JPH076570Y2 - Optical insulator contamination amount measuring device - Google Patents
Optical insulator contamination amount measuring deviceInfo
- Publication number
- JPH076570Y2 JPH076570Y2 JP1761790U JP1761790U JPH076570Y2 JP H076570 Y2 JPH076570 Y2 JP H076570Y2 JP 1761790 U JP1761790 U JP 1761790U JP 1761790 U JP1761790 U JP 1761790U JP H076570 Y2 JPH076570 Y2 JP H076570Y2
- Authority
- JP
- Japan
- Prior art keywords
- insulator
- optical
- optical waveguide
- light
- measuring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Insulators (AREA)
Description
【考案の詳細な説明】 [産業上の利用分野] 本考案は、碍子表面全体に付着した塩分等の汚損物質量
を一系統の光導波路で測定する光式碍子汚損量測定装置
に関するものである。[Detailed Description of the Invention] [Industrial field of application] The present invention relates to an optical insulator fouling amount measuring device for measuring the amount of fouling substances such as salt adhering to the entire surface of an insulator with a single optical waveguide. .
[従来の技術] 従来、実運用中の碍子に付着する汚損物質の量をリアル
タイムで測定したり、あるいは碍子表面の汚損物質の分
布を測定する装置としては、例えば特開平1−147344号
公報に示されているものがあった。[Prior Art] Conventionally, as an apparatus for measuring in real time the amount of fouling substances adhering to an insulator during actual operation or for measuring the distribution of fouling substances on the surface of an insulator, for example, Japanese Patent Laid-Open No. 1-147344 is known. There was one shown.
これは、塩分が付着すると光損失が生じる光導波路を碍
子表面に露出して装着し、光導波路の一端から入射され
て他端から出射する透過光を受光し、透過光強度の変化
から碍子表面に付着する塩分量を求めるようにしたもの
である。This is because the optical waveguide that causes optical loss when salt adheres is exposed and mounted on the insulator surface, receives the transmitted light that enters from one end of the optical waveguide and exits from the other end, and changes the intensity of the transmitted light to the insulator surface. The amount of salt adhering to is determined.
光が通り抜ける透過型であるため、光導波路の入射端と
出射端とに、光源からの光を導き、また透過した光を受
光器に導くための伝送用光ファイバをそれぞれ別個に接
続する必要がある。そのために、少なくとも光コネクタ
が2個必要となる。汚損物質の分布を測定するために
は、碍子の中心に対し同心円状に複数の光導波路を装着
したり、あるいは放射状に複数装着したりするが、これ
らの場合には、さらにコネクタの数が増加する。Since it is a transmissive type that allows light to pass through, it is necessary to separately connect a transmission optical fiber for guiding the light from the light source to the entrance end and the exit end of the optical waveguide and for guiding the transmitted light to the light receiver. is there. Therefore, at least two optical connectors are required. In order to measure the distribution of pollutants, multiple optical waveguides are mounted concentrically with the center of the insulator, or multiple radial waveguides are mounted, but in these cases, the number of connectors is further increased. To do.
[考案が解決しようとする課題] 上述したように、従来の透過光強度変化型の測定装置で
は、透過型であるゆえに碍子に装着した光導波路の両端
に伝送用光ファイバをそれぞれつながなければならな
い。このため光導波路と伝送用光ファイバとの接続部
(光コネクタ)の数が多くなり、また、塩分量の分布を
求めるためには光ファイバの本数も多くなるので、長期
信頼性や経済性に欠けるという欠点があった。[Problems to be Solved by the Invention] As described above, in the conventional transmitted light intensity change type measuring device, since it is a transmission type, it is necessary to connect the transmission optical fibers to both ends of the optical waveguide attached to the insulator. . Therefore, the number of connecting parts (optical connectors) between the optical waveguide and the transmission optical fiber is increased, and the number of optical fibers is also increased in order to obtain the distribution of salt content. Therefore, long-term reliability and economical efficiency are improved. It had the drawback of being chipped.
本考案の目的は、前記した従来技術の欠点を解消し、簡
易かつ信頼性の高い碍子汚損量測定装置を提供すること
にある。An object of the present invention is to solve the above-mentioned drawbacks of the prior art and provide a simple and highly reliable insulator fouling amount measuring device.
[課題を解決するための手段] 本考案の光式碍子汚損量測定装置は、碍子表面に碍子中
心より碍子表面全体に広がる螺旋状の溝を形成し、この
溝に、表面に汚損物質が付着すると光損失が生じる一本
の光導波路を碍子表面に露出するように装着し、前記光
導波路の一端に伝送用光ファイバを接続すると共に、他
端に反射手段を設け、前記伝送用光ファイバを介して前
記光導波路の一端から光を入射し他端から反射する反射
光を受光して、反射光強度の変化から前記碍子表面に付
着する汚損物質量を求めるように構成したものである。[Means for Solving the Problems] The optical insulator fouling amount measuring device of the present invention forms a spiral groove extending from the center of the insulator to the entire insulator surface on the surface of the insulator, and the fouling substance adheres to the surface of the groove. Then, one optical waveguide that causes optical loss is mounted so as to be exposed on the insulator surface, and a transmission optical fiber is connected to one end of the optical waveguide, and a reflection means is provided at the other end, and the transmission optical fiber is Light is incident from one end of the optical waveguide and reflected light is reflected from the other end of the optical waveguide, and the amount of the fouling substance adhering to the insulator surface is obtained from the change in the reflected light intensity.
ここで、碍子表面は碍子を構成するある一面でも、ある
いは複数の構成面でも、さらには碍子の全構成面であっ
てもよい。また、光導波路の反射手段としては他端に反
射コーティングを施すことが好ましい。Here, the insulator surface may be one surface forming the insulator, a plurality of constituent surfaces, or even the entire constituent surface of the insulator. Moreover, it is preferable to apply a reflective coating to the other end of the reflecting means of the optical waveguide.
[作用] 光導波路の一端から光が入射すると、入射光は光導波路
を通って反射手段を設けた他端に至り、ここで反射して
再び同じ一端に戻ってくる。この過程で、碍子表面すな
わち光導波路の表面に光導波路よりも屈折率の高い汚損
物質、例えば塩分が付着していると、その付着量に応じ
た光の漏洩がおこり、一端から射出される反射光強度が
変化する。従って、この反射光強度の変化から碍子に付
着する汚損物質量が求まる。[Operation] When light is incident from one end of the optical waveguide, the incident light passes through the optical waveguide to reach the other end where the reflection means is provided, is reflected here, and returns to the same one end again. In this process, if a pollutant with a refractive index higher than that of the optical waveguide, such as salt, is attached to the insulator surface, that is, the surface of the optical waveguide, light leaks according to the amount of the attachment, and the light emitted from one end is reflected. The light intensity changes. Therefore, the amount of the fouling substance attached to the insulator can be obtained from the change in the reflected light intensity.
この場合において、特に光導波路は透過型ではなく反射
型なので、入出射端が一つになり、しかも光導波路を螺
旋状にして碍子表面全体に広がるようにしたので、碍子
表面に付着した全汚損物質を求める場合でも光導波路は
一本でよく、伝送用光ファイバとの接続も一箇所で済
む。In this case, in particular, the optical waveguide is a reflection type rather than a transmission type, so there is only one entrance / exit end, and since the optical waveguide is made spiral and spreads over the entire insulator surface, total contamination attached to the insulator surface is eliminated. Even when a substance is required, only one optical waveguide is required, and connection with a transmission optical fiber is sufficient at one place.
[実施例] 以下、本考案の実施例を第1図〜第2図を用いて説明す
る。[Embodiment] An embodiment of the present invention will be described below with reference to FIGS.
第2図には本考案に使用されるボールソケット型の碍子
1を示し、第2図(a)はその正面図、第2図(b)は
その要部拡大断面図である。FIG. 2 shows a ball-socket type insulator 1 used in the present invention. FIG. 2 (a) is a front view thereof, and FIG. 2 (b) is an enlarged sectional view of its main part.
碍子1のかさ部2の下面3には溝4が設けられ、その溝
4に光導波路5がその表面をかさ部2の下面3に露出し
て埋設されている。光導波路5はシリコン樹脂等の介在
物6とともに碍子1のかさ部2の下面3全体を覆ってい
る。光導波路5は塩分などの汚損物質よりも小さ屈折率
値をもった材料で形成され、表面に塩分などの汚損物質
が付着すると光損失が生じるようになっている。介在物
6の屈折率値は光導波路5の屈折率値よりも小さいもの
とする。A groove 4 is provided in the lower surface 3 of the cap portion 2 of the insulator 1, and an optical waveguide 5 is embedded in the groove 4 with its surface exposed on the lower surface 3 of the cap portion 2. The optical waveguide 5 covers the entire lower surface 3 of the cap portion 2 of the insulator 1 together with the inclusion 6 such as silicon resin. The optical waveguide 5 is formed of a material having a smaller refractive index value than that of a pollutant such as salt, and light loss occurs when the pollutant such as salt adheres to the surface. The refractive index value of the inclusion 6 is smaller than that of the optical waveguide 5.
第1図には、光導波路5を含めた装置全体の構成例を示
す。かさ部2の下面3に設ける上記溝4は下面3の中心
より径方向外方に広がるように螺旋状に設けられる。光
導波路5は連続した一本の導波路で構成され、この螺旋
状の溝4に埋め込まれて、渦巻き状になっている。上記
光導波路5の一端7は比較的長い伝送用光ファイバ9が
接続部としての光コネクタ10により接続され、他端8は
伝送されてきた光を反射するために反射コーティングが
施されている。FIG. 1 shows a configuration example of the entire device including the optical waveguide 5. The groove 4 provided on the lower surface 3 of the umbrella portion 2 is provided in a spiral shape so as to spread radially outward from the center of the lower surface 3. The optical waveguide 5 is composed of one continuous waveguide, and is embedded in the spiral groove 4 to have a spiral shape. A relatively long transmission optical fiber 9 is connected to one end 7 of the optical waveguide 5 by an optical connector 10 as a connecting portion, and the other end 8 is provided with a reflective coating for reflecting the transmitted light.
碍子1においては、このように全て光学的部材で構成さ
れることとなり、実運用碍子に適用する上で電気的な影
響を一切無視することができる。Since the insulator 1 is made up of optical members in this way, it is possible to neglect any electrical influence when it is applied to a practically used insulator.
碍子1より延設された伝送用光ファイバ9は鉄塔部(図
示せず)等に設置された光分岐結合器11に導かれてここ
で分岐し、光ファイバ12,12を介してその一方は光源13
に、他方は受光器14にそれぞれ接続されている。これら
光ファイバ12,12,光源13,受光器14も光分岐結合器11と
同様に鉄塔部等の収容箱にまとめて設置できるので、光
ファイバ12の長さは伝送用光ファイバ9に比してはるか
に短くすることができる。The transmission optical fiber 9 extending from the insulator 1 is guided to an optical branching / coupling device 11 installed in a tower (not shown) or the like and branched there, and one of the optical fibers 12 and 12 is connected to the optical branching coupler 11. Light source 13
And the other is connected to the light receiver 14, respectively. Since the optical fibers 12, 12, the light source 13, and the light receiver 14 can be collectively installed in a housing box such as a steel tower like the optical branching / coupling device 11, the length of the optical fiber 12 is shorter than that of the transmission optical fiber 9. Can be much shorter.
以下、上記実施例の構成の動作について説明する。The operation of the configuration of the above embodiment will be described below.
光源13から出射した光は光ファイバ12,光分岐結合器11,
伝送用光ファイバ9,光コネクタ10を通過し、碍子1中の
光導波路5の一端7から入射し、光導波路5の他端8で
反射されて再び一端7に戻って来る。この反射光は光分
岐結合器11を通過し、受光器14で受光される。この時、
光導波路5に汚損物質がついてない時の受光器14の受光
レベルを基準にとる。光導波路5に塩分が付着すると、
塩分の屈折率は光導波路5の屈折率よりも大きいため、
光は光導波路5から漏れ受光器14の受光レベルは基準値
よりも下がる。このようにして、碍子1への塩分付着量
に応じて反射光強度、即ち受光レベルは変化するため、
碍子1の汚損物質量が測定できる。The light emitted from the light source 13 is an optical fiber 12, an optical splitter / combiner 11,
It passes through the transmission optical fiber 9 and the optical connector 10, enters from one end 7 of the optical waveguide 5 in the insulator 1, is reflected by the other end 8 of the optical waveguide 5, and returns to the one end 7 again. This reflected light passes through the optical branching / coupling device 11 and is received by the light receiver 14. At this time,
The light reception level of the light receiver 14 when the optical waveguide 5 is free of contaminants is used as a reference. When salt adheres to the optical waveguide 5,
Since the refractive index of salt is larger than that of the optical waveguide 5,
Light leaks from the optical waveguide 5, and the light receiving level of the light receiver 14 falls below the reference value. In this way, the reflected light intensity, that is, the received light level, changes according to the amount of salt attached to the insulator 1,
The fouling substance amount of the insulator 1 can be measured.
第1図のように光導波路5を渦巻き状にして碍子1のか
さ部2の下面3全体を覆うことにより、かさ部3の下面
全体に付着した塩分量の測定が可能である。As shown in FIG. 1, by making the optical waveguide 5 spiral and covering the entire lower surface 3 of the bulge portion 2 of the insulator 1, the amount of salt adhering to the entire lower surface of the bulge portion 3 can be measured.
上記したように本実施例によれば、一系統の光導波路5
のみで、実運用中の碍子かさ部下面全体に付着した汚損
物質のうち、特に塩分量を直接的に、かつ定量的に求め
ることができる。さらに、光コネクタ10は一個で,伝送
用光ファイバ9も一本で済むため、測定装置を小型化で
きる、従来のように複数の光コネクタ及び伝送用光ファ
イバを必要とするものに比較して、その経済的意義は極
めて大きい。As described above, according to this embodiment, the optical waveguide 5 of one system is used.
Only by doing so, it is possible to directly and quantitatively determine the salt content, in particular, of the fouling substances attached to the entire lower surface of the insulator bulkhead during actual operation. Further, since only one optical connector 10 and one transmission optical fiber 9 are required, it is possible to reduce the size of the measuring device, as compared with the conventional one that requires a plurality of optical connectors and transmission optical fibers. , Its economic significance is extremely large.
なお、本実施例では、碍子1のかさ部2の下面3を測定
対象としているため、光導波路5を下面3に付着した
が、碍子1のかさ部3の上面の塩分付着量を測定する場
合には、光導波路5の設置位置をかさ部2の上面とす
る。さらに、碍子1のかさ部上面、かさ部下面3双方の
塩分付着量を測定する場合には、望ましくは一本の連続
した光導波路5をかさ部上面、かさ部下面3に付着する
ことにより、1本の光導波路5で碍子1全体の塩分量を
知ることが可能となる。勿論、かさ部以外の頭部周表面
にも延長した光導波路5を埋め込み、碍子1全体をスッ
ポリ覆うようにしてもよい。In this embodiment, since the lower surface 3 of the bulge portion 2 of the insulator 1 is the measurement target, the optical waveguide 5 is attached to the lower surface 3. However, when measuring the amount of salt attached to the upper surface of the bulge portion 3 of the insulator 1. In the above, the installation position of the optical waveguide 5 is the upper surface of the cap portion 2. Furthermore, when measuring the amount of salt attached to both the upper surface of the bulge portion and the lower surface 3 of the bulge portion of the insulator 1, it is preferable to attach one continuous optical waveguide 5 to the upper surface of the bulge portion and the lower surface of the bulge portion 3, It is possible to know the salt content of the entire insulator 1 with one optical waveguide 5. Of course, the extended optical waveguide 5 may be embedded in the peripheral surface of the head portion other than the bulky portion so as to cover the entire insulator 1 with a snap.
なお、上記実施例では、碍子としてボールソケット型を
例示したが、本考案はこれに限定されるものではなく、
例えばクレビス型等の碍子にも適用できる。In addition, in the above embodiment, the ball socket type is illustrated as the insulator, but the present invention is not limited to this.
For example, it can be applied to an insulator such as a clevis type.
[考案の効果] 以上詳述したように本考案によれば、汚損物質検出セン
サとして透過型ではなく、反射型の光導波路を用いたの
で、光導波路と伝送用光ファイバとの接続部が少なく、
伝送用光ファイバも一本で済むため、装置を簡易化で
き、経年劣化しにくく高い信頼性を得ることができる。[Effects of the Invention] As described in detail above, according to the present invention, since the fouling substance detection sensor uses the reflection type optical waveguide instead of the transmission type, the connecting portion between the optical waveguide and the transmission optical fiber is reduced. ,
Since only one transmission optical fiber is required, the device can be simplified, and it is possible to obtain high reliability without deterioration over time.
第1図は本考案による光式碍子汚損量測定装置の実施例
を示す構成図、第2図(a)は碍子正面図、第2図
(b)はその要部拡大断面図である。 1は碍子、2はかさ部、3はかさ部の下面、4は溝、5
は光導波路、6は介在物、7は光導波路の一端、8は光
導波路の他端、9は伝送用光ファイバ、10は光コネク
タ、11は光分岐結合器、12は光ファイバ、13は光源、14
は受光器である。FIG. 1 is a block diagram showing an embodiment of an optical insulator fouling amount measuring device according to the present invention, FIG. 2 (a) is a front view of the insulator, and FIG. 2 (b) is an enlarged sectional view of its essential part. 1 is an insulator, 2 is a bulkhead, 3 is a lower surface of the bulkhead, 4 is a groove, 5
Is an optical waveguide, 6 is an inclusion, 7 is one end of the optical waveguide, 8 is the other end of the optical waveguide, 9 is an optical fiber for transmission, 10 is an optical connector, 11 is an optical branch coupler, 12 is an optical fiber, and 13 is Light source, 14
Is a light receiver.
Claims (1)
形成し、 この溝に、汚損物質が付着すると光損失が生ずる一本の
光導波路を前記碍子表面に露出するように装着し、 前記光導波路の一端に伝送用光ファイバを接続すると共
に、他端に光を反射する反射手段を設け、 前記伝送用光ファイバを介して前記光導波路の一端から
光を入射し他端から反射する反射光を受光して、反射光
強度の変化から前記碍子表面に付着する汚損物質量を求
めるように構成したことを特徴とする光式碍子汚損量測
定装置。1. A spiral groove extending over the entire surface of an insulator is formed, and one optical waveguide which causes optical loss when a contaminant is attached to the groove is mounted so as to be exposed on the surface of the insulator. A transmission optical fiber is connected to one end of the optical waveguide, and a reflecting means for reflecting light is provided at the other end, and light is incident from one end of the optical waveguide and reflected from the other end through the transmission optical fiber. An optical insulator fouling amount measuring device configured to receive reflected light and obtain the amount of fouling substances adhering to the surface of the insulator from a change in reflected light intensity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1761790U JPH076570Y2 (en) | 1990-02-23 | 1990-02-23 | Optical insulator contamination amount measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1761790U JPH076570Y2 (en) | 1990-02-23 | 1990-02-23 | Optical insulator contamination amount measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03109225U JPH03109225U (en) | 1991-11-11 |
JPH076570Y2 true JPH076570Y2 (en) | 1995-02-15 |
Family
ID=31520803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1761790U Expired - Lifetime JPH076570Y2 (en) | 1990-02-23 | 1990-02-23 | Optical insulator contamination amount measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH076570Y2 (en) |
-
1990
- 1990-02-23 JP JP1761790U patent/JPH076570Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03109225U (en) | 1991-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1267790A (en) | Fiber optic doppler anemometer | |
US4380394A (en) | Fiber optic interferometer | |
CA2104834A1 (en) | Optical Fiber Splice Verification System | |
JPH076570Y2 (en) | Optical insulator contamination amount measuring device | |
KR890002996B1 (en) | Axial aligning device for optical fiber | |
US5781285A (en) | Method and apparatus for monitoring presence and direction of light in optical fibers | |
JP2005010025A (en) | Optical fiber sensor, and measuring method using the same | |
EP0447991B1 (en) | Apparatus for measuring the distribution of the size of diffraction-scattering type particles | |
JPS6082803A (en) | Optical measuring device for measuring size of section of thread and use thereof | |
US4981333A (en) | Universal launch cable assembly and integrated idealized light source system using same | |
CA2322374A1 (en) | Measuring process for individual fibres of cables | |
EP1065489B1 (en) | Apparatus for optical time domain reflectometry on multi-mode optical fibers, a light source section thereof, and a process for producing the light source section | |
CN208721249U (en) | A kind of optic probe | |
JPH076569Y2 (en) | Insulator pollution amount measuring device | |
JP2001174655A (en) | Element for bi-directional communication optical module and its inspecting method | |
RU2091762C1 (en) | Reflectometer | |
JP2011150287A (en) | Optical transmitting and receiving device using one pof, and optical transmitting and receiving system | |
WO2003096089A3 (en) | Method and apparatus for monitoring optical signals in a planar lightwave circuit via out-of-plane coupling | |
SU1538046A1 (en) | Method of measuring roughness of surface | |
ES2108204T3 (en) | PROCEDURE WITH DEVICE FOR THE DETECTION OF REFLECTIONS. | |
Ide et al. | Fiber misalignment measurement method by the reflected light from fibers | |
JPH0230654B2 (en) | ||
WO2005024372A1 (en) | Test system and test method for fibre-optic cables | |
GB2265711A (en) | Optical fibre sensors | |
JPH0258575B2 (en) |