JPH0751505A - Method and apparatus for removal of gal dissolved in aqueous solution - Google Patents
Method and apparatus for removal of gal dissolved in aqueous solutionInfo
- Publication number
- JPH0751505A JPH0751505A JP20089493A JP20089493A JPH0751505A JP H0751505 A JPH0751505 A JP H0751505A JP 20089493 A JP20089493 A JP 20089493A JP 20089493 A JP20089493 A JP 20089493A JP H0751505 A JPH0751505 A JP H0751505A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- aqueous solution
- fiber membrane
- dissolved gas
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、水溶液中に存在する溶
存ガスの除去方法、特に半導体の洗浄用水、清涼飲料水
用水或はボイラー等の配管を腐食させる大きな要因とな
っている溶存酸素の除去や、水道水や井戸水に溶存する
揮発性の有機物(特にクロロホルム、ジクロロブロモホ
ルム等のトリハロメタンや1,1,1−トリクロロエタ
ン、トリクロロエチレン、テトラクロロエチレン等の揮
発性の有機ハロゲン物質)を除去する方法及び装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing dissolved gas existing in an aqueous solution, and particularly to a method for removing dissolved oxygen, which is a major factor for corroding water for cleaning semiconductors, soft drink water or boiler piping Method and device for removing volatile organic substances (particularly trihalomethanes such as chloroform and dichlorobromoform and volatile organic halogen substances such as 1,1,1-trichloroethane, trichloroethylene and tetrachloroethylene) dissolved in tap water and well water Regarding
【0002】[0002]
【従来の技術】従来の溶存ガス除去方法には、溶液の入
った容器を減圧にする方法や、薬品処理により溶存ガス
を除去する方法及び装置が知られている。2. Description of the Related Art As a conventional method for removing a dissolved gas, a method of decompressing a container containing a solution and a method and an apparatus for removing a dissolved gas by chemical treatment are known.
【0003】このような装置では、溶存ガスの完全除去
が困難で且つ除去時間が長いなどの問題があるため最近
では疎水性の多孔質膜を用いた溶存ガス除去装置が提案
されている(特開昭62−42707号公報)。In such an apparatus, there is a problem that it is difficult to completely remove the dissolved gas and the removal time is long. Therefore, recently, a dissolved gas removing apparatus using a hydrophobic porous membrane has been proposed (special feature: (Kaisho 62-42707).
【0004】又均質層をその両側から多孔質層で挟み込
んだ三層構造の複合中空糸膜で溶存ガスを除去する方法
が知られている(実開平3−7908号、特開平3−1
69303号各公報)。Further, a method is known in which a dissolved gas is removed by a composite hollow fiber membrane having a three-layer structure in which a homogeneous layer is sandwiched by porous layers from both sides (Japanese Utility Model Laid-Open No. 3-7908, JP-A 3-1).
69303 each gazette).
【0005】[0005]
【発明が解決しようとする課題】然し乍ら前記の中空糸
膜を用いた方法では、膜面積に対応した溶存ガス除去性
能を維持するものの、中空糸膜と溶液の界面に形成され
る境膜抵抗が大きいために、中空糸膜のガス透過性能を
高めても除去効率が向上することはなく、除去装置が大
型化する問題点があった。However, in the method using the hollow fiber membrane described above, although the dissolved gas removal performance corresponding to the membrane area is maintained, the membrane resistance formed at the interface between the hollow fiber membrane and the solution is reduced. Because of its large size, even if the gas permeation performance of the hollow fiber membrane is enhanced, the removal efficiency is not improved, and there is a problem that the removal device becomes large.
【0006】本発明の目的は、上記問題点を解決し長時
間使用しても溶存ガスの除去性能が低下することのな
い、除去効率の高い方法及び小型の除去装置を提供する
ことにある。An object of the present invention is to solve the above-mentioned problems and to provide a method of high removal efficiency and a small-sized removal device, in which the removal performance of dissolved gas does not deteriorate even after long-term use.
【0007】[0007]
【課題を解決するための手段】本発明の要旨は、下記の
通りである。The gist of the present invention is as follows.
【0008】(1)水の濡れ特性が濡れ角度90°以上
であり且つ膜の細孔径が0.05μm以下である疎水性
高分子よりなる多孔質中空糸膜の一方を水溶液と接し、
他方を減圧するに際し、該中空糸膜と接する水溶液の温
度を加温することを特徴とする水溶液中の溶存ガス除去
方法。(1) One of the porous hollow fiber membranes made of a hydrophobic polymer having a wetting property of water of 90 ° or more and a pore diameter of the membrane of 0.05 μm or less is contacted with an aqueous solution,
A method for removing dissolved gas in an aqueous solution, which comprises heating the temperature of the aqueous solution in contact with the hollow fiber membrane when depressurizing the other.
【0009】(2)中空糸膜が、均質層をその両側から
多孔質層で挟み込んだ三層構造であって、均質層を構成
する素材の酸素透過速度が0.8×10-5(cm3 (S
TP)/cm2 ・sec・cmHg)以上の性能を有す
る複合中空糸膜である上記(1)に記載の方法。(2) The hollow fiber membrane has a three-layer structure in which a homogeneous layer is sandwiched by porous layers from both sides, and the oxygen permeation rate of the material constituting the homogeneous layer is 0.8 × 10 -5 (cm). 3 (S
The method according to (1) above, which is a composite hollow fiber membrane having a performance of TP) / cm 2 · sec · cmHg) or higher.
【0010】(3)容器と該容器内に位置する中空糸膜
と、該中空糸膜の短部を支持し、中空糸膜の中空部に連
通する空間と中空糸膜の外表面に連通する空間とを隔離
する隔壁を有し、中空糸膜の外表面と容器内壁面とで構
成される空間に溶存ガスを含む水溶液を流すための導入
口及び導出口又は該空間を減圧にするための減圧口と中
空糸膜中空部に溶存ガスを含む水溶液を流すための導入
口及び導出口又は該中空部を減圧状態にするための脱気
口を設けた水溶液中の溶存ガス除去モジュールAと該モ
ジュールAの水溶液導入口の前に水溶液を加温する装置
Bを設けたことを特徴とする水中の溶存ガス除去装置。(3) A container, a hollow fiber membrane located in the container, a short portion of the hollow fiber membrane are supported, and a space communicating with the hollow portion of the hollow fiber membrane and the outer surface of the hollow fiber membrane are communicated with each other. An inlet and an outlet for flowing an aqueous solution containing a dissolved gas into the space formed by the outer surface of the hollow fiber membrane and the inner wall surface of the container having a partition wall for separating the space, or for reducing the pressure of the space Dissolved gas removal module A in an aqueous solution provided with a depressurization port and an inlet and an outlet for flowing an aqueous solution containing a dissolved gas in the hollow part of the hollow fiber membrane or a degassing port for depressurizing the hollow part. An apparatus for removing dissolved gas in water, characterized in that an apparatus B for heating the aqueous solution is provided in front of the aqueous solution inlet of module A.
【0011】(4)空間の減圧状態をモジュールAへ導
入する水溶液の飽和水蒸気圧に維持することを特徴とす
る上記(3)に記載の装置。(4) The apparatus according to (3) above, characterized in that the reduced pressure state of the space is maintained at the saturated vapor pressure of the aqueous solution introduced into the module A.
【0012】(5)モジュールAが中空糸膜をラッセル
編み状或はすだれ編み状に編成したシート状物であるこ
とを特徴とする上記(3)に記載の装置。(5) The apparatus according to (3) above, wherein the module A is a sheet-shaped product in which a hollow fiber membrane is knitted in a Russell knitting shape or a blind knitting shape.
【0013】(6)モジュールAに充填する中空糸膜の
充填量を、容器両端の接着剤で囲まれた空間の容積中に
占める中空糸膜の容積率を20〜50%の範囲内にする
ことを特徴とする上記(3)に記載の装置。(6) The filling amount of the hollow fiber membrane to be filled in the module A is set such that the volume ratio of the hollow fiber membrane to the volume of the space surrounded by the adhesive at both ends of the container is in the range of 20 to 50%. The apparatus described in (3) above.
【0014】本発明に用いる多孔質中空糸膜はポリエチ
レン、ポリプロピレン、ポリ4−メチルペンテン−1等
のポリオレフィン、テトラフルオロエチレンやフッ化ビ
ニリデン等のフッ素系ポリマー、ポリスチレン、ポリエ
ーテルエーテルケトン、ポリエーテルケトン等の疎水性
高分子よりなるものであり、該中空糸膜の細孔内部に水
が侵入することを防ぐために表面の水の濡れ特性が濡れ
角度が高いほど良く90°以上であることが必要であ
る。The porous hollow fiber membrane used in the present invention is a polyolefin such as polyethylene, polypropylene or poly-4-methylpentene-1, a fluoropolymer such as tetrafluoroethylene or vinylidene fluoride, polystyrene, polyetheretherketone or polyether. It is composed of a hydrophobic polymer such as a ketone, and in order to prevent water from penetrating into the inside of the pores of the hollow fiber membrane, the wetting property of water on the surface is preferably 90 ° or more as the wetting angle increases. is necessary.
【0015】更には該中空糸膜の細孔径は長期間使用す
ることを目的とすると、小さいほど水の表面張力が高い
ために水が侵入し難いことから、細孔径が0.05μm
以下の多孔質膜が好ましい。Further, for the purpose of long-term use of the pore diameter of the hollow fiber membrane, the smaller the pore diameter, the higher the surface tension of water and the more difficult it is for water to enter.
The following porous membranes are preferred.
【0016】これら疎水性の多孔質中空糸膜は長時間使
用すると水蒸気が疎水性中空糸膜細孔内部に凝縮して細
孔内部が完全に水で埋もれてしまい、その結果水が中空
糸膜から漏れてしまう危険性がある。When these hydrophobic porous hollow fiber membranes are used for a long time, water vapor condenses inside the pores of the hydrophobic hollow fiber membrane and the inside of the pores is completely buried with water, and as a result, the water is hollow fiber membrane. There is a risk of leaking from.
【0017】中空糸膜構造としては、均質層をその両側
から多孔質層で挟み込んだ三層構造であって、均質層を
構成する素材の酸素透過速度が0.8×10-5(cm3
(STP)/cm2 ・sec・cmHg)以上の性能を
有する複合中空糸膜が、本発明では更に好ましい中空糸
膜である。The hollow fiber membrane structure has a three-layer structure in which a homogeneous layer is sandwiched from both sides by a porous layer, and the oxygen permeation rate of the material constituting the homogeneous layer is 0.8 × 10 -5 (cm 3).
A composite hollow fiber membrane having a performance of (STP) / cm 2 · sec · cmHg) or more is a more preferable hollow fiber membrane in the present invention.
【0018】酸素透過速度が0.8×10-5(cm
3 (STP)/cm2 ・sec・cmHg)未満では水
中に溶存するガスの均質膜を透過する速度が遅く効率的
に溶存ガスを除去することが出来ない。The oxygen transmission rate is 0.8 × 10 -5 (cm
If it is less than 3 (STP) / cm 2 · sec · cmHg, the rate at which the gas dissolved in water permeates the homogeneous membrane is slow and the dissolved gas cannot be removed efficiently.
【0019】このような複合中空糸膜は、例えば多重円
筒型の紡糸ノズルを用いて均質膜を形成するポリマーと
多孔質膜を形成するポリマーとを交互に配置し溶融紡糸
し、次いで均質膜を多孔質化することなく多孔質膜だけ
を多孔質化する条件で延伸する方法により製造される。Such a composite hollow fiber membrane is subjected to melt spinning by alternately arranging a polymer forming a homogeneous membrane and a polymer forming a porous membrane by using a multi-cylindrical type spinning nozzle, followed by melt spinning, and then forming a homogeneous membrane. It is produced by a method of stretching under the condition that only the porous membrane is made porous without being made porous.
【0020】均質層を構成するポリマー素材としては、
ガス透過性の優れたシリコンゴム系ポリマーを始めとし
て、ポリジメチルシロキサン、シリコンとポリカーボネ
ートの共重合体等のシリコンゴム系ポリマー、ポリ4−
メチルペンテン−1、低密度ポリエチレン等のポリオレ
フィン系ポリマー、パーフルオロアルキル系ポリマー等
のフッ素含有ポリマー、エチルセルロース等セルロース
系ポリマー、ポリフェニレンオキサイド、ポリ4−ビニ
ルピリジン、ウレタン系ポリマー及びこれらポリマー素
材の共重合体或はブレンド体等の各種ポリマーを挙げる
ことが出来る。As the polymer material forming the homogeneous layer,
Starting with silicone rubber polymers with excellent gas permeability, polydimethylsiloxane, silicone rubber polymers such as silicone-polycarbonate copolymers, poly 4-
Polyolefin polymers such as methylpentene-1, low density polyethylene, fluorine-containing polymers such as perfluoroalkyl polymers, cellulosic polymers such as ethyl cellulose, polyphenylene oxide, poly-4-vinylpyridine, urethane polymers, and copolymers of these polymer materials. Various polymers such as coalesced or blended materials can be mentioned.
【0021】多孔質層を構成するポリマー素材として
は、ポリエチレン、ポリプロピレン、ポリ3−メチルブ
テン−1、ポリ4−メチルペンテン−1等のポリオレフ
ィン系ポリマー、ポリフッ化ビニリデン、ポリテトラフ
ルオロエチレン等のフッ素系ポリマー、ポリスチレン、
ポリエーテルエーテルケトン、ポリエーテルケトン等の
疎水性ポリマーが挙げられる。As the polymer material constituting the porous layer, a polyolefin-based polymer such as polyethylene, polypropylene, poly-3-methylbutene-1, poly-4-methylpentene-1 or the like, a fluorine-based polymer such as polyvinylidene fluoride, polytetrafluoroethylene or the like. Polymer, polystyrene,
Hydrophobic polymers such as polyetheretherketone and polyetherketone may be mentioned.
【0022】均質層を構成するポリマー素材と、多孔質
層を構成するポリマー素材との組み合わせについては特
に限定されず、異種のポリマーは勿論同種のポリマーで
あっても良い。The combination of the polymer material forming the homogeneous layer and the polymer material forming the porous layer is not particularly limited, and different kinds of polymers may of course be the same kind of polymers.
【0023】均質層が多孔質層で物理的に挟み込まれた
サンドイッチ構造を有しているので、両膜間の接着性が
悪くとも、実用上の弊害は生じない。Since the homogeneous layer has a sandwich structure in which it is physically sandwiched between porous layers, even if the adhesiveness between the two films is poor, no practical adverse effect occurs.
【0024】多孔質膜或は複合中空糸膜へ導入する溶存
ガスを含有する水溶液を加温することにより、中空糸膜
と水との境界に形成される境膜抵抗が小さくなり、又水
中での溶存ガスの拡散定数が増大し、且つ複合中空糸膜
に於ては均質膜のガス透過係数が大きくなることにより
脱気効率が急激に増大する。By heating the aqueous solution containing the dissolved gas to be introduced into the porous membrane or the composite hollow fiber membrane, the membrane resistance formed at the boundary between the hollow fiber membrane and water is reduced, and in the water. In the composite hollow fiber membrane, the diffusion constant of the dissolved gas is increased, and the gas permeability coefficient of the homogeneous membrane is increased, so that the degassing efficiency is rapidly increased.
【0025】加温する方法としては、中空糸膜モジュー
ルへ導入する水溶液を一般的に用いられている熱交換器
を通水させ加温する方法、モジュール全体を加温する方
法があるがその方法にはとらわれない。As a method for heating, there are a method of heating an aqueous solution to be introduced into the hollow fiber membrane module by passing it through a generally used heat exchanger, and a method of heating the entire module. I'm not stuck.
【0026】但し水温に比べモジュール内ガス側の温度
が大幅に低い場合には、ガス側空隙に凝縮水が溜まり膜
面積を減少させるから、ガス側と水温に大きな温度差が
生じないように保温することが重要である。However, when the temperature on the gas side in the module is significantly lower than the water temperature, condensed water accumulates in the gas side voids and reduces the film area, so that there is no large temperature difference between the gas side and the water temperature. It is important to.
【0027】又凝縮水による糸束の集束化による膜面積
の低下を防ぐ方法として、中空糸膜をラッセル編成ある
いはすだれ状に編成すること、又中空糸膜の充填量を容
器両端の接着剤で囲まれた空間の容積中に占める中空糸
膜の容積率を20〜50%(好ましくは25〜45%)
の範囲内にすること等が考えられる。As a method for preventing the reduction of the membrane area due to the condensing of the bundle of yarns by the condensed water, the hollow fiber membranes are knitted in a Russell knitting or a comb shape, and the filling amount of the hollow fiber membranes is adjusted by an adhesive on both ends of the container. The volume ratio of the hollow fiber membrane in the volume of the enclosed space is 20 to 50% (preferably 25 to 45%).
It is possible to set it within the range of.
【0028】ラッセル編み或はすだれ編み状に編成する
と中空糸膜を経て糸でシート状に加工するため中空糸膜
間が経糸の太さ分だけ空間を維持することが出来る。こ
のため中空糸膜を1本づつ編むことが好ましいが何本か
をまとめて編んでもよい。When knitting in a Russell knitting or a interlace knitting, the hollow fiber membranes are processed into a sheet with yarns, so that a space can be maintained between the hollow fiber membranes by the thickness of the warp yarns. Therefore, it is preferable to knit the hollow fiber membranes one by one, but several hollow fiber membranes may be knitted together.
【0029】中空糸膜の充填量を容器両端の接着剤で囲
まれた空間の容積中に占める中空糸膜の容積率を、20
%未満にすると必要な膜面積を確保するには容積が大き
くなり、50%を越えると凝縮水が中空糸膜間に残存し
脱気に有効な膜面積が減少してしまう。The volume ratio of the hollow fiber membranes to the volume of the space surrounded by the adhesive on both ends of the container is 20%.
If it is less than%, the volume becomes large to secure the necessary membrane area, and if it exceeds 50%, condensed water remains between the hollow fiber membranes and the membrane area effective for deaeration decreases.
【0030】減圧状態を、モジュールへ導入する水溶液
の飽和水蒸気圧以下に設定すると、中空糸膜を透過する
水蒸気量が急激に増大し、真空ポンプの排気量が非常に
大きなものを必要とする。When the reduced pressure state is set to be equal to or lower than the saturated water vapor pressure of the aqueous solution introduced into the module, the amount of water vapor that permeates the hollow fiber membrane is rapidly increased, and the exhaust amount of the vacuum pump is very large.
【0031】又飽和水蒸気圧以上の減圧度では、ガス側
に脱気したガス成分が残存し、ガス分圧に対応した気液
平衡濃度までしか除去することが出来ない。Further, at a pressure reduction degree equal to or higher than the saturated water vapor pressure, the degassed gas component remains on the gas side, and only the gas-liquid equilibrium concentration corresponding to the gas partial pressure can be removed.
【0032】このため減圧度としてはモジュールへ導入
する水溶液の飽和水蒸気圧が最適である。このような減
圧度を維持する方法としては、シール性の高い水封式の
真空ポンプを用いることにより容易に達成できる。Therefore, as the degree of pressure reduction, the saturated water vapor pressure of the aqueous solution introduced into the module is optimum. A method of maintaining such a degree of reduced pressure can be easily achieved by using a water-sealed vacuum pump having a high sealing property.
【0033】図1は本発明の水溶液中の溶存ガスを除去
するのに適する装置の一例であり、1は気密性及び水密
性を有する容器であり、該容器の内部には多数本の中空
糸膜2が所定の間隔をおいてその両端部がポッティング
剤3により支持固定されるように配設されている。FIG. 1 shows an example of an apparatus suitable for removing a dissolved gas in an aqueous solution of the present invention, in which 1 is an airtight and watertight container, and a large number of hollow fibers are inside the container. The membrane 2 is arranged at a predetermined interval so that both ends thereof are supported and fixed by the potting agent 3.
【0034】容器1の両端には前記ポッティング剤によ
り支持固定された中空糸膜2と容器1の内壁間に形成さ
れる空隙部にそれぞれ連通する溶存ガスを含む水溶液の
導入口4及び導出口5が設けてある。At both ends of the container 1, a hollow fiber membrane 2 supported and fixed by the potting agent and an inlet port 4 and an outlet port 5 for an aqueous solution containing a dissolved gas, which communicate with the voids formed between the inner walls of the container 1, respectively. Is provided.
【0035】前記ポッティング剤により、前記多数本の
中空糸膜2,2,2,・・・・・,2間に形成される空
隙と前記溶存ガスを含む水溶液の導入口4及び導出口5
とを遮断する隔壁3を形成する。By the potting agent, the voids formed between the large number of hollow fiber membranes 2, 2, 2, ..., And the inlet 4 and outlet 5 of the aqueous solution containing the dissolved gas.
A partition wall 3 for blocking the above is formed.
【0036】更に容器1の周面の一部には、前記中空糸
膜2,2,2,・・・・,2間に形成される空隙とを連
通する脱溶存ガス及び水蒸気口6が形成され、該脱溶存
ガス及び水蒸気口6は水封式の真空ポンプ7と接続され
ている。Further, a part of the peripheral surface of the container 1 is formed with a dissolved gas and water vapor port 6 which communicates with the void formed between the hollow fiber membranes 2, 2, 2, ... The dissolved and dissolved gas and water vapor port 6 is connected to a water-sealed vacuum pump 7.
【0037】更に容器1はガス温あるいは水温を低下さ
せぬように保温カバー8で覆われている。溶存ガスを含
む水溶液を容器1へ導入する導入口4は水温の加温装置
9と接続されており、所定の水温へ設定しモジュールへ
溶存ガスを含む水溶液を導入することが出来る。Further, the container 1 is covered with a heat insulating cover 8 so as not to lower the gas temperature or the water temperature. The inlet port 4 for introducing the aqueous solution containing the dissolved gas into the container 1 is connected to a water temperature heating device 9 so that the aqueous solution containing the dissolved gas can be introduced into the module by setting a predetermined water temperature.
【0038】本発明者等は、水溶液中の溶存ガスを除去
する方法及び装置を用いて検討を行った結果、驚くべき
ことに水温を上げることにより溶存ガスが非常に高い効
率で除去できることを見いだしたものである。水温は効
率及びエネルギーコストから20〜80℃、好ましくは
25〜60℃より好ましくは30〜50℃である。The present inventors have conducted a study using a method and a device for removing dissolved gas in an aqueous solution, and as a result, surprisingly found that the dissolved gas can be removed with extremely high efficiency by raising the water temperature. It is a thing. The water temperature is 20 to 80 ° C., preferably 25 to 60 ° C., more preferably 30 to 50 ° C. from the viewpoint of efficiency and energy cost.
【0039】[0039]
【作用】かかる構成により、本発明の方法及び装置によ
れば溶存ガスを含む水溶液は加温された後に中空糸の中
空部(又は外表面)を流れると同時に中空糸膜の外表面
(又は中空部)が減圧されているために前記溶存ガスは
ガスとなって中空糸膜を効率的に透過し、外部に排出さ
れる。又水蒸気の排気量が少なく小型の水封式真空ポン
プで装置化できる。従って、本発明の方法及び装置を用
いることにより、非常に小さなスペースで溶存ガスを除
去することが可能である。With such a structure, according to the method and apparatus of the present invention, the aqueous solution containing the dissolved gas flows through the hollow portion (or outer surface) of the hollow fiber after being heated and, at the same time, the outer surface (or hollow surface) of the hollow fiber membrane. The dissolved gas becomes a gas because it is decompressed, and the gas permeates the hollow fiber membrane efficiently and is discharged to the outside. In addition, the amount of water vapor exhausted is small, and the device can be implemented by a small water-sealed vacuum pump. Therefore, by using the method and apparatus of the present invention, it is possible to remove dissolved gas in a very small space.
【0040】[0040]
【実施例】以下実施例により本発明を具体的に説明す
る。The present invention will be described in detail with reference to the following examples.
【0041】「溶存ガス除去率」は各々の成分に対して
次式より計算した。 溶存ガスx除去率(%)={1−(Cxi−Cxo)/
Cx } Cxi;装置に入る水の中に含まれる溶存ガスxの濃度 Cxo;装置から出る水の中に含まれる溶存ガスxの濃度The "dissolved gas removal rate" was calculated from the following equation for each component. Dissolved gas x removal rate (%) = {1- (C xi −C xo ) /
C x } C xi ; concentration of dissolved gas x contained in water entering the device C xo ; concentration of dissolved gas x contained in water exiting the device
【0042】「中空糸膜の酸素ガス透過速度」はガスク
ロマトグラフィーにより測定した。The "oxygen gas permeation rate of the hollow fiber membrane" was measured by gas chromatography.
【0043】参考例1 同心円状に配置された3つの吐出口を有する中空糸製造
用ノズルに対し、内層と外層に供給するポリマー素材と
して高密度ポリエチレン(三井石油化学工業(株)社製
Hizex2200J)を、中間層に供給するポリマ
ー素材としてセグメント化ポリウレタン(Therme
dics Inc.製 TecoflexEG80A)
を用い、吐出温度165℃、巻き取り速度180m/m
inで紡糸した。Reference Example 1 High density polyethylene (Hizex 2200J manufactured by Mitsui Petrochemical Co., Ltd.) as a polymer material to be supplied to the inner layer and the outer layer of a hollow fiber manufacturing nozzle having three discharge ports arranged concentrically Segmented polyurethane (Therme
dics Inc. Made by Tecoflex EG80A)
, Discharge temperature 165 ° C, winding speed 180 m / m
It was spun in.
【0044】得られた中空糸未延伸糸を100℃で1時
間アニール処理をした。次いでアニール処理糸を室温下
で80%延伸し、引き続き105℃に加熱された加熱炉
中で熱延伸倍率が130%になるまで熱延伸を行って、
複合中空糸膜を得た。The hollow fiber undrawn yarn thus obtained was annealed at 100 ° C. for 1 hour. Then, the annealed yarn is stretched by 80% at room temperature, and subsequently subjected to hot stretching in a heating furnace heated to 105 ° C. until the thermal stretch ratio reaches 130%,
A composite hollow fiber membrane was obtained.
【0045】得られた複合中空糸膜は、図2に示すよう
な最内層から順次多孔質層、均質層、多孔質層の三層構
造であり、内径が200μm、厚みが最内層から25μ
m、1μm、25μmの同心円状であった。The obtained composite hollow fiber membrane has a three-layer structure of a porous layer, a homogeneous layer and a porous layer in order from the innermost layer as shown in FIG. 2, the inner diameter is 200 μm, and the thickness is 25 μm from the innermost layer.
m, 1 μm, and 25 μm concentric circles.
【0046】該複合中空糸膜の多孔質層表面を走査型電
子顕微鏡で観察した結果、幅0.06〜0.09μm、
長さ0.1〜0.5μmのスリット状の孔が形成されて
いた。この中空糸膜の酸素透過速度は1.2×10
-5(cm3 (STP)/cm2 ・sec・cmHg)で
あった。As a result of observing the surface of the porous layer of the composite hollow fiber membrane with a scanning electron microscope, the width was 0.06 to 0.09 μm.
A slit-like hole having a length of 0.1 to 0.5 μm was formed. The oxygen permeation rate of this hollow fiber membrane is 1.2 × 10.
It was −5 (cm 3 (STP) / cm 2 · sec · cmHg).
【0047】参考例2 同心円状に配置された吐出口を有する中空糸製造用ノズ
ルに対し、供給するポリマー素材として高密度ポリエチ
レン(三井石油化学工業(株)社製 Hizex220
0J)を用い、吐出温度155℃、巻き取り速度150
m/minで紡糸した。Reference Example 2 High density polyethylene (Hizex 220 manufactured by Mitsui Petrochemical Industry Co., Ltd.) was used as a polymer material to be supplied to a hollow fiber manufacturing nozzle having concentrically arranged discharge ports.
0J), discharge temperature 155 ° C, winding speed 150
It was spun at m / min.
【0048】得られた中空糸未延伸糸を110℃で1時
間アニール処理をした。次いでアニール処理糸を室温下
で150%延伸し、引き続き115℃に加熱された加熱
炉中で熱延伸倍率が200%になるまで熱延伸を行っ
て、中空糸膜を得た。The obtained hollow fiber undrawn yarn was annealed at 110 ° C. for 1 hour. Then, the annealed yarn was stretched by 150% at room temperature, and subsequently, was thermally stretched in a heating furnace heated to 115 ° C. until the thermal stretch ratio reached 200% to obtain a hollow fiber membrane.
【0049】得られた中空糸膜は、内径が200μm、
厚みが60μmの同心円状であった。該中空糸膜の多孔
質層表面を走査型電子顕微鏡で観察した結果、幅0.0
4〜0.08μm、長さ0.1〜0.2μmのスリット
状の孔が形成されていた。この中空糸膜の酸素透過速度
は1.0×10-2(cm3 (STP)/cm2 ・sec
・cmHg)であった。The hollow fiber membrane obtained had an inner diameter of 200 μm,
It was a concentric circle having a thickness of 60 μm. As a result of observing the surface of the porous layer of the hollow fiber membrane with a scanning electron microscope, a width of 0.0
Slit-shaped holes having a diameter of 4 to 0.08 μm and a length of 0.1 to 0.2 μm were formed. The oxygen permeation rate of this hollow fiber membrane was 1.0 × 10 -2 (cm 3 (STP) / cm 2 · sec.
-CmHg).
【0050】実施例1 図1に示す装置を用いて、水中に溶存する酸素の除去率
の測定を行った。溶存ガスを酸素ガスに代表させ、酸素
ガスを6ppm含んだ水を水温25℃及び35℃、流速
0.64l/minで導入し、各水温に於て飽和水蒸気
圧未満、飽和水蒸気圧及び飽和水蒸気圧以上の減圧度で
各々減圧した状態で参考例1,2より得られた中空糸膜
を図3に示すラッセル編みシートを充填率40%で作製
し、図1の装置に組み込み水溶液を流した。Example 1 Using the apparatus shown in FIG. 1, the removal rate of oxygen dissolved in water was measured. The dissolved gas is represented by oxygen gas, and water containing 6 ppm of oxygen gas is introduced at a water temperature of 25 ° C. and 35 ° C. and a flow rate of 0.64 l / min. The hollow fiber membranes obtained from Reference Examples 1 and 2 were prepared at a pressure reduction level of not less than the pressure, and the Russell knitted sheet shown in FIG. 3 was prepared at a filling rate of 40%. .
【0051】評価した結果、装置出口の溶存酸素濃度の
結果及び装置の脱気効率を表1に示した。参考例1,2
どちらの中空糸膜を用いても、水温を上げることにより
装置出口の溶存酸素濃度は低下しており、脱気効率は上
昇している。As a result of the evaluation, the results of the dissolved oxygen concentration at the outlet of the apparatus and the degassing efficiency of the apparatus are shown in Table 1. Reference examples 1 and 2
No matter which hollow fiber membrane is used, the dissolved oxygen concentration at the outlet of the apparatus is lowered and the degassing efficiency is increased by raising the water temperature.
【0052】[0052]
【発明の効果】本発明は、溶存ガスを含む水溶液を僅か
に加温することによって水溶液中の溶存ガスを効率的に
除去することができる。又減圧度を飽和水蒸気圧に設定
することにより、小排気量の真空ポンプで運転できコン
パクトな装置を提供することが可能である。According to the present invention, the dissolved gas in the aqueous solution can be efficiently removed by slightly heating the aqueous solution containing the dissolved gas. Further, by setting the degree of pressure reduction to saturated water vapor pressure, it is possible to provide a compact device that can be operated by a vacuum pump with a small displacement.
【0053】[0053]
【表1】 [Table 1]
【図1】本発明の水溶液中の溶存ガス除去装置の一例を
示す模式図である。FIG. 1 is a schematic view showing an example of an apparatus for removing dissolved gas from an aqueous solution of the present invention.
【図2】多孔質層、均質層、多孔質層の三層構造からな
る複合中空糸膜の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a composite hollow fiber membrane having a three-layer structure of a porous layer, a homogeneous layer, and a porous layer.
【図3】中空糸膜をラッセル編成した一例を示す模式図
である。FIG. 3 is a schematic view showing an example of Russell knitting of a hollow fiber membrane.
【図4】中空糸膜をラッセル編成した一例を示す模式図
である。FIG. 4 is a schematic view showing an example of Russell knitting of a hollow fiber membrane.
【図5】中空糸膜をすだれ編成した一例を示す模式図で
ある。FIG. 5 is a schematic view showing an example in which a hollow fiber membrane is knitted in a comb shape.
1 容器 2 中空糸膜 3 接着部 4 水導入口 5 水導出口 6 ガス導出口 7 真空ポンプ 8 保温カバー 9 加温装置 1 Container 2 Hollow Fiber Membrane 3 Adhesive Part 4 Water Inlet 5 Water Outlet 6 Gas Outlet 7 Vacuum Pump 8 Insulation Cover 9 Heating Device
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/20 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area C02F 1/20 A
Claims (6)
り且つ膜の細孔径が0.05μm以下である疎水性高分
子よりなる多孔質中空糸膜の一方を水溶液と接し、他方
を減圧するに際し、該中空糸膜と接する水溶液の温度を
加温することを特徴とする水溶液中の溶存ガス除去方
法。1. A porous hollow fiber membrane made of a hydrophobic polymer having a wetting property of water having a wetting angle of 90 ° or more and a pore size of the membrane of 0.05 μm or less is in contact with one of the aqueous solutions and the other is depressurized. At this time, the method for removing dissolved gas in an aqueous solution, which comprises heating the temperature of the aqueous solution in contact with the hollow fiber membrane.
質層で挟み込んだ三層構造であって、均質層を構成する
素材の酸素ガス透過速度が0.8×10-5(cm3 (S
TP)/cm2 ・sec・cmHg)以上の性能を有す
る複合中空糸膜であることを特徴とする請求項1に記載
の方法。2. The hollow fiber membrane has a three-layer structure in which a homogeneous layer is sandwiched by porous layers from both sides thereof, and the oxygen gas permeation rate of the material constituting the homogeneous layer is 0.8 × 10 −5 (cm 2). 3 (S
The method according to claim 1, which is a composite hollow fiber membrane having a performance of TP) / cm 2 · sec · cmHg) or higher.
該中空糸膜の端部を接着剤で支持し、中空糸膜の中空部
に連通する空間と中空糸膜の外表面に連通する空間とを
隔離する隔壁を有し、中空糸膜の外表面と容器内壁面と
で構成される空間に溶存ガスを含む水溶液を流すための
導入口及び導出口又は該空間を減圧するための減圧口と
中空糸膜中空部に溶存ガスを含む水溶液を流すための導
入口及び導出口又は該中空部を減圧状態にするための脱
気口を設けた水溶液中の溶存ガス除去モジュールAと該
モジュールAの水溶液導入口の前に水溶液を加温する加
温装置Bを設けたことを特徴とする水溶液中の溶存ガス
除去装置。3. A container and a hollow fiber membrane located inside the container,
The outer surface of the hollow fiber membrane has a partition wall that supports the end portion of the hollow fiber membrane with an adhesive and separates a space communicating with the hollow portion of the hollow fiber membrane from a space communicating with the outer surface of the hollow fiber membrane. In order to flow the aqueous solution containing the dissolved gas into the inlet and the outlet for flowing the aqueous solution containing the dissolved gas into the space defined by Module A for removing dissolved gas in an aqueous solution, which is provided with a degassing port for depressurizing the inlet and outlet or the hollow portion of the An apparatus for removing dissolved gas in an aqueous solution, characterized in that B is provided.
る水溶液の飽和水蒸気圧に維持することを特徴とする請
求項3に記載の装置。4. The apparatus according to claim 3, wherein the reduced pressure state of the space is maintained at the saturated vapor pressure of the aqueous solution introduced into the module A.
状或はすだれ編み状に編成したシート状物であることを
特徴とする請求項3に記載の装置。5. The device according to claim 3, wherein the module A is a sheet-shaped product in which a hollow fiber membrane is knitted in a Russell knitting shape or a blind knitting shape.
量を容器両端の接着剤で囲まれた空間の容積中に占める
中空糸膜の容積率を20〜50%の範囲内にすることを
特徴とする請求項3に記載の装置。6. The volume ratio of the hollow fiber membranes to be filled in the module A is set within a range of 20 to 50% in the volume of the space surrounded by the adhesive on both ends of the container. The apparatus of claim 3 characterized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20089493A JPH0751505A (en) | 1993-08-12 | 1993-08-12 | Method and apparatus for removal of gal dissolved in aqueous solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20089493A JPH0751505A (en) | 1993-08-12 | 1993-08-12 | Method and apparatus for removal of gal dissolved in aqueous solution |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0751505A true JPH0751505A (en) | 1995-02-28 |
Family
ID=16432029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20089493A Pending JPH0751505A (en) | 1993-08-12 | 1993-08-12 | Method and apparatus for removal of gal dissolved in aqueous solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0751505A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000033245A (en) * | 1998-05-11 | 2000-02-02 | Sumitomo Electric Ind Ltd | Fluororesin composite membrane and its production |
JP2001526098A (en) * | 1997-12-22 | 2001-12-18 | セルガード,インコーポレイティド | Apparatus for removing gas bubbles and dissolved gas in liquid |
JP2002370006A (en) * | 2001-06-15 | 2002-12-24 | Mitsubishi Rayon Co Ltd | Liquid treatment apparatus and treatment method using the same |
WO2004024639A1 (en) * | 2002-09-12 | 2004-03-25 | Chemitreat Pte Ltd | Method of removing organic impurities from water |
JP2007075729A (en) * | 2005-09-14 | 2007-03-29 | Tama Tlo Kk | Apparatus and method for separating and recovering oil-soluble substance |
JP2012161793A (en) * | 2000-06-02 | 2012-08-30 | Celgard Inc | Degassing liquid with membrane contactor |
JP2012171191A (en) * | 2011-02-21 | 2012-09-10 | Mimaki Engineering Co Ltd | Deaeration system and ink-jet recorder |
JP2017124392A (en) * | 2016-01-12 | 2017-07-20 | 旭化成株式会社 | Porous hollow fiber membrane, production method of porous hollow fiber membrane, and water purification method |
KR102694481B1 (en) * | 2023-12-28 | 2024-08-12 | 한성크린텍 주식회사 | High purity industrial water manufacturing system and method using it |
-
1993
- 1993-08-12 JP JP20089493A patent/JPH0751505A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001526098A (en) * | 1997-12-22 | 2001-12-18 | セルガード,インコーポレイティド | Apparatus for removing gas bubbles and dissolved gas in liquid |
JP2000033245A (en) * | 1998-05-11 | 2000-02-02 | Sumitomo Electric Ind Ltd | Fluororesin composite membrane and its production |
JP2014159032A (en) * | 2000-06-02 | 2014-09-04 | Celgard Inc | Degassing of liquid with membrane contactor |
JP2012161793A (en) * | 2000-06-02 | 2012-08-30 | Celgard Inc | Degassing liquid with membrane contactor |
JP2002370006A (en) * | 2001-06-15 | 2002-12-24 | Mitsubishi Rayon Co Ltd | Liquid treatment apparatus and treatment method using the same |
GB2408737B (en) * | 2002-09-12 | 2006-06-07 | Chemitreat Pte Ltd | Method of removing organic impurities from water |
JP2005538827A (en) * | 2002-09-12 | 2005-12-22 | ケミトリート ピーティーイー リミテッド | Method for removing organic impurities from water |
GB2408737A (en) * | 2002-09-12 | 2005-06-08 | Chemitreat Pte Ltd | Method of removing organic impurities from water |
WO2004024639A1 (en) * | 2002-09-12 | 2004-03-25 | Chemitreat Pte Ltd | Method of removing organic impurities from water |
JP2007075729A (en) * | 2005-09-14 | 2007-03-29 | Tama Tlo Kk | Apparatus and method for separating and recovering oil-soluble substance |
JP2012171191A (en) * | 2011-02-21 | 2012-09-10 | Mimaki Engineering Co Ltd | Deaeration system and ink-jet recorder |
JP2017124392A (en) * | 2016-01-12 | 2017-07-20 | 旭化成株式会社 | Porous hollow fiber membrane, production method of porous hollow fiber membrane, and water purification method |
KR102694481B1 (en) * | 2023-12-28 | 2024-08-12 | 한성크린텍 주식회사 | High purity industrial water manufacturing system and method using it |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2969075B2 (en) | Degassing device | |
EP0299381B2 (en) | Membrane-type artificial lung and method of using it | |
US5192320A (en) | Artificial lung and method of using it | |
JPH0751505A (en) | Method and apparatus for removal of gal dissolved in aqueous solution | |
JPH07121340B2 (en) | Hollow fiber membrane | |
JPH119902A (en) | Module for liquid deaeration | |
JPH0771795A (en) | Humidifier of hollow yarn membrane type | |
JP2725311B2 (en) | Hollow fiber membrane type gas-liquid contactor | |
JP3540417B2 (en) | Removal method of dissolved gas in liquid | |
JPH0760082A (en) | Method and apparatus for adjusting specific resistance of ultrapure water | |
JPH10298470A (en) | Method and apparatus for deaerating ink | |
JPH08942A (en) | Dehumidifying hollow fiber membrane model | |
JPH0788304A (en) | Module for removing dissolved gas and supplying gas | |
JPH06134210A (en) | Deaeration film module | |
JPH0638894B2 (en) | Reverse osmosis separation membrane treatment device | |
CA2367547A1 (en) | Porous membrane | |
JP3224409B2 (en) | Hollow fiber membrane module for degassing | |
JP2858262B2 (en) | How to remove dissolved gas | |
JP3753448B2 (en) | External perfusion type dissolved fiber removal hollow fiber membrane module | |
JP3734585B2 (en) | Deaerator | |
JPH02164425A (en) | Multilayer hollow fiber membrane | |
JPH1147564A (en) | Gas dissolution and dissolved gas-removing module | |
JPH09262406A (en) | Deaerating method of hydraulic oil | |
JPH0632239Y2 (en) | Small boiler with separation membrane treatment device | |
JP2974999B2 (en) | Membrane oxygenator |