both of the components and mixing ratios of the CVD raw material gas, the reaction gas, and the diluting gas that compose the above-mentioned CVD processing gas are changed, and different types of CVD
Plasma CVD characterized by continuous film deposition
Processing method.
【請求項11】 真空容器に設けられた誘電体窓の近傍
に配設されたアンテナにより該真空容器内に高周波電場
を誘起させ,真空容器内に導入されたCVD処理ガスを
プラズマ化し,該プラズマにより分解された分解生成物
を上記真空容器内に配置された試料上に堆積させるプラ
ズマCVD装置の洗浄方法において, 上記真空容器内に所要のCVD処理ガスを導入してプラ
ズマCVD処理を行った後,上記真空容器内にCVD処
理ガスに代えてフッ化ガスを導入し,該フッ化ガスによ
るプラズマにより上記CVD装置内の洗浄を行うことを
特徴とするプラズマCVD装置の洗浄方法。
11. A high-frequency electric field is induced in the vacuum container by an antenna arranged in the vicinity of a dielectric window provided in the vacuum container, and the CVD processing gas introduced into the vacuum container is turned into plasma to generate the plasma. In a cleaning method of a plasma CVD apparatus for depositing a decomposition product decomposed by a method on a sample arranged in the vacuum container, after performing a plasma CVD process by introducing a required CVD processing gas into the vacuum container. A cleaning method for a plasma CVD apparatus, characterized in that a fluoride gas is introduced into the vacuum container instead of the CVD processing gas, and the inside of the CVD apparatus is cleaned by plasma generated by the fluoride gas.
JP6060681A 1993-06-30 1994-03-30 Plasma cvd device and cvd processing method employing the device and cleaning method for inside of the device Pending JPH0773997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6060681A JPH0773997A (en) 1993-06-30 1994-03-30 Plasma cvd device and cvd processing method employing the device and cleaning method for inside of the device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16144293 1993-06-30
JP5-161442 1993-06-30
JP6060681A JPH0773997A (en) 1993-06-30 1994-03-30 Plasma cvd device and cvd processing method employing the device and cleaning method for inside of the device

Publications (1)

Publication Number Publication Date
JPH0773997A true JPH0773997A (en) 1995-03-17

Family

ID=26401740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6060681A Pending JPH0773997A (en) 1993-06-30 1994-03-30 Plasma cvd device and cvd processing method employing the device and cleaning method for inside of the device

Country Status (1)

Country Link
JP (1) JPH0773997A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251089A (en) * 1998-02-27 1999-09-17 Shibaura Mechatronics Corp Plasma processing device
JP2000511701A (en) * 1996-06-05 2000-09-05 ラム リサーチ コーポレイション Plasma processing chamber temperature control method and apparatus
JP2000514136A (en) * 1996-06-28 2000-10-24 ラム リサーチ コーポレイション High density plasma chemical vapor deposition apparatus and method
JP2000306851A (en) * 1999-04-23 2000-11-02 Tokyo Electron Ltd Single-wafer treatment apparatus
JP2000353814A (en) * 1999-06-10 2000-12-19 Fuji Electric Co Ltd Manufacture of thin-film solar cell and film-forming state monitoring device of thin film
JP2001015493A (en) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd Plasma treatment device and method
JP2001517373A (en) * 1997-03-31 2001-10-02 ラム リサーチ コーポレイション Method and apparatus for controlling deposition of deposits on an inner surface of a plasma processing chamber
US6380612B1 (en) 1996-03-18 2002-04-30 Hyundai Display Technology, Inc. Thin film formed by inductively coupled plasma
WO2002056357A1 (en) * 2001-01-09 2002-07-18 Tokyo Electron Limited Sheet-fed treating device
JP2003524285A (en) * 2000-02-24 2003-08-12 シーシーアール ゲゼルシャフト ミト ベシュレンクテル ハフツング ベーシッヒツングステクノロジー RF plasma source
JP2004311510A (en) * 2003-04-02 2004-11-04 Ulvac Japan Ltd Device and method for microwave plasma treatment
JP2005026233A (en) * 1996-10-02 2005-01-27 Tokyo Electron Ltd Plasma processing device
JP2008243917A (en) * 2007-03-26 2008-10-09 Ulvac Japan Ltd Plasma treatment apparatus
JP2009164613A (en) * 1997-02-19 2009-07-23 Applied Materials Inc Method and device for forming hdp-cvdpsg film
JP2009173492A (en) * 2008-01-25 2009-08-06 Mitsubishi Materials Corp Apparatus for producing polycrystalline silicon
US7632419B1 (en) 1997-10-06 2009-12-15 Applied Materials, Inc. Apparatus and method for monitoring processing of a substrate
JP2011086748A (en) * 2009-10-15 2011-04-28 Panasonic Corp Plasma processing apparatus
JP2011233924A (en) * 2000-03-31 2011-11-17 Lam Research Corporation Device and method for actively controlling rf peak-to-peak voltage of inductively coupled plasma etching apparatus
JP2012509831A (en) * 2008-11-25 2012-04-26 カーネギー インスチチューション オブ ワシントン Production of single crystal CVD diamond at rapid growth rate.
JP2014505349A (en) * 2010-10-06 2014-02-27 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing apparatus having a semicircular antenna
JP2018157120A (en) * 2017-03-21 2018-10-04 株式会社日立ハイテクノロジーズ Plasma processing apparatus and plasma processing method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380612B1 (en) 1996-03-18 2002-04-30 Hyundai Display Technology, Inc. Thin film formed by inductively coupled plasma
KR100469134B1 (en) * 1996-03-18 2005-09-02 비오이 하이디스 테크놀로지 주식회사 Inductive plasma chemical vapor deposition method and amorphous silicon thin film transistor produced using the same
KR100476039B1 (en) * 1996-03-18 2005-07-11 비오이 하이디스 테크놀로지 주식회사 Inductively Coupled Plasma CVD Equipment
JP2000511701A (en) * 1996-06-05 2000-09-05 ラム リサーチ コーポレイション Plasma processing chamber temperature control method and apparatus
JP2000514136A (en) * 1996-06-28 2000-10-24 ラム リサーチ コーポレイション High density plasma chemical vapor deposition apparatus and method
JP2005026233A (en) * 1996-10-02 2005-01-27 Tokyo Electron Ltd Plasma processing device
JP2009164613A (en) * 1997-02-19 2009-07-23 Applied Materials Inc Method and device for forming hdp-cvdpsg film
JP2001517373A (en) * 1997-03-31 2001-10-02 ラム リサーチ コーポレイション Method and apparatus for controlling deposition of deposits on an inner surface of a plasma processing chamber
US7632419B1 (en) 1997-10-06 2009-12-15 Applied Materials, Inc. Apparatus and method for monitoring processing of a substrate
JPH11251089A (en) * 1998-02-27 1999-09-17 Shibaura Mechatronics Corp Plasma processing device
JP2000306851A (en) * 1999-04-23 2000-11-02 Tokyo Electron Ltd Single-wafer treatment apparatus
JP2000353814A (en) * 1999-06-10 2000-12-19 Fuji Electric Co Ltd Manufacture of thin-film solar cell and film-forming state monitoring device of thin film
JP2001015493A (en) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd Plasma treatment device and method
JP2003524285A (en) * 2000-02-24 2003-08-12 シーシーアール ゲゼルシャフト ミト ベシュレンクテル ハフツング ベーシッヒツングステクノロジー RF plasma source
JP5000061B2 (en) * 2000-02-24 2012-08-15 シーシーアール ゲゼルシャフト ミト ベシュレンクテル ハフツング ベーシッヒツングステクノロジー RF plasma source
JP2011233924A (en) * 2000-03-31 2011-11-17 Lam Research Corporation Device and method for actively controlling rf peak-to-peak voltage of inductively coupled plasma etching apparatus
US7232502B2 (en) 2001-01-09 2007-06-19 Tokyo Electron Limited Sheet-fed treating device
KR100837885B1 (en) * 2001-01-09 2008-06-13 도쿄엘렉트론가부시키가이샤 Sheet-fed treating device
WO2002056357A1 (en) * 2001-01-09 2002-07-18 Tokyo Electron Limited Sheet-fed treating device
JP2004311510A (en) * 2003-04-02 2004-11-04 Ulvac Japan Ltd Device and method for microwave plasma treatment
JP2008243917A (en) * 2007-03-26 2008-10-09 Ulvac Japan Ltd Plasma treatment apparatus
JP2009173492A (en) * 2008-01-25 2009-08-06 Mitsubishi Materials Corp Apparatus for producing polycrystalline silicon
JP2012509831A (en) * 2008-11-25 2012-04-26 カーネギー インスチチューション オブ ワシントン Production of single crystal CVD diamond at rapid growth rate.
JP2011086748A (en) * 2009-10-15 2011-04-28 Panasonic Corp Plasma processing apparatus
JP2014505349A (en) * 2010-10-06 2014-02-27 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing apparatus having a semicircular antenna
JP2018157120A (en) * 2017-03-21 2018-10-04 株式会社日立ハイテクノロジーズ Plasma processing apparatus and plasma processing method

Similar Documents

Publication Publication Date Title
JPH0773997A (en) Plasma cvd device and cvd processing method employing the device and cleaning method for inside of the device
JP3555966B2 (en) Multi-zone plasma processing method
US4935661A (en) Pulsed plasma apparatus and process
US5824158A (en) Chemical vapor deposition using inductively coupled plasma and system therefor
US6039834A (en) Apparatus and methods for upgraded substrate processing system with microwave plasma source
US5015330A (en) Film forming method and film forming device
KR0120920B1 (en) Depositing method and apparatus of silicon oxide film
JP2925535B2 (en) Microwave supplier having annular waveguide, plasma processing apparatus and processing method having the same
US20070254113A1 (en) Plasma processing apparatus having an evacuating arrangement to evacuate gas from gas-introducing part of a process chamber
US20100098882A1 (en) Plasma source for chamber cleaning and process
JPH0684812A (en) Multielectrode plasma treatment device
WO1999049705A1 (en) Plasma processing apparatus
WO2003096400A1 (en) Plasma processing equipment and plasma processing method
US20090152243A1 (en) Plasma processing apparatus and method thereof
JPH07169590A (en) Electron density measuring method and device thereof and electron density control device and plasma processing device
JPH07335626A (en) Plasma processing device and method
WO2021033612A1 (en) Cleaning method and microwave plasma treatment device
JPS63155728A (en) Plasma processor
JPH06196410A (en) Plasma treatment device
KR102498944B1 (en) Process for performing self-limited etching of organic materials
JPH03191074A (en) Microwave plasma treating device
WO2022201351A1 (en) Plasma treatment device and plasma treatment method
US6388624B1 (en) Parallel-planar plasma processing apparatus
JPH01283359A (en) Plasma treatment apparatus
TW201104744A (en) Semiconductor manufacturing device