JPH0757682B2 - Method for producing self-hardening rice husk charcoal granules - Google Patents

Method for producing self-hardening rice husk charcoal granules

Info

Publication number
JPH0757682B2
JPH0757682B2 JP1015283A JP1528389A JPH0757682B2 JP H0757682 B2 JPH0757682 B2 JP H0757682B2 JP 1015283 A JP1015283 A JP 1015283A JP 1528389 A JP1528389 A JP 1528389A JP H0757682 B2 JPH0757682 B2 JP H0757682B2
Authority
JP
Japan
Prior art keywords
rice husk
husk charcoal
self
hardening
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1015283A
Other languages
Japanese (ja)
Other versions
JPH02196012A (en
Inventor
茂久 石原
秀一 川井
綏 吉田
勇 井出
淳久 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lignyte Co Ltd
Original Assignee
Lignyte Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lignyte Co Ltd filed Critical Lignyte Co Ltd
Priority to JP1015283A priority Critical patent/JPH0757682B2/en
Publication of JPH02196012A publication Critical patent/JPH02196012A/en
Publication of JPH0757682B2 publication Critical patent/JPH0757682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、籾殻を原料とする自硬性籾殻炭粉粒体の製造
方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing self-hardening rice husk charcoal granules using rice husk as a raw material.

【従来の技術】[Prior art]

稲を脱穀することによって得られる籾殻は、米を主食と
する我が国において毎年350万トン以上のものが産出さ
れている。そしてこの籾殻は若干量が堆肥などに利用さ
れる他は、殆どが廃棄又は焼却処分されている。また特
開昭63−118203号公報にみられるように、籾殻を原料と
して接着剤で固めてボード類を製造することなどが、一
部では検討されている。
Rice husks obtained by threshing rice produce over 3.5 million tons of rice each year in Japan, where rice is the staple food. Most of this rice husk is discarded or incinerated except for being used for compost and the like. Further, as disclosed in JP-A-63-118203, it has been partially studied to manufacture boards by using rice husk as a raw material and solidifying it with an adhesive.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

このように、現状では籾殻が有効に利用されているとは
到底いえるものではなく、特に堆肥やボード類の原料と
することでは籾殻が有する特性を十分に生かしていると
はいえない。 本発明は上記の点に鑑みて為されたものであり、籾殻の
特性を十分に生かして有効利用できるようにし、籾殻を
導電性材や耐火性材など多種の用途に活用できるように
することを目的とするものである。
As described above, it cannot be said at all that rice husks are effectively used at present, and it cannot be said that the characteristics of rice husks are fully utilized by using them as raw materials for compost and boards. The present invention has been made in view of the above point, and makes it possible to effectively utilize the characteristics of the rice husk, and to make the rice husk useful for various applications such as a conductive material and a fireproof material. The purpose is.

【課題を解決するための手段】[Means for Solving the Problems]

本発明は、反応容器に熱硬化性樹脂の合成原料とともに
籾殻を炭化させた籾型炭の粉粒体を投入し、熱硬化性樹
脂の合成反応をおこなわせることによって、籾殻炭の粉
粒体の表面に自硬性の熱硬化性樹脂を付着させることを
特徴とする自硬性籾殻炭粉粒体の製造方法に係るもので
ある。 以下本発明を詳細に説明する。 籾殻は稲を脱穀することによって得られるものであり、
粗繊維、リグニン、珪酸質を多量に含有し、特に稲の籾
殻にはシリカ分が16〜18重量%含まれている。稲の種類
は特に限定されず、食用に供される種類の稲の籾殻は何
でも使用することができる。籾殻の焼成は籾殻を乾燥し
て粉砕したものについておこなうのが好ましく、籾殻の
粉砕粒径は140μm〜1130μmの範囲が一般的である。 籾殻の焼成は酸素を遮断した窒素雰囲気等の還元雰囲気
中でおこなわれるものであり、焼成温度は特に限定され
るものではないが、焼成温度の下限は400℃程度であ
り、これより低い温度であれば籾殻を十分に炭化させる
ことができない。籾殻は400℃以上の焼成温度で炭が形
成され、600℃以下の焼成温度では籾殻炭は酸性を示し
電気抵抗はやや大であるが、焼成温度が700℃以上にな
ると籾殻炭は電気抵抗が小さくなって良導電性を示す。
導電性が高くなるよう、すなわち電気抵抗が小さくなる
ように籾殻を炭化させると耐火性能も高くなるものであ
り、特に電気抵抗が102Ωcmのオーダーより小さくなる
と籾殻炭の耐火性能が急速に向上する。従って焼成温度
は高温であることが望ましいが、炭の生成の歩留まりを
考慮しつつ高い導電性能や耐火性能を得ることができる
焼成温度は1000〜1200℃の範囲である。焼成温度が1000
℃以上であれば、電気抵抗は鱗片状黒鉛と同等の102Ωc
mのオーダーになり、焼成温度が1200℃以上であれば導
電性等をさらに高めることができるが、炭の歩留まりが
急速に低下して50%以下になる。 上記のようにして得られた籾殻炭の粉粒体の表面を自硬
性の熱硬化性樹脂で被覆することによって、本発明に係
る自硬性籾殻炭粉粒体を作成することができるが、熱硬
化性樹脂としてはノボラック型フェノール樹脂、レゾー
ル型フェノール樹脂、フラン樹脂、メラミン樹脂など任
意のものを用いることができる。なかでもフェノール樹
脂が最も有望である。そして自硬性の熱硬化性樹脂と
は、まだ硬化を完了していない低分子量のもので、加熱
等することによって一旦溶融した後に自ら硬化してゲル
化する熱硬化性樹脂であることを意味するものであり、
例えばフェノール樹脂の初期縮合物がその代表例であ
る。 籾殻炭粒体の表面に自硬性の熱硬化性樹脂を被覆して自
硬性籾殻炭粉粒体を作成するにあたって、熱硬化性樹脂
の初期縮合物を合成する際に同時にこの熱硬化性樹脂を
籾殻炭粉粒体の表面に付着させるようにしておこなうこ
とができる。すなわち、例えばフェノール樹脂の初期縮
合物を反応させる際に、反応容器にフェノール類やアル
デヒド類とともに籾殻炭粉粒体を投入し、この状態でフ
ェノール樹脂の合成反応をおこなわせることによって、
籾殻炭粉粒体の表面にフェノール樹脂の初期縮合物を均
一に付着させ、そしてこれを濾別して乾燥することによ
って自硬性籾殻炭粉粒体を得ることができる。籾殻炭粉
粒体は樹脂との濡れ性が悪いために籾殻炭粉粒体と熱硬
化性樹脂とを混練することで籾殻炭粉粒体の表面に熱硬
化性樹脂を均一に付着させることは困難であるが、熱硬
化性樹脂の初期縮合物を合成する際に予め籾殻炭粉粒体
を投入しておくこの方法では、籾殻炭粉粒体の表面に熱
硬化性樹脂を均一に付着させることができるために、こ
の方法で自硬性籾殻炭粉粒体を作成するのが好ましい。 ここで、自硬性籾殻炭粒体において籾殻炭粉粒体と熱硬
化性樹脂との割合は特に限定されるものではないが、籾
殻炭粉粒体100重量部に対して熱硬化性樹脂を5〜80重
量部程度の範囲に設定するのが一般的である。熱硬化性
樹脂の割合が5重量部未満であると、自硬性籾殻炭粉粒
体を成形して形成する耐火や銅電のための層の機械的物
性が不十分になるおそれがあり、また80重量部を超える
と、自硬性籾殻炭粉粒体を成形して形成する耐火や導電
のための層内に占める自硬性籾殻粒体の割合が少なって
耐火性能や導電性能が不十分になるおそれがある。 上記のようにして得られる本発明の自硬性籾殻炭粉粒体
は、加熱加圧して成形することによって、自硬性熱硬化
性樹脂をバインダーとして籾殻炭粉粒体を結合させて層
状に形成して用いることができる。例えば薄板状に成形
して耐火性や導電性の板材として使用することができる
ものであり、またこのように薄板状に成形したものを木
質板等の表面に耐火層や導電層として張り付けて使用す
ることもできる。 さらに、木質板など基板の表面に耐火性や導電性の層を
形成する方法としては、このように自硬性籾殻粉粒体を
薄板状に成形して張り付ける他に、種々の方法がある。
まず第1の方法は、基板の表面に自硬性籾殻炭粉粒体を
均一な厚みで散布したのちに加熱加圧成形することによ
って基板の表面に一体的に積層する方法である。また第
2の方法は、自硬性籾殻炭粒体を均一に散布してこれを
50〜100℃程度に加熱したロール等で加圧することによ
って不完全硬化状態のシート材を作成し、そしてこのシ
ート材を基板の表面に重ねて加熱加圧成形することによ
って基板の表面に一体的に積層する方法である。第3の
方法は、基板としてパーティクルボードなどを製造する
際に積層する方法であり、木片と接着剤樹脂とを混練し
たフォーミングマットの表面に自硬性籾殻炭粉粒体を均
一に厚みに配し、そしてこれを加熱加圧成形することに
よって、パーティクルボードなどの製板と同時にその表
面に一体的に積層する方法である。 ここで、既述したように一般に籾殻炭粉粒体は熱硬化性
樹脂と濡れが悪く、籾殻炭粉粒体と熱硬化性樹脂とを単
に混合したものを成形したのではバインダーとなる熱硬
化性樹脂と籾殻炭粉粒体とが均一に分散せず耐火性能や
導電性能にバラツキが発生し易くなるが、上記のように
籾殻炭粉粒体の表面に熱硬化性樹脂を被覆させることに
よって籾殻炭粉粒体を均一に分散させることができ、安
定した耐火性能や導電性能を得ることができるのであ
る。 しかして、上記のように籾殻炭粉粒体を成形して得られ
る層は、含有される籾殻炭によって火炎を遮断すること
ができるために耐火材として使用できると共に、籾殻炭
は導電性の有するために導電材として使用することがで
き、耐火性や導電性を必要とされる建材等に用いること
ができるものであり、また面密度も高いために遮音性も
具備するものである。
The present invention, the raw material of the rice husk charcoal, which is obtained by carbonizing the rice husks together with the synthetic raw material of the thermosetting resin, is introduced into the reaction vessel, and the reaction of synthesizing the thermosetting resin is carried out. The present invention relates to a method for producing a self-hardening rice husk charcoal granule, which comprises attaching a self-hardening thermosetting resin to the surface of the. The present invention will be described in detail below. Rice husk is obtained by threshing rice,
It contains a large amount of crude fiber, lignin, and siliceous matter, and the rice husk contains 16 to 18% by weight of silica. The type of rice is not particularly limited, and any rice husk of the type used for food can be used. The rice husks are preferably fired by drying and crushing the rice husks, and the crushed grain diameter of the rice husks is generally in the range of 140 μm to 1130 μm. The firing of rice husks is performed in a reducing atmosphere such as a nitrogen atmosphere in which oxygen is blocked, and the firing temperature is not particularly limited, but the lower limit of the firing temperature is about 400 ° C. If so, the rice husk cannot be carbonized sufficiently. Rice husks form charcoal at a calcination temperature of 400 ° C or higher, and at a calcination temperature of 600 ° C or lower, the rice husk charcoal is acidic and has a slightly high electric resistance, but when the calcination temperature is 700 ° C or higher, the rice husk coal has an electric resistance. It becomes small and shows good conductivity.
When the rice husk is carbonized so that the conductivity becomes higher, that is, the electric resistance becomes smaller, the fire resistance also becomes higher, and particularly when the electric resistance becomes smaller than the order of 10 2 Ωcm, the fire performance of the rice husk charcoal rapidly improves. To do. Therefore, it is desirable that the firing temperature is high, but the firing temperature that can obtain high conductivity performance and fire resistance performance while considering the yield of charcoal production is in the range of 1000 to 1200 ° C. Firing temperature is 1000
Above ℃, the electric resistance is 10 2 Ωc, which is equivalent to that of flake graphite.
If it is on the order of m and the firing temperature is 1200 ° C. or higher, the conductivity and the like can be further enhanced, but the yield of charcoal is rapidly reduced to 50% or less. By coating the surface of the rice husk charcoal granules obtained as described above with a self-hardening thermosetting resin, the self-hardening rice husk charcoal granules according to the present invention can be prepared. As the curable resin, novolac type phenol resin, resol type phenol resin, furan resin, melamine resin or the like can be used. Of these, phenolic resin is the most promising. And a self-hardening thermosetting resin means a low molecular weight resin that has not yet been cured, and is a thermosetting resin that once melts by heating or the like and then hardens and gels. Is something
A typical example thereof is an initial condensate of phenol resin. When making a self-hardening rice husk charcoal granules by coating the surface of the rice husk charcoal granules with a self-hardening thermosetting resin, the thermosetting resin was applied at the same time as the initial condensation product of the thermosetting resin was synthesized. It can be carried out by attaching it to the surface of the rice husk charcoal granules. That is, for example, when reacting the initial condensate of the phenol resin, by charging the rice husk charcoal granules together with phenols and aldehydes into the reaction vessel, by performing the synthetic reaction of the phenol resin in this state,
The self-hardening rice husk charcoal granules can be obtained by uniformly adhering the initial condensate of the phenolic resin on the surface of the rice husk charcoal granules, filtering this and drying. Since the rice husk charcoal granules have poor wettability with the resin, it is not possible to evenly adhere the thermosetting resin to the surface of the rice husk charcoal granules by kneading the rice husk charcoal granules and the thermosetting resin. It is difficult, but when synthesizing the initial condensation product of thermosetting resin, the rice husk charcoal granules are put in advance. In this method, the thermosetting resin is uniformly attached to the surface of the rice husk charcoal granules. Therefore, it is preferable to prepare the self-hardening rice husk charcoal granules by this method. Here, in the self-hardening rice husk carbon granules, the ratio of the rice husk carbon powder granules to the thermosetting resin is not particularly limited. It is generally set in the range of about 80 parts by weight. If the proportion of the thermosetting resin is less than 5 parts by weight, the mechanical properties of the layer for fireproofing or copper electroforming formed by molding the self-hardening rice husk charcoal powder may be insufficient, and If it exceeds 80 parts by weight, the proportion of the self-hardening rice husk granules in the layer for forming fire resistance and conductivity formed by molding the self-hardening rice husk charcoal granules will be small and the fire resistance and conductive performance will be insufficient. May be. The self-hardening rice husk charcoal granules of the present invention obtained as described above are formed by heating and pressing to form a layer by combining the rice husk charcoal granules using the self-hardening thermosetting resin as a binder. Can be used. For example, it can be formed into a thin plate shape and used as a fire-resistant or conductive plate material, and such a thin plate-shaped material can be used by sticking it on the surface of a wooden board as a fire-resistant layer or conductive layer. You can also do it. Further, as a method for forming a fire resistant or conductive layer on the surface of a substrate such as a wooden board, there are various methods other than forming and sticking the self-hardening rice husk powder and granules in this way.
First, the first method is a method in which self-hardening rice husk charcoal granules are sprayed on the surface of the substrate in a uniform thickness, and then heated and pressed to be laminated integrally on the surface of the substrate. The second method is to spread the self-hardening rice husk charcoal particles evenly.
An incompletely cured sheet material is created by pressurizing with a roll heated to about 50 to 100 ° C, and this sheet material is overlaid on the surface of the substrate and heat-pressed to be integrated with the surface of the substrate. It is a method of laminating. The third method is a method of laminating when a particle board or the like is manufactured as a substrate, and the self-hardening rice husk charcoal granules are uniformly arranged on the surface of a forming mat in which wood chips and an adhesive resin are kneaded. Then, it is a method of integrally laminating on the surface at the same time as plate making such as particle board by heat-press molding. Here, as described above, generally, the rice husk charcoal granules have poor wettability with the thermosetting resin, and if a mixture of the rice husk charcoal granules and the thermosetting resin is simply molded, the thermosetting resin becomes a binder. The resin and rice husk charcoal granules do not disperse uniformly, and variations in fire resistance and conductivity are likely to occur, but by coating the surface of the rice husk charcoal granules with a thermosetting resin as described above. The rice husk charcoal granules can be uniformly dispersed, and stable fire resistance performance and conductive performance can be obtained. The layer obtained by molding the rice husk charcoal granules as described above can be used as a refractory material because it can block the flame by the contained rice husk charcoal, and the rice husk charcoal has conductivity. Therefore, it can be used as a conductive material and can be used as a building material or the like that requires fire resistance and conductivity, and also has a sound insulating property due to its high surface density.

【実施例】【Example】

次に本発明を実施例によって詳述する。 実施例1 稲の籾殻を乾燥して粉砕することによって調製される16
〜50メッシュの籾殻粉粒体(シリカ分17〜18重量%含
有)を1kg採り、これを還元雰囲気中で、室温から1000
℃まで4℃/分の昇温速度で昇温させると共に1000℃で
3時間保持し、この後に1000℃から500℃まで4℃/分
の降温速度で降温させ、さらに500℃から室温まで5℃
/分の降温速度で降温させるという条件で焼成した。得
られた籾殻炭粉粒体の収量は520gであった。 次に、反応容器にフェノールを94重量部、37%ホルマリ
ンを122重量部、ヘキサメチレンテトラミンを15重量部
仕込み、さらに上記のようにして得られた籾殻炭粉粒体
を307重量部仕込んだ。これを約60分を要して90℃まで
昇温してそのまま3時間反応をおこない、冷却したのち
に濾別すると共に風乾することによって、籾殻炭粉粒体
の表面がフェノール樹脂の初期縮合物で被覆された自硬
性籾殻炭粉粒体を得た。この自硬性籾殻炭分粒体は平均
粒径が450μmであり、フェノール樹脂の含有率は30重
量%であった。 実施例2 実施例1と同様な籾殻粉粒体を1kg採り、これを還元雰
囲気中で、室温から800℃まで4℃/分の昇温速度で昇
温させると共に800℃で3時間保持し、この後に800℃か
ら500℃まで4℃/分の降温速度で降温させ、さらに500
℃から室温まで5℃/分の降温速度で降温させるという
条件で焼成した。得られた籾殻炭粉粒体の収量は610gで
あった。 この籾殻炭粉粒体を用い、あとは実施例1と同様にして
自硬性籾殻炭粉粒体を得た。この自硬性籾殻炭粉粒体の
平均粒径とフェノール樹脂含有率は実施例1とほぼ同じ
であった。 実施例3 実施例1と同様な籾殻粉粒体を1kg採り、これを還元雰
囲気中で、室温から600℃まで4℃/分の昇温速度で昇
温させると共に600℃で3時間保持し、この後に600℃か
ら500℃まで4℃/分の降温速度で降温させ、さらに500
℃から室温まで5℃/分の降温速度で降温させるという
条件で焼成した。得られた籾殻炭粉粒体の収量は730gで
あった。 この籾殻炭粉粒体を用い、あとは実施例1と同様にして
自硬性籾殻炭粉粒体を得た。この自硬性籾殻炭粉粒体の
平均粒径とフェノール樹脂含有率は実施例1とほぼ同じ
であった。 比較例1 籾殻炭粉粒体の替わりに、固定炭素が99.5%で平均粒径
が60μmの鱗片状黒鉛を用い、あとは実施例1と同様に
して自硬性黒鉛粉粒体を得た。この自硬性黒鉛粉粒体は
平均粒径が300μmであり、フェノール樹脂の含有率は3
1重量%であった。 比較例2 おが屑炭(日本林産株式会社製)を粉砕して得た28メッ
シュ通過粉粒体を籾殻炭粉粒体の替わりに用い、あとは
実施例1と同様にして自硬性おが屑炭粉粒体を得た。こ
の自硬性おが屑炭粉粒体は平均粒径が650μmであり、
フェノール樹脂の含有率は28重量%であった。 比較例3 杉のバーク炭(日本林産株式会社製)を粉砕して得た35
0μm通過粉粒体を籾殻炭粉粒体の替わりに用い、あと
は実施例1と同様にして自硬性バーク炭粉粒体を得た。
この自硬性バーク炭粉粒体は平均粒径が480μmであ
り、フェノール樹脂の含有率は31重量%であった。 上記実施例1〜3及び比較例1〜3で得た自硬性粉粒体
を使用し、これを160℃、25kg/cm2の条件で10分間加熱
加圧成形することによって、密度を0.8g/cm3、1.0g/c
m3、1.2g/cm3、1.4g/cm3にそれぞれ設定した厚み5mmの
試験板を作成した。この試験板について、JISK 6911に
準拠して表面抵抗と体積抵抗率を測定した。結果を表面
抵抗について第1表に、体積抵抗率について第2表にそ
れぞれ示す。 第1表及び第2表にみられるように、籾殻炭を用いた各
実施例のものでは、おが屑炭を用いた比較例2やバーク
炭を用いた比較例3のものよりも表面抵抗や体積抵抗率
が著しく小さく、優れた導電性を有することが確認され
る。特に籾殻を1000℃で焼成した実施例1のものは鱗片
状黒鉛を用いた比較例1のものとほぼ同レベルであり、
鱗片状黒鉛を用いる場合と同等の導電性能を有すること
が確認される。 次に、上記のようにして作成した実施例1〜3及び比較
例1〜3の試験板を用い、耐火性能を測定するために火
炎貫通試験をおこなった。火炎貫通試験は、火炎温度
(試験板表面の接炎温度)が1150〜1300℃、火炎長さが
150mm、供給空気−ガス混合気の圧力がバーナ先端で2kg
/cm2になるように調整してハンドバーナーによって火炎
を作り、この火炎を120mm×150mm×5mmの上記試験板の
平面に垂直に垂直に当て、試験板を燃え抜けて火炎が貫
通するに要する時間を測定することによっておこなっ
た。尚、比較のために厚みが5mmで密度が0.8g/cm3、1.0
g/cm3、1.2/cm3、1.4g/cm3のパーティクルボードを用い
て同様に火炎貫通試験をおこなった。結果を第3表に示
す。 第3表にみられるように、籾殻炭を用いた各実施例のも
のでは、おが屑炭を用いた比較例2やバーク炭を用いた
比較例3のもの、さらにはパーティクルボードの比較例
4のものよりも火炎貫通に要する時間が著しく長く、優
れた耐火性能を有することが確認される。特に籾殻を10
00℃で焼成した実施例1のものは鱗片状黒鉛を用いた比
較例1のものとほぼ同レベルであり、鱗片状黒鉛を用い
る場合と同等の耐火性能を有することが確認される。
Next, the present invention will be described in detail by way of examples. Example 1 Prepared by drying and grinding rice hulls 16
Take 1 kg of ~ 50 mesh rice husk powder (containing 17-18% by weight of silica), and use this in a reducing atmosphere at room temperature to 1000
Temperature up to 4 ° C / min and hold at 1000 ° C for 3 hours, then from 1000 ° C to 500 ° C at 4 ° C / min cooling rate, then from 500 ° C to room temperature 5 ° C
Firing was performed under the condition that the temperature was lowered at a temperature lowering rate of / min. The yield of the obtained rice husk charcoal granules was 520 g. Next, 94 parts by weight of phenol, 122 parts by weight of 37% formalin, 15 parts by weight of hexamethylenetetramine, and 307 parts by weight of the rice husk charcoal granules obtained as described above were charged into a reaction vessel. It takes about 60 minutes to raise the temperature to 90 ° C., react for 3 hours as it is, and after cooling, filtering and air drying, the surface of the rice husk charcoal granules has an initial condensation product of phenol resin. A self-hardening rice husk charcoal granular material coated with was obtained. The self-hardening rice husk charcoal granules had an average particle diameter of 450 μm and a phenol resin content of 30% by weight. Example 2 1 kg of the same rice husk powder and granules as in Example 1 was sampled, heated in a reducing atmosphere from room temperature to 800 ° C. at a temperature rising rate of 4 ° C./min, and kept at 800 ° C. for 3 hours, After this, the temperature is lowered from 800 ° C to 500 ° C at a cooling rate of 4 ° C / min.
Firing was performed under the condition that the temperature was decreased from 5 ° C to room temperature at a temperature decrease rate of 5 ° C / min. The yield of the obtained rice husk charcoal granules was 610 g. Using this rice husk charcoal powder, the rest of the procedure was carried out in the same manner as in Example 1 to obtain a self-hardening rice husk charcoal powder. The average particle size and phenol resin content of this self-hardening rice husk charcoal powder were almost the same as in Example 1. Example 3 1 kg of the same rice husk powder and granules as in Example 1 was collected, heated in a reducing atmosphere from room temperature to 600 ° C. at a heating rate of 4 ° C./min, and held at 600 ° C. for 3 hours, After this, the temperature is lowered from 600 ° C to 500 ° C at a cooling rate of 4 ° C / min, and further 500
Firing was performed under the condition that the temperature was decreased from 5 ° C to room temperature at a temperature decrease rate of 5 ° C / min. The yield of the obtained rice husk charcoal granules was 730 g. Using this rice husk charcoal powder, the rest of the procedure was carried out in the same manner as in Example 1 to obtain a self-hardening rice husk charcoal powder. The average particle size and phenol resin content of this self-hardening rice husk charcoal powder were almost the same as in Example 1. Comparative Example 1 Instead of the rice husk charcoal granules, scaly graphite having a fixed carbon content of 99.5% and an average particle diameter of 60 μm was used, and the self-hardening graphite granules were obtained in the same manner as in Example 1. This self-hardening graphite powder has an average particle size of 300 μm and a phenol resin content of 3
It was 1% by weight. Comparative Example 2 Self-hardening sawdust charcoal powder particles were used in the same manner as in Example 1 except that 28 mesh passing powder granules obtained by crushing sawdust charcoal (manufactured by Nippon Hayashi Co., Ltd.) were used instead of the rice husk charcoal powder granules. Got the body This self-hardening sawdust charcoal powder has an average particle size of 650 μm,
The content of phenolic resin was 28% by weight. Comparative Example 3 35 obtained by crushing cedar bark charcoal (manufactured by Nippon Hayashi Co., Ltd.)
A self-hardening bark charcoal granule was obtained in the same manner as in Example 1 except that the 0 μm-passing granule was used instead of the rice husk charcoal granule.
This self-curing bark charcoal powder had an average particle diameter of 480 μm and a phenol resin content of 31% by weight. Using the self-hardening powder obtained in the above Examples 1 to 3 and Comparative Examples 1 to 3, by heat-pressing for 10 minutes at 160 ° C. and 25 kg / cm 2 , the density is 0.8 g. / cm 3 , 1.0g / c
A test plate having a thickness of 5 mm set to m 3 , 1.2 g / cm 3 and 1.4 g / cm 3 was prepared. The surface resistance and volume resistivity of this test plate were measured according to JIS K 6911. The results are shown in Table 1 for surface resistance and Table 2 for volume resistivity. As can be seen in Tables 1 and 2, the surface resistance and volume of the examples using rice husk charcoal were higher than those of Comparative Example 2 using sawdust charcoal and Comparative Example 3 using bark charcoal. It is confirmed that the resistivity is remarkably small and that it has excellent conductivity. In particular, the case of Example 1 in which rice husks were fired at 1000 ° C. was almost at the same level as that of Comparative Example 1 using flake graphite,
It is confirmed that the conductive performance is equivalent to that when using flake graphite. Next, using the test plates of Examples 1 to 3 and Comparative Examples 1 to 3 created as described above, a flame penetration test was performed to measure the fire resistance performance. In the flame penetration test, the flame temperature (contact temperature of the test plate surface) is 1150 to 1300 ° C, and the flame length is
150 mm, supply air-gas mixture pressure is 2 kg at the burner tip
Make a flame with a hand burner by adjusting so that it becomes / cm 2 , and apply this flame vertically to the plane of the above 120 mm × 150 mm × 5 mm test plate to burn through the test plate and penetrate the flame. This was done by measuring the time. For comparison, the thickness is 5 mm and the density is 0.8 g / cm 3 , 1.0
A flame penetration test was similarly performed using particle boards of g / cm 3 , 1.2 / cm 3 , and 1.4 g / cm 3 . The results are shown in Table 3. As can be seen from Table 3, in each of the examples using the rice husk charcoal, Comparative Example 2 using sawdust charcoal, Comparative Example 3 using bark charcoal, and Comparative Example 4 of particle board were used. The time required for flame penetration is significantly longer than that of the other products, and it is confirmed to have excellent fire resistance performance. Especially rice husks 10
Example 1 fired at 00 ° C. has almost the same level as that of Comparative Example 1 using flake graphite, and it is confirmed that the fire resistance performance is equivalent to that of using flake graphite.

【発明の効果】【The invention's effect】

上述のように本発明にあっては、籾殻を炭化させた籾殻
炭の粉粒体の表面に自硬性の熱硬化性樹脂を付着させて
用いるようにしたので、熱硬化性樹脂をバインダーとし
て籾殻炭の粉粒体を結合させた層を成形することがで
き、籾殻炭の優れた耐火性能や導電性能を活かして耐火
や導電を必要とされる部材等に籾殻を有効に利用するこ
とができるものである。また、反応容器に熱硬化性樹脂
の合成原料とともに籾殻炭の粉粒体を投入し、熱硬化性
樹脂の合成反応をおこなわせることによって、籾殻炭の
粉粒体の表面に自硬性の熱硬化性樹脂を付着させるよう
にしたので、籾殻炭粉粒体と熱硬化性樹脂とを単に混合
しただけでは相互に濡れ性が悪い熱硬化性樹脂と籾殻炭
粉粒体とを均一に分散させることができないが、反応容
器内で熱硬化性樹脂を合成しつつ籾殻炭粉粒体の表面に
被覆させることによって、籾殻粉粒体の表面に熱硬化性
樹脂を均一に付着させた自硬化性籾殻炭粉粒体を製造す
ることができるものであり、自硬化性籾殻炭粉粒体を用
いて成形をおこなうにあたって、熱硬化性樹脂に籾殻炭
粉粒体を均一に分散させた層を形成することができ、籾
殻炭粉粒体による耐火性能や導電性能を安定して発揮さ
せることができるものである。
As described above, in the present invention, since the self-hardening thermosetting resin is used by adhering to the surface of the granular material of the rice husk charcoal obtained by carbonizing the rice husk, the rice husk uses the thermosetting resin as a binder. It is possible to form a layer that combines coal powder and granules, and it is possible to effectively use the rice husk for members that need fire resistance and conductivity by utilizing the excellent fire resistance and conductivity performance of rice husk charcoal. It is a thing. In addition, the rice husk charcoal powder and granules are put into the reaction vessel together with the thermosetting resin synthesis raw material, and the synthetic reaction of the thermosetting resin is carried out, so that the surface of the rice husk charcoal powder is self-hardened by thermosetting. Since the adhesive resin is attached, it is possible to evenly disperse the thermosetting resin and the rice husk charcoal granules that have poor wettability with each other simply by mixing the rice husk charcoal granules with the thermosetting resin. However, by coating the surface of the rice husk charcoal granules while synthesizing the thermosetting resin in the reaction vessel, self-curing rice husks in which the thermosetting resin is evenly attached to the surface of the rice husk granules It is possible to manufacture carbon powder granules, and when molding using self-curing rice husk carbon powder granules, a layer in which rice husk carbon powder granules are uniformly dispersed in a thermosetting resin is formed. It is possible to reduce the fire resistance and conductive performance of rice husk charcoal granules. It is those that can be exhibited in.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高松 淳久 大阪府大阪市都島区内代町2―14―5 (56)参考文献 特開 昭59−102870(JP,A) 特開 昭64−14108(JP,A) 特開 昭63−118203(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Takamatsu 2-14-5 Uchidai-cho, Miyakojima-ku, Osaka City, Osaka Prefecture (56) References JP-A-59-102870 (JP, A) JP-A-64-14108 (JP, A) JP 63-118203 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】反応容器に熱硬化性樹脂の合成原料ととも
に籾殻を炭化させた籾殻炭の粉粒体を投入し、熱硬化性
樹脂の合成反応をおこなわせることによって、籾殻炭の
粉粒体の表面に自硬性の熱硬化性樹脂を付着させること
を特徴とする自硬性籾殻炭粉粒体の製造方法。
1. A granular material of rice husk charcoal is prepared by charging a raw material for synthesizing a thermosetting resin into a reaction vessel and a granular material of rice husk charcoal obtained by carbonizing rice husk to cause a synthetic reaction of the thermosetting resin. A method for producing self-hardening rice husk charcoal granules, characterized in that a self-hardening thermosetting resin is adhered to the surface of.
【請求項2】自硬性の熱硬化性樹脂がフェノール樹脂の
初期縮合物であることを特徴とする請求項1に記載の自
硬性籾殻炭粉粒体の製造方法。
2. The method for producing a self-hardening rice husk charcoal granule according to claim 1, wherein the self-hardening thermosetting resin is an initial condensation product of a phenol resin.
JP1015283A 1989-01-25 1989-01-25 Method for producing self-hardening rice husk charcoal granules Expired - Fee Related JPH0757682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015283A JPH0757682B2 (en) 1989-01-25 1989-01-25 Method for producing self-hardening rice husk charcoal granules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015283A JPH0757682B2 (en) 1989-01-25 1989-01-25 Method for producing self-hardening rice husk charcoal granules

Publications (2)

Publication Number Publication Date
JPH02196012A JPH02196012A (en) 1990-08-02
JPH0757682B2 true JPH0757682B2 (en) 1995-06-21

Family

ID=11884530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015283A Expired - Fee Related JPH0757682B2 (en) 1989-01-25 1989-01-25 Method for producing self-hardening rice husk charcoal granules

Country Status (1)

Country Link
JP (1) JPH0757682B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP819899A0 (en) * 1999-01-18 1999-02-11 Contract Research & Development (M) Sdn. Bhd. Conductive and flame retardant plastic fillers
JP2002187773A (en) * 2000-12-15 2002-07-05 Minebea Co Ltd Material for bearing retainer
KR20050103548A (en) * 2004-04-26 2005-11-01 이은희 The gogang making method of a charcoal
JP2008050196A (en) * 2006-08-24 2008-03-06 Tadashi Miyamoto Method of manufacturing heat insulating material
JP4753982B2 (en) * 2008-10-06 2011-08-24 三菱電機株式会社 Method for producing carbon aggregate molded product
JP4884487B2 (en) * 2009-02-05 2012-02-29 三菱電機株式会社 Carbon aggregate molded material and method for producing carbon aggregate molded article
JP5779752B2 (en) * 2011-08-05 2015-09-16 群栄化学工業株式会社 Method for producing molded body, method for producing fired body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102870A (en) * 1982-11-30 1984-06-14 エヌオーケー株式会社 Manufacture of powder for carbonaceous formed body
JPS63118203A (en) * 1986-11-07 1988-05-23 Ooshika Shinko Kk Manufacture of rice hull board
JPS6414108A (en) * 1987-07-06 1989-01-18 Tokai Carbon Kk Production of carbonaceous granular heat insulating material

Also Published As

Publication number Publication date
JPH02196012A (en) 1990-08-02

Similar Documents

Publication Publication Date Title
JPH0757682B2 (en) Method for producing self-hardening rice husk charcoal granules
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
JPH03793A (en) Refractory material
JP2969216B2 (en) Manufacturing method of building materials
JP3135187B2 (en) Carbon material for ion implantation member and method for producing the same
JPS61236665A (en) Manufacture of porous carbon sheet
JPH0867513A (en) Molecular sieve carbon and its production
JPS6030824B2 (en) Building materials and their manufacturing methods
JPH01234232A (en) Fire resistant building material
JPH03146468A (en) Production of fireproof material
JPH07103745B2 (en) Fireproof cabinet
JPH0622973B2 (en) Manufacturing method of building materials
JPH01234233A (en) Preparation of building material
JP2966430B2 (en) Refractory material
JPS61186209A (en) Production of carbon porous body
CN115160707B (en) Polyvinyl chloride wood-plastic composite material and preparation method thereof
JPH0454631B2 (en)
JP3388613B2 (en) Manufacturing method of carbonaceous material
JPH11139871A (en) Porous carbon material and its production
JPH0235707B2 (en)
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH01285345A (en) Building material
JPS61186210A (en) Production of carbon porous body
JP2003192437A (en) Carbon composite material and method for manufacturing the same
JPH02199010A (en) Production of thin sheetlike carbon material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees