JPH0758490A - Electromagnetic shielding material - Google Patents

Electromagnetic shielding material

Info

Publication number
JPH0758490A
JPH0758490A JP19962893A JP19962893A JPH0758490A JP H0758490 A JPH0758490 A JP H0758490A JP 19962893 A JP19962893 A JP 19962893A JP 19962893 A JP19962893 A JP 19962893A JP H0758490 A JPH0758490 A JP H0758490A
Authority
JP
Japan
Prior art keywords
polyurethane rubber
electromagnetic wave
ultrafine particles
base material
wave shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19962893A
Other languages
Japanese (ja)
Inventor
Koji Kitagawa
弘二 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Industries Co Ltd
Original Assignee
Kitagawa Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Industries Co Ltd filed Critical Kitagawa Industries Co Ltd
Priority to JP19962893A priority Critical patent/JPH0758490A/en
Publication of JPH0758490A publication Critical patent/JPH0758490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To provide electromagnetic shielding material which can improve electromagnetic shielding property without deteriorating original physical properties of resin base material. CONSTITUTION:A sheet 1 for electromagnetic shielding is formed by unifomly mixing and dispersing ferrite ultrafine particles 5 in polyurethane rubber 3 being resin base material. The polyurethane rubber 3 is manufactured through processes such as well-known urethane reation and crosslinking reaction. The ferrite ultrafine particles 5 have a grain diameter of about 0.1-1mum and 20-60wt.% of the particles are mixed and dispersed in the polyurethane rubber 3. The ferrite ultrafine particles 5 are manufactured by, e.g. a spray drying method (a method wherein metal salt solution is sprayed and dried). The ferrite ultrafine paticles 5 are mixed in the polyurethane rubber 3, in an arbitrary manufacturing process before the polyurethane rubber 3 is turned into a sheet as the final form.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば電子機器の収納
容器などに使用される電磁波シールド材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave shield material used for, for example, a container for electronic equipment.

【0002】[0002]

【従来の技術】従来より、外部からの電磁波を吸収又は
反射する電磁波シールド材として、合成樹脂製の基材中
に、例えばカーボンブラック,金属,フェライトといっ
た導電材料からなる粉末や繊維(導電フィラー)を混入
・分散させたものが知られており、例えば各種電子機器
の収納容器などに利用されている。この従来の電磁波シ
ールド材は、カーボンブラックなどの導電フィラーの混
入により、合成樹脂の電気抵抗率を減少させることで電
磁波シールド性を与えたものである。
2. Description of the Related Art Conventionally, as an electromagnetic wave shielding material that absorbs or reflects an electromagnetic wave from the outside, powder or fiber (conductive filler) made of a conductive material such as carbon black, metal or ferrite in a synthetic resin substrate. It is known to mix and disperse, and is used, for example, as a container for various electronic devices. This conventional electromagnetic wave shielding material is provided with an electromagnetic wave shielding property by mixing a conductive filler such as carbon black to reduce the electric resistivity of the synthetic resin.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の電磁波シールド材においては、例えばカーボンブラ
ックなどの導電フィラーの混入量の増加させて電磁波シ
ールド効果を向上させようとすると、樹脂基材の物性が
劣化するという問題が生じる。即ち、導電フィラーの混
入量の増加によって、例えば曲げ強度や引張強度といっ
た機械的強度が低下したり、あるいは樹脂基材がゴム
(エラストマー)である場合は弾性(即ち引張や圧縮に
対する復元性)などが低下するという問題が生じる。
However, in the above-mentioned conventional electromagnetic wave shielding material, when an attempt is made to improve the electromagnetic wave shielding effect by increasing the mixing amount of the conductive filler such as carbon black, the physical properties of the resin base material are reduced. The problem of deterioration arises. That is, due to an increase in the amount of conductive filler mixed, mechanical strength such as bending strength and tensile strength decreases, or elasticity (that is, resilience to tension and compression) when the resin base material is rubber (elastomer). Occurs.

【0004】本発明は、上記課題を解決するためになさ
れ、樹脂基材の本来の物性を劣化させることなく電磁波
シールド性の向上を図ることのできる電磁波シールド材
を提供することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an electromagnetic wave shielding material capable of improving the electromagnetic wave shielding property without deteriorating the original physical properties of the resin base material.

【0005】[0005]

【課題を解決するための手段及び作用】前記目的を達成
するための本発明は、樹脂基材中に電磁波シールド効果
を有する超微粒子を分散させたことを特徴とする電磁波
シールド材を要旨とする。
Means for Solving the Problems The present invention for achieving the above-mentioned object is summarized as an electromagnetic wave shielding material characterized in that ultrafine particles having an electromagnetic wave shielding effect are dispersed in a resin base material. .

【0006】ここで、上記樹脂基材の種類には特に限定
はなく、例えば、炭化水素系樹脂(ポリエチレン,ポリ
プロピレン,ポリスチレンなど),含ハロゲン系樹脂
(ポリ塩化ビニル、ポリ塩化ビニリデンなど),アクリ
ル系樹脂,酢酸ビニル系樹脂,ポリエステル系樹脂,ポ
リアミド系樹脂,ポリエーテル系樹脂,フェノール系樹
脂,アミノ系樹脂,ウレタン系樹脂,エポシキ系樹脂,
シリコン系樹脂等の公知の合成樹脂が挙げられる。ま
た、樹脂基材として天然樹脂を用いることもできる。
尚、これらの樹脂基材は、必要に応じて所望の色に着色
したり、可塑剤や劣化防止剤、光安定剤などの添加剤を
加えても差しつかえない。
The type of the resin base material is not particularly limited, and examples thereof include hydrocarbon resins (polyethylene, polypropylene, polystyrene, etc.), halogen-containing resins (polyvinyl chloride, polyvinylidene chloride, etc.), acryl. -Based resin, vinyl acetate-based resin, polyester-based resin, polyamide-based resin, polyether-based resin, phenol-based resin, amino-based resin, urethane-based resin, epoxy-based resin,
Known synthetic resins such as silicone resins can be used. Further, a natural resin can be used as the resin base material.
It should be noted that these resin base materials may be colored in a desired color as necessary, or additives such as a plasticizer, a deterioration inhibitor, and a light stabilizer may be added.

【0007】上記超微粒子とは、一般的には粒径が約1
μm以下のものを言い、粒径が非常に小さいために、バ
ルクや大きな粒子にはない特異な性質を持つものである
(例えば、機能材料、1993年6月号、Vol.1
3、No.6参照)。尚、本発明では粒径が1μm以下
のものが用いられるが、より好ましくは粒径0.1μm
以下のものが用いられる。
The above-mentioned ultrafine particles generally have a particle size of about 1
The particle size is less than or equal to μm and has a unique property not found in bulk or large particles because the particle size is very small (for example, functional material, June 1993 issue, Vol. 1).
3, No. 6). In the present invention, particles having a particle size of 1 μm or less are used, more preferably the particle size is 0.1 μm.
The following are used:

【0008】上記超微粒子の材質は、電磁波シールド効
果を有するものであれば特に限定はなく、例えば、A
l,Fe,Co,Ni,Cuなどの金属や、フェライ
ト、カーボンブラック、あるいは遠赤外線セラミックス
などが挙げられる。また、アモルファス金属よりなる超
微粒子を用いれば、一層優れた電磁波シールド効果を発
揮するので好ましい。更に、材質の異なる超微粒子を組
み合わせて混入させてもよく、例えばカーボンブラック
とフェライト、あるいはアモルファス金属とフェライト
というように組み合わせて混入してもよい。
The material of the ultrafine particles is not particularly limited as long as it has an electromagnetic wave shielding effect.
Examples thereof include metals such as 1, Fe, Co, Ni and Cu, ferrite, carbon black, far infrared ceramics and the like. In addition, it is preferable to use ultrafine particles made of an amorphous metal, because a more excellent electromagnetic wave shielding effect is exhibited. Furthermore, ultrafine particles of different materials may be mixed and mixed, for example, carbon black and ferrite, or amorphous metal and ferrite may be mixed and mixed.

【0009】上記超微粒子は、公知の製造方法によって
得ることのできるものであり、気相中で物理的に生成さ
せる製法や、液相や気相での化学反応による製法などが
利用される。ここで、物理的な製法としては、例えば、
不活性ガス中で金属を蒸発・冷却するガス中蒸発法、ス
パッタ現象を利用するスパッタリング法、蒸発した金属
原子を溶剤とともに基板上に共蒸着させる金属蒸気合成
法、オイル上に金属蒸着させる流動油上真空蒸発法など
が挙げられる。また、液相での化学反応による製法とし
ては、界面活性剤を利用したコロイド法、金属アルコキ
シドの加水分解を利用するアルコキシド法、共沈法、均
一沈澱法などが挙げられる。また、気相での化学反応に
よる製法としては、例えば有機金属化合物(金属カルボ
ニル化合物など)の熱分解法、金属塩化物を反応ガス気
流中で還元酸化または窒化する方法、酸化物あるいは含
水化物(例えばα−FeOOH)を水素中で還元する方
法、金属塩溶液などを噴霧して乾燥させる溶媒蒸発法な
どが挙げられる。
The ultrafine particles can be obtained by a known production method, and a production method in which they are physically produced in a gas phase, a production method by a chemical reaction in a liquid phase or a gas phase, and the like are used. Here, as a physical manufacturing method, for example,
In-gas evaporation method that evaporates and cools metal in an inert gas, sputtering method that utilizes sputtering phenomenon, metal vapor synthesis method that co-evaporates evaporated metal atoms on a substrate with a solvent, fluid oil that evaporates metal on oil Examples include upper vacuum evaporation method. Examples of the production method by a liquid phase chemical reaction include a colloid method using a surfactant, an alkoxide method utilizing hydrolysis of a metal alkoxide, a coprecipitation method, and a uniform precipitation method. Further, as a production method by a chemical reaction in a gas phase, for example, a thermal decomposition method of an organometallic compound (such as a metal carbonyl compound), a method of reducing or oxidizing a metal chloride in a reaction gas stream, an oxide or a hydrate ( For example, a method of reducing (α-FeOOH) in hydrogen, a solvent evaporation method of spraying and drying a metal salt solution, etc. can be mentioned.

【0010】本発明の電磁波シールド材は、上述のよう
な超微粒子を樹脂基材に混入したものであり、その用途
に応じて、樹脂基材を公知の成形法によって所望の形状
に成形して使用することができる。ここで、超微粒子の
樹脂基材に対する混入量は、あまり多すぎては樹脂基材
の特性が損なわれ、逆に少なすぎては十分なシールド効
果が発揮されないので、所望の用途に応じて適宜増減す
ればよい。尚、成形法としては、例えば圧縮成形、トラ
ンスファー成形、射出成形、キャスト成形、押出成形、
カレンダー成形、ブロー成形などが挙げられる。
The electromagnetic wave shielding material of the present invention is obtained by mixing the above-mentioned ultrafine particles into a resin base material, and molding the resin base material into a desired shape by a known molding method according to the application. Can be used. Here, the amount of the ultrafine particles mixed into the resin base material is too large, the characteristics of the resin base material are impaired, and conversely, if the amount is too small, a sufficient shielding effect cannot be exerted. You can increase or decrease. As the molding method, for example, compression molding, transfer molding, injection molding, cast molding, extrusion molding,
Examples include calendar molding and blow molding.

【0011】そして、このように製造された電磁波シー
ルド材は、粒径がきわめて小さい超微粒子を混入させて
いるため、樹脂基材の本来の物性が損なわれることがな
い。つまり、例えば引張強度,圧縮強度,曲げ強度とい
った機械的強度が低下したり、あるいは樹脂基材がゴム
である場合は弾性が低下することがない。
Since the electromagnetic wave shielding material produced in this manner is mixed with ultrafine particles having an extremely small particle diameter, the original physical properties of the resin base material are not impaired. That is, mechanical strength such as tensile strength, compressive strength, and bending strength does not decrease, or elasticity does not decrease when the resin base material is rubber.

【0012】尚、上述のような電磁波シールド材は、例
えば各種電子機器の収納容器(筺体)、電磁波シールド
用のシートやガスケットなどとして好適に使用すること
ができる。また、樹脂基材としてアクリル系樹脂などの
透明な樹脂を用いれば、窓材として使用することもでき
る。
The electromagnetic wave shielding material as described above can be suitably used, for example, as a storage container (housing) for various electronic devices, a sheet or a gasket for electromagnetic wave shielding. If a transparent resin such as an acrylic resin is used as the resin base material, it can be used as a window material.

【0013】[0013]

【実施例】次に、以上説明した本発明の電磁波シールド
材の好適な実施例を図面に基づいて説明する。まず、第
1実施例について説明する。図1は、第1実施例の電磁
波シールド用シート1である。このシート1は、樹脂基
材であるポリウレタンゴム3の中に、フェライト超微粒
子5を均一に混入・分散させたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the electromagnetic wave shielding material of the present invention described above will be described with reference to the drawings. First, the first embodiment will be described. FIG. 1 shows an electromagnetic wave shield sheet 1 of the first embodiment. This sheet 1 is obtained by uniformly mixing and dispersing ferrite ultrafine particles 5 in polyurethane rubber 3 which is a resin base material.

【0014】ここで、ポリウレタンゴム3は、周知のウ
レタン化反応、架橋反応などの工程を経て製造されるも
のである。また、フェライト超微粒子5は、粒径約0.
1〜1μm程度のものであり、ポリウレタンゴム3の中
に、重量が20〜60重量%の割合で混入・分散され
る。このフェライト超微粒子5は、例えば噴霧乾燥法
(溶液化した金属塩を噴霧化して乾燥する方法)等で製
造される。尚、このようなフェライト超微粒子5のポリ
ウレタンゴム3に対する混入は、ポリウレタンゴム5を
最終形状であるシート状とする以前の任意の製造工程で
行われる。
Here, the polyurethane rubber 3 is manufactured through known steps such as urethanization reaction and crosslinking reaction. Further, the ferrite ultrafine particles 5 have a particle size of about 0.
It is about 1 to 1 μm and is mixed / dispersed in the polyurethane rubber 3 at a weight ratio of 20 to 60% by weight. The ultrafine ferrite particles 5 are manufactured by, for example, a spray drying method (a method of atomizing a solution of a metal salt in a solution and drying the metal salt). The mixing of the ferrite ultrafine particles 5 with the polyurethane rubber 3 is performed in any manufacturing process before the polyurethane rubber 5 is formed into a sheet shape which is the final shape.

【0015】そして、このような実施例のシート1によ
れば、粒径がきわめて小さいフェライト超微粒子5を分
散させているため、良好な電磁波シールド特性を発揮す
るとともに、樹脂基材であるポリウレタンゴム3の本来
の弾性(即ち引張や圧縮に対する復元性)などが大きく
低下することが無いという効果がある。
According to the sheet 1 of such an embodiment, since the ultrafine ferrite particles 5 having an extremely small particle size are dispersed, good electromagnetic wave shielding properties are exhibited and, at the same time, the polyurethane rubber which is a resin base material is exhibited. There is an effect that the original elasticity of 3 (that is, the resilience to tension and compression) does not decrease significantly.

【0016】次に、第2実施例について説明する。図2
は、第2実施例の電子部品の収納筐体11を示す斜視図
である。収納筐体11は、ケース本体13と、このケー
ス本体13に開閉可能に取り付けれられる蓋体15とを
備えている。このケース本体13及び蓋体15は、AB
S樹脂17(アクリロニトリル−ブタジエン−スチレン
共重合体)の中に、20〜60重量%の割合で第1実施
例と同様なフェライト超微粒子19を混入・分散させ
て、所定の形状に成形したものである。
Next, a second embodiment will be described. Figure 2
FIG. 8 is a perspective view showing a housing 11 for electronic components according to a second embodiment. The housing 11 includes a case main body 13 and a lid 15 attached to the case main body 13 so as to be openable and closable. The case body 13 and the lid 15 are AB
S-resin 17 (acrylonitrile-butadiene-styrene copolymer) in which ferrite ultrafine particles 19 similar to those in the first embodiment are mixed and dispersed at a ratio of 20 to 60% by weight, and molded into a predetermined shape. Is.

【0017】ここで、ケース本体13は、上側に開口す
る直方体形状であり、側面部分には、収納される電子部
品の信号線(図示せず)を外部に取り出す防水コネクタ
21が設けられている。また、ケース本体13の縁部1
3a(即ちケース本体13と蓋部15が合わさる部分)
には、略ロの字形の電磁波シールドガスケット19が導
電性接着剤によって接着されている。この電磁波シール
ド用ガスケット19は、蓋体15を閉じた場合に、ケー
ス本体13と蓋体15との間の電気的導通をとるもので
あり、上述の第1実施例の電磁波シールド用シート1を
ロの字形に成形したものを用いている。
Here, the case body 13 has a rectangular parallelepiped shape having an opening on the upper side, and a side face portion thereof is provided with a waterproof connector 21 for taking out signal lines (not shown) of electronic components to be housed to the outside. . In addition, the edge portion 1 of the case body 13
3a (that is, a portion where the case body 13 and the lid portion 15 are combined)
A substantially square-shaped electromagnetic wave shield gasket 19 is adhered to the base plate by a conductive adhesive. This electromagnetic wave shielding gasket 19 establishes electrical conduction between the case body 13 and the lid body 15 when the lid body 15 is closed, and the electromagnetic wave shielding sheet 1 of the first embodiment described above is used. It is shaped like a square bracket.

【0018】一方、蓋体15は、ケース本体13の蝶番
部23に回動可能(つまり開閉自在)に取り付けられて
いる。また、蓋体15の側部15aには、蓋体15を閉
じた場合に、電磁波シールド用ガスケット19を挟んで
ケース本体13と蓋体15とを締め付けることができる
ように蓋体締付部15bが設けられている。
On the other hand, the lid 15 is attached to the hinge portion 23 of the case body 13 so as to be rotatable (that is, openable and closable). Further, the lid body fastening portion 15b is provided on the side portion 15a of the lid body 15 so that when the lid body 15 is closed, the case body 13 and the lid body 15 can be fastened by sandwiching the electromagnetic wave shielding gasket 19. Is provided.

【0019】そして、以上詳述した第2実施例の収納筐
体11によれば、ケース本体13及び蓋体15が、粒径
のきわめて小さいフェライト超微粒子19を混入・分散
させたABS樹脂17の成形体よりなるので、良好な電
磁波シールド特性が得られるとともに、ABS樹脂17
の圧縮強度や曲げ強度といった機械的強度が劣化するこ
とがなく、内部に収納される電子部品を十分に保護する
ことができるという効果がある。
According to the storage housing 11 of the second embodiment described in detail above, the case body 13 and the lid body 15 are made of the ABS resin 17 in which the ultrafine ferrite particles 19 having an extremely small particle size are mixed and dispersed. Since it is formed of a molded product, good electromagnetic wave shielding properties can be obtained and the ABS resin 17
There is an effect that the mechanical strength such as the compressive strength and the bending strength does not deteriorate and the electronic components housed inside can be sufficiently protected.

【0020】以上本発明の実施例について説明したが、
本発明はこのような実施例に何等限定されるものではな
く、本発明の要旨を逸脱しない範囲内において種々なる
態様で実施し得ることは勿論である。例えば、上記ポリ
ウレタンゴム1aやABS樹脂17中に分散させる超微
粒子の材質は、上記フェライトに限定されず、Fe,C
oなどの金属や、カーボンブラックなどであってもよ
い。
The embodiment of the present invention has been described above.
It is needless to say that the present invention is not limited to such embodiments and can be implemented in various modes without departing from the scope of the present invention. For example, the material of the ultrafine particles to be dispersed in the polyurethane rubber 1a or the ABS resin 17 is not limited to the ferrite, but Fe, C
It may be a metal such as o or carbon black.

【0021】また、樹脂基材の種類についても上記実施
例に限定されず、用途に応じて様々なものを用いること
ができる。例えば、建物などの窓材として使用する場合
は、アクリル系樹脂などの透明性を有する樹脂を用いる
ことができる。
Further, the kind of the resin base material is not limited to the above embodiment, and various kinds can be used according to the application. For example, when used as a window material for a building or the like, a transparent resin such as an acrylic resin can be used.

【0022】[0022]

【発明の効果】以上詳述したように、本発明の電磁波シ
ールド材は、粒径のきわめて小さい超微粒子を混入させ
ているので、樹脂基材の本来の物性を低下させることな
く電磁波シールド性の向上を図ることのできるという顕
著な効果を発揮する。
As described in detail above, since the electromagnetic wave shielding material of the present invention is mixed with ultrafine particles having an extremely small particle size, the electromagnetic wave shielding property of the resin substrate is not deteriorated. It has a remarkable effect that it can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1実施例の電磁波シールド用シートの斜視
図である。
FIG. 1 is a perspective view of an electromagnetic wave shielding sheet according to a first embodiment.

【図2】 第2実施例の電子部品の収納筐体の斜視図で
ある。
FIG. 2 is a perspective view of a housing for electronic components according to a second embodiment.

【符号の説明】[Explanation of symbols]

1・・・電磁波シールド用シート、3・・・ポリウレタ
ンゴム、5,19・・・フェライト超微粒子、11・・
・電子部品の収納筐体、13・・・ケース本体、15・
・・蓋体、17・・・ABS樹脂
1 ... Electromagnetic wave shielding sheet, 3 ... Polyurethane rubber, 5, 19 ... Ultra fine ferrite particles, 11 ...
・ Housing for electronic parts, 13 ・ ・ ・ Case body, 15 ・
..Lids, 17 ... ABS resin

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 樹脂基材中に電磁波シールド効果を有す
る超微粒子を分散させたことを特徴とする電磁波シール
ド材。
1. An electromagnetic wave shielding material comprising ultrafine particles having an electromagnetic wave shielding effect dispersed in a resin base material.
JP19962893A 1993-08-11 1993-08-11 Electromagnetic shielding material Pending JPH0758490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19962893A JPH0758490A (en) 1993-08-11 1993-08-11 Electromagnetic shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19962893A JPH0758490A (en) 1993-08-11 1993-08-11 Electromagnetic shielding material

Publications (1)

Publication Number Publication Date
JPH0758490A true JPH0758490A (en) 1995-03-03

Family

ID=16411018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19962893A Pending JPH0758490A (en) 1993-08-11 1993-08-11 Electromagnetic shielding material

Country Status (1)

Country Link
JP (1) JPH0758490A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851435A1 (en) * 1996-12-25 1998-07-01 Taniyama Co., Ltd. Electromagnetic wave shield material composition and electromagnetic wave shield product including such material composition
EP0887834A3 (en) * 1997-06-24 1999-03-24 Bridgestone Corporation Electromagnetic wave shielding and light transmitting plate
US6090473A (en) * 1997-06-24 2000-07-18 Bridgestone Corporation Electromagnetic-wave shielding and light transmitting plate
JP2002280208A (en) * 2001-03-22 2002-09-27 Mitsubishi Cable Ind Ltd Wave absorber
KR100417124B1 (en) * 2001-04-09 2004-02-05 주식회사 팬택앤큐리텔 method for manufacture case of handyphone
WO2006028770A1 (en) * 2004-09-03 2006-03-16 Eastman Chemical Company Polyester polymer and copolymer compositions containing metallic nickel particles
US7300967B2 (en) 2004-11-12 2007-11-27 Eastman Chemical Company Polyester polymer and copolymer compositions containing metallic titanium particles
US8987408B2 (en) 2005-06-16 2015-03-24 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
WO2021092714A1 (en) * 2019-11-11 2021-05-20 常德鑫睿新材料有限公司 Novel electromagnetic shielding composite material and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851435A1 (en) * 1996-12-25 1998-07-01 Taniyama Co., Ltd. Electromagnetic wave shield material composition and electromagnetic wave shield product including such material composition
US5989720A (en) * 1996-12-25 1999-11-23 Taniyama & Co., Ltd. Electromagnetic wave shield material composition and electromagnetic wave shield product including such material composition
EP0887834A3 (en) * 1997-06-24 1999-03-24 Bridgestone Corporation Electromagnetic wave shielding and light transmitting plate
US6090473A (en) * 1997-06-24 2000-07-18 Bridgestone Corporation Electromagnetic-wave shielding and light transmitting plate
JP2002280208A (en) * 2001-03-22 2002-09-27 Mitsubishi Cable Ind Ltd Wave absorber
KR100417124B1 (en) * 2001-04-09 2004-02-05 주식회사 팬택앤큐리텔 method for manufacture case of handyphone
WO2006028770A1 (en) * 2004-09-03 2006-03-16 Eastman Chemical Company Polyester polymer and copolymer compositions containing metallic nickel particles
JP2008512507A (en) * 2004-09-03 2008-04-24 イーストマン ケミカル カンパニー Polyester polymer and copolymer compositions containing metallic nickel particles
US7300967B2 (en) 2004-11-12 2007-11-27 Eastman Chemical Company Polyester polymer and copolymer compositions containing metallic titanium particles
US8987408B2 (en) 2005-06-16 2015-03-24 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
WO2021092714A1 (en) * 2019-11-11 2021-05-20 常德鑫睿新材料有限公司 Novel electromagnetic shielding composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH0758490A (en) Electromagnetic shielding material
Jafarian et al. New insights on microwave absorption characteristics of magnetodielectric powders: effect of matrix chemical nature and loading percentage
US7589284B2 (en) Composite polymeric material for EMI shielding
JPS59158016A (en) Electromagnetically shielding material
TW541758B (en) Absorber of electromagnetic wave
EP1154000A4 (en) Coating material for forming transparent and conductive film
GB2222913A (en) Electromagnetic-shielding gasket or sealing member
JPH11354972A (en) Radio wave absorber
JPS59152936A (en) Hybrid resin composition having excellent electromagnetic shielding property and rigidity
TW201518342A (en) Insulator-coated powder for magnetic member
JP5119873B2 (en) Noise suppression body and noise suppression film
KR19990062561A (en) ITO fine powder and preparation method thereof
WO2019235561A1 (en) Electromagnetic shielding material and signal processing unit provided with same
JP4790892B2 (en) Radio wave absorber
US6850182B2 (en) Electromagnetic wave absorber
US20060039096A1 (en) Cover for protecting electrical product from dust
JPH11354973A (en) Electromagnetic wave absorber
JPS6111248A (en) Conductive plastic
JPH0245359B2 (en)
Kumar et al. PANI/Zn‐Cu ferrite polymer composites as free‐standing high dielectric materials
JP4163278B2 (en) Method for producing flake copper powder for conductive paint
JP2004140335A (en) Electromagnetic wave absorbing material
Kadkhodayan et al. Design and manufacture of efficient microwave protector nanocomposite based on La1. 8Sr0. 2NiO4, Mx+ yFe9x− y+ 3O15x+ 4 (0⩽ x, y⩽ 1) and electric conductive materials fillers
JP2009049263A (en) Noise suppression film and method for manufacturing same
JP3499189B2 (en) Magnetite particles