JPH0734471B2 - Field effect semiconductor device - Google Patents
Field effect semiconductor deviceInfo
- Publication number
- JPH0734471B2 JPH0734471B2 JP62241841A JP24184187A JPH0734471B2 JP H0734471 B2 JPH0734471 B2 JP H0734471B2 JP 62241841 A JP62241841 A JP 62241841A JP 24184187 A JP24184187 A JP 24184187A JP H0734471 B2 JPH0734471 B2 JP H0734471B2
- Authority
- JP
- Japan
- Prior art keywords
- type
- region
- epitaxial layer
- layer
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005669 field effect Effects 0.000 title claims description 8
- 239000004065 semiconductor Substances 0.000 title claims description 7
- 239000000758 substrate Substances 0.000 claims description 22
- 239000012535 impurity Substances 0.000 claims description 14
- 238000009792 diffusion process Methods 0.000 claims description 7
- 230000015556 catabolic process Effects 0.000 description 10
- 230000000903 blocking effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 230000005684 electric field Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- 240000000220 Panda oleosa Species 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
- H01L29/0852—Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
- H01L29/0873—Drain regions
- H01L29/0878—Impurity concentration or distribution
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Semiconductor Integrated Circuits (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電界効果型半導体装置,こゝではパワーMO
S電界効果トランジスタ(以下,パワーMOS FETと呼ぶ)
に関し、さらに詳しくは、オン抵抗の低い高耐圧のパワ
ーMOS FETの改良に係るものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a field-effect semiconductor device, here, a power MO.
S field effect transistor (hereinafter referred to as power MOS FET)
More specifically, the present invention relates to improvement of a high-breakdown-voltage power MOS FET with low on-resistance.
〔従来の技術〕 近年,電力用のスイッチング素子として、この種のパワ
ーMOS FETが注目されている。[Prior Art] In recent years, a power MOS FET of this kind has attracted attention as a switching element for electric power.
第2図には、従来例による一般的な縦型D-MOS構造をも
つパワーMOS FETの模式的に示した断面構造の概要を示
してある。FIG. 2 shows an outline of a sectional structure schematically showing a power MOS FET having a general vertical D-MOS structure according to a conventional example.
すなわち,この第2図に示した従来例構成において、n+
形基板21としては、この場合,一般的に約1019atom/cm3
で拡散速度の遅いSbなどが用いられており、このn+形基
板21上にエピタキシャル成長されたn-形エピタキシャル
層22は、素子構造に要求される阻止電圧VBによつて、そ
の比抵抗および厚さが設定され、例えば、500Vの素子構
成においては、比抵抗が、約25Ω‐cm程度,厚さが、約
45μm程度に決められる。That is, in the conventional configuration shown in FIG. 2, n +
In this case, the shaped substrate 21 is generally about 10 19 atom / cm 3
In such a slow diffusion speed Sb is used and the n n + is epitaxially grown on the shape the substrate 21 - -type epitaxial layer 22, Yotsute the blocking voltage V B that is required in the device structure, its resistivity and The thickness is set, for example, in the device configuration of 500 V, the specific resistance is about 25 Ω-cm and the thickness is about
It is set to about 45 μm.
また、前記n-形エピタキシャル層22での主表面(第2主
表面)部に選択的に形成されたp形ベース層23は、チャ
ネル領域25を形成する比較的浅く拡散された第2領域部
分23bと、このp形ベース層23での表面部に形成されるn
+形ソース層24,同p形ベース層23,およびn-形エピタキ
シャル層22によつて構成される寄生トランジスタのラッ
チアップ防止のために比較的深く拡散形成された第1領
域部分23aとからなつている。The p-type base layer 23 selectively formed on the main surface (second main surface) of the n − -type epitaxial layer 22 is a relatively shallow diffused second region portion forming the channel region 25. 23b and n formed on the surface of the p-type base layer 23
And a first region portion 23a formed relatively deeply to prevent latch-up of a parasitic transistor constituted by the + type source layer 24, the p type base layer 23, and the n − type epitaxial layer 22. ing.
そして、前記n+形ソース層24とn-形エピタキシャル層22
との間に形成されるチャネル領域25上には、n-形エピタ
キシャル層22を覆いかつゲート絶縁膜26を介してゲート
電極27が、前記p形ベース層23の第1領域部分23aからn
+形ソース層24に跨つてソース電極28が、前記n+形基板2
1の裏面にドレイン電極29がそれぞれに形成されてい
る。Then, the n + type source layer 24 and the n − type epitaxial layer 22
A gate electrode 27 covering the n − -type epitaxial layer 22 and a gate insulating film 26 is formed on the channel region 25 formed between the first and second regions 23a to 23a of the p-type base layer 23.
The source electrode 28 straddles the + type source layer 24, and the n + type substrate 2
Drain electrodes 29 are formed on the back surface of 1 respectively.
しかして、以上のように構成される従来例でのパワーMO
S FETにおいては、ソース電極28を接地し、ゲート電極2
7およびドレイン電極29に正の電圧を印加させると、p
形ベース層23内のチャネル領域25がn形に反転され、図
中に破線eで示したように、n+形ソース層24からこの反
転されたチャネル領域25,およびn-形エピタキシャル層2
2を通り、ドレイン電極29に電子が流れてオン状態とな
る。Then, the power MO in the conventional example configured as described above
In the S FET, the source electrode 28 is grounded and the gate electrode 2
When a positive voltage is applied to 7 and the drain electrode 29, p
The channel region 25 in the n-type base layer 23 is inverted to the n-type, and the inverted channel region 25 from the n + -type source layer 24 and the n − -type epitaxial layer 2 as shown by the broken line e in the figure.
Electrons flow through the drain electrode 29 through 2 to be in the ON state.
このとき,素子のもつオン抵抗Ronは、近似的に次式で
表わすことができる。すなわち, Ron=Rch+Rac+Rj+REpi 但し,Rch:チャネル領域25の抵抗, Rac:n-形エピタキシャル層22の表面のアキャム レーション抵抗, Rj:p形ベース層23で挟まれたJFET効果を示すn- 形エピタキシャル層22の抵抗, REpi:n-形エピタキシャル層22の抵抗. である。At this time, the on-resistance R on of the element can be approximately represented by the following equation. That, R on = R ch + R ac + R j + R Epi However, R ch: the resistance of the channel region 25, R ac: n - Akyamu Configuration resistance of the surface of the -type epitaxial layer 22, R j: p-type base layer resistance -type epitaxial layer 22, R Epi - n indicating the JFET effect which is sandwiched by the 23: n - resistance -type epitaxial layer 22. Is.
こゝで、前記各抵抗Rch,Racは、MOS FETのユニットセル
を微細化することによつて共に小さくでき、また、前記
抵抗Rjについては、p形ベース層23間での間隔を適切に
広げることによつて小さくできるのであるが、前記抵抗
REpiは、阻止電圧VBとの関係で決まるために、高耐圧素
子においては、オン抵抗Ronの大半を占めることにな
り、この場合,例えば、500V,1000Vの素子構成において
は、それぞれのREpi/Ronが約0.8,0.9程度になるもの
で、この抵抗REpiをいかに小さくするかが、この種の高
耐圧MOS FETでの特性改善のための大きなポイントにな
る。Here, each of the resistors R ch and R ac can be reduced together by miniaturizing the unit cell of the MOS FET, and the resistor R j can be separated from each other between the p-type base layers 23. It can be reduced by spreading it properly,
Since R Epi is determined by the relationship with the blocking voltage V B, it occupies most of the on-resistance R on in the high breakdown voltage element. In this case, for example, in the element configuration of 500 V, 1000 V, Since R Epi / R on is about 0.8 and 0.9, how to reduce the resistance R Epi is a major point for improving the characteristics of this type of high breakdown voltage MOS FET.
このように、従来の構成によるパワーMOS FETでは、素
子の耐圧が高くなると、阻止電圧VBを規定するn-形エピ
タキシャル層でのオン抵抗が大きくなり、そのオン損失
が増加すると云う問題点があつた。As described above, in the power MOS FET having the conventional configuration, when the breakdown voltage of the element increases, the on-resistance in the n − type epitaxial layer that defines the blocking voltage V B increases, and the on-loss increases. Atsuta
従って、この発明の目的とするところは、従来のパワー
MOS FETにおけるこのような問題点に鑑み、n-形エピタ
キシャル層での抵抗REpiを低減させると共に、抵抗Rjに
ついてもこれを低減させることによつて、素子構成での
特性改善を図つた,オン抵抗の低い高耐圧によるこの種
の電界効果型半導体装置,こゝでは、オン抵抗の低い高
耐圧のパワーMOS FETを提供することである。Therefore, the purpose of this invention is
In view of such problems in the MOS FET, the resistance R Epi in the n − type epitaxial layer is reduced and the resistance R j is also reduced to improve the characteristics of the element structure. This type of field-effect semiconductor device has a low on-resistance and a high withstand voltage, and this is to provide a high withstand voltage power MOS FET with a low on-resistance.
前記目的を達成させるために、この発明に係る電界効果
型半導体装置は、Pよりも不純物拡散係数の小さな不純
物がドープされたn+形の基板と、この基板上に配設され
たPがドープされたn形のバッファ層と、このバッファ
層との接合面を介して配設されたn-形のエピタキシャル
層と、このエピタキシャル層の接合面内に形成され、基
板とエピタキシャル層との間に緩やかな不純物濃度分布
を与えるための浮き上がり領域と、エピタキシャル層の
主表面に選択的に形成され、その中央部である第1領域
部分とこの第1領域部分の周縁に設けられ底部までの深
さが前記第1領域部分よりも浅い第2領域部分とからな
るp形のベース領域と、このベース領域の表面に選択的
に形成されたn形のソース領域と、このソース領域とエ
ピタキシャル層とに挟まれるベース領域の第2領域部分
の表面上にゲート絶縁膜を介して形成されたゲート電極
と、ベース領域の第1領域部分からソース領域に跨って
形成されたソース電極と、基板に形成されたドレイン電
極とを備えたものである。To achieve the above object, a field-effect semiconductor device according to the present invention is an n + -type substrate doped with an impurity having a smaller impurity diffusion coefficient than P, and a P-doped substrate disposed on the substrate. Formed n-type buffer layer, an n − -type epitaxial layer disposed through a junction surface with the buffer layer, and a n-type epitaxial layer formed in the junction surface of the epitaxial layer and between the substrate and the epitaxial layer. A floating region for giving a gradual impurity concentration distribution, a first region portion that is selectively formed on the main surface of the epitaxial layer, and a central portion thereof, and a depth to the bottom portion provided at the periphery of the first region portion. A p-type base region consisting of a second region portion shallower than the first region portion, an n-type source region selectively formed on the surface of the base region, the source region and the epitaxial layer. A gate electrode formed on the surface of the second region portion of the base region sandwiched by a gate insulating film, a source electrode formed over the first region portion of the base region and the source region, and formed on the substrate. And a drain electrode.
従つて、この発明においては、素子構成でのオン抵抗R
onに最も大きく影響するn-形エピタキシャル層の層厚を
約1/2程度に薄くさせているために、このオン抵抗Ronを
十分に低減させ得るのであり、また、この場合には、n
形バッファ層,およびn-形エピタキシャル層側へのこの
n形バッファ層の浮き上り領域での抵抗を考慮する必要
があるが、同浮き上り領域での平均比抵抗を、n-形エピ
タキシャル層での比抵抗の1/10以下になるようにしてお
くことにより、この浮き上り領域部分でのオン抵抗Ron
への影響を殆んど無視でき、さらに、この素子構成での
耐圧については、装置に高電圧を印加させたときに延び
る空乏層の電界が、n+,n-接合での不純物濃度分布の緩
るやかな傾斜によつて緩和されるために、たとえ、n-形
エピタキシャル層の層厚を薄くさせても、その阻止電圧
VBが損なわれる惧れはなく、これらの結果,オン抵抗が
低くて素子耐圧の高いパワーMOS FETを得られるのであ
る。Therefore, in the present invention, the on-resistance R in the element configuration is
The on-resistance R on can be sufficiently reduced because the layer thickness of the n − type epitaxial layer that most significantly affects on is reduced to about 1/2, and in this case, n
Forms a buffer layer, and the n - type it is necessary to consider the resistance in the raised area of the n-type buffer layer on the epitaxial layer side, but the average specific resistance of the same the raised region, the n - type epitaxial layer The on-resistance R on in the floating region is set to 1/10 or less of the specific resistance of
The influence on the impurity concentration distribution at the n + , n - junction is determined by the electric field of the depletion layer extending when a high voltage is applied to the device. to be by connexion relaxed Yururu Ya kana inclined, though, n - even when the thickness of the -type epitaxial layer is thin, the blocking voltage
V B is not likely to be impaired, and as a result, a power MOS FET with low on-resistance and high element breakdown voltage can be obtained.
以下,この発明に係る電界効果型半導体装置,ここで
は、パワーMOS FETの一実施例につき、第1図を参照し
て詳細に説明する。An embodiment of a field effect semiconductor device according to the present invention, a power MOS FET here, will be described in detail below with reference to FIG.
第1図はこの実施例を適用したパワーMOS FETの概要構
成を模式的に示す断面図であり、この第1図実施例構成
において、前記した第2図従来例構成と同一符号は同一
または相当部分を表わしている。FIG. 1 is a sectional view schematically showing a schematic structure of a power MOS FET to which this embodiment is applied. In the structure of the embodiment of FIG. 1, the same symbols as those of the structure of the conventional example of FIG. Represents a part.
すなわち、この第1図に示した実施例構成においても、
n+形基板21としては、この場合,一般的に約1019atom/c
m3程度のn形不純物,例えば、拡散速度の遅いSbなどが
ドーピングされており、このn+形基板21上には、約0.05
〜0.5Ω‐cm程度のリンドープのn形バッファ層10を約2
0μm程度の厚さにエピタキシャル成長させ、さらに、
このn形バッファ層10上に、約30Ω‐cm程度の高比抵抗
をもつn-形エピタキシャル層22を約20μm程度の厚さに
形成させ、その後,熱処理することにより、同n形バッ
ファ層10をn-形エピタキシャル層22側に浮き上がらせて
浮き上り領域11を形成させ、これらのn+形基板21とn-形
エピタキシャル層22間に緩るやかな不純物濃度分布を与
える。That is, even in the configuration of the embodiment shown in FIG.
In this case, the n + -type substrate 21 is generally about 10 19 atom / c.
m 3 of about n-type impurity, for example, such as slow Sb is doped diffusion speed, on the n + -type substrate 21 is about 0.05
About 0.5 ~ 0.5Ω-cm phosphorus-doped n-type buffer layer 10
Epitaxially grow to a thickness of about 0 μm, and
On the n-type buffer layer 10, n has a high resistivity of about 30 [Omega-cm - to form the shape epitaxial layer 22 to a thickness of about 20 [mu] m, followed by heat treatment, the n-type buffer layer 10 Are raised toward the n − -type epitaxial layer 22 side to form a floating region 11, and a gentle impurity concentration distribution is provided between the n + -type substrate 21 and the n − -type epitaxial layer 22.
次に、前記n-形エピタキシャル層22の第2主表面に、イ
オン注入法とか選択拡散法などによつて約6〜10μm程
度の深さで対向される各p形ベース層23の第1領域部分
23aを選択的にそれぞれ形成させたのち、これらの上に
ゲート絶縁膜26を形成させ、かつこのゲート絶縁膜26を
介してのちにゲート電極27となるポリシリコン層を選択
的に形成させると共に、このポリシリコン層をマスクに
して各p形ベース層23の第2領域部分23bを選択的にそ
れぞれ形成させる。そして、これらの各第2領域部分23
bは、のちにチャネル領域25となるために、しきい値電
圧Vthとの関係でその不純物濃度,および拡散深さを選
定する必要があり、通常の場合,その値はとしては、5
×1013〜5×14程度の範囲内で、深さが4〜8μm程度
であればよい。Next, the first region of each p-type base layer 23 is opposed to the second main surface of the n − -type epitaxial layer 22 by a depth of about 6 to 10 μm by an ion implantation method or a selective diffusion method. part
After selectively forming 23a respectively, a gate insulating film 26 is formed on them, and a polysilicon layer to be a gate electrode 27 later is selectively formed via the gate insulating film 26, and Using this polysilicon layer as a mask, the second region portions 23b of each p-type base layer 23 are selectively formed. And each of these second area portions 23
Since b becomes the channel region 25 later, it is necessary to select its impurity concentration and diffusion depth in relation to the threshold voltage V th , and normally, the value is 5
The depth may be about 4 to 8 μm in the range of about 10 13 to 5 × 14 .
また次に、前記各p形ベース層23の表面部にあつて、前
記したポリシリコン層をマスクに用い、D-MOS方式によ
り、約3×1020atom/cm3程度の表面濃度をもつ各n+形ソ
ース層24を約0.5〜1μm程度の深さでそれぞれ選択的
に形成させる。そして、これらの各n+形ソース層24と前
記したn形エピタキシャル層22との間に挟まれる各第2
領域部分23bの表面部が、前記したチャネル領域25とな
るが、通常,このチャネル領域25の長さは、高耐圧のMO
S FETで、約3〜5μm程度である。Next, each of the p-type base layers 23 has a surface concentration of about 3 × 10 20 atom / cm 3 by the D-MOS method using the above-mentioned polysilicon layer as a mask. The n + type source layer 24 is selectively formed to a depth of about 0.5 to 1 μm. Each first sandwiched between each of these n + -type source layer 24 and the n-type epitaxial layer 22 above 2
The surface portion of the region portion 23b becomes the above-mentioned channel region 25, and normally, the length of this channel region 25 is high withstand voltage MO.
S FET has a thickness of about 3 to 5 μm.
さらに、前記各n+形ソース層24とn-形エピタキシャル層
22との間に形成されるそれぞれのチャネル領域25上に
は、n形エピタキシャル層22を覆いかつゲート絶縁膜26
を介してゲート電極27を、前記各p形ベース層23の第1
領域部分23aからn+形ソース層24に跨つてソース電極28
を、前記n+形基板21の裏面にドレイン電極29を、それぞ
れに形成させたものである。Further, each of the n + type source layer 24 and the n − type epitaxial layer
On the respective channel regions 25 formed between the gate insulating film 26 and the n-type epitaxial layer 22,
The gate electrode 27 through the first electrode of each p-type base layer 23.
The source electrode 28 extends from the region 23a to the n + -type source layer 24.
And a drain electrode 29 is formed on the back surface of the n + -type substrate 21, respectively.
従つて、以上のように構成されたこの実施例でのパワー
MOS FETにおいては、n-形エピタキシャル層22の厚さを
薄くさせる,つまり具体的には、この実施例の場合,約
15〜20μm程度にされていて、従来例の場合での同層の
厚さ約35〜40μm程度に比較するとき、約1/2に薄くさ
れるために、その抵抗REpiの値を大幅に低減できる。そ
してこのとき、これに代えて形成されるところの,n形バ
ッファ層10と浮き上り領域11との総合された厚さは、約
40μm程度とされるが、その平均比抵抗が1/10以下であ
ることから、これをn-形エピタキシャル層22に換算して
も、せいぜい約4μm程度にしか過ぎず、これによつ
て、従来例に比較するとき、オン抵抗Ronを約30%程度
までに低減させ得る。Therefore, the power of this embodiment configured as described above
In the MOS FET, the thickness of the n − -type epitaxial layer 22 is reduced, that is, specifically, in the case of this embodiment,
It is set to about 15 to 20 μm, and when compared with the thickness of the same layer of about 35 to 40 μm in the case of the conventional example, the value of the resistance R Epi is drastically reduced because it is thinned to about 1/2. It can be reduced. At this time, the total thickness of the n-type buffer layer 10 and the floating region 11, which is formed instead of this, is about
Although it is about 40 μm, its average specific resistance is 1/10 or less, so even if it is converted into the n − -type epitaxial layer 22, it is only about 4 μm at the most. When compared to the example, the on-resistance R on can be reduced to about 30%.
すなわち,以上のようにして、この実施例構成でのパワ
ーMOS FETによれば、そのオン抵抗Ronの値を、従来例構
成のものに比較して、おゝよそ35〜40%程度まで改善し
得るのである。That is, as described above, according to the power MOS FET in the configuration of this embodiment, the value of the on-resistance R on is improved by about 35 to 40% as compared with that of the configuration of the conventional example. You can do it.
なお、前記実施例においては、耐圧500Vの素子構成につ
いて述べたが、500V以上の高耐圧素子であつても、それ
ぞれの耐圧度に対応してn-形エピタキシャル層での比抵
抗と厚さ,n形バッファ層での比抵抗と厚さ,およびこの
n形バッファ層のn-形エピタキシャル層への浮き上りの
厚さなどを適切に設定することで、同様な作用,効果が
得られるものであり、また、この実施例では、第1導電
形としてp形,第2導電形としてn形を用いる場合につ
いて述べたが、これらの導電形を逆にしても有効なこと
は勿論である。Incidentally, in the above-mentioned examples, the element structure having a breakdown voltage of 500 V was described, but even with a high breakdown voltage element having a breakdown voltage of 500 V or more, the specific resistance and thickness of the n − type epitaxial layer corresponding to each breakdown voltage, resistivity and thickness of the n-type buffer layer, and the n of the n-type buffer layer - of such thickness the raised to form an epitaxial layer by appropriately setting, in which similar action, the effect is obtained Although, in this embodiment, the case where the p-type is used as the first conductivity type and the n-type is used as the second conductivity type, it is needless to say that it is effective to reverse these conductivity types.
以上詳述したように、この発明に係る電界効果型半導体
装置は、Pよりも不純物拡散係数の小さな不純物がドー
プされたn+形の基板と、この基板上に配設されたPがド
ープされたn形のバッファ層と、このバッファ層との接
合面を介して形成されたn-形のエピタキシャル層と、こ
のエピタキシャル層の接合面内に形成され、基板とエピ
タキシャル層との間に緩やかな不純物濃度分布を与える
ための浮き上がり領域と、エピタキシャル層の主表面に
選択的に形成され、その中央部である第1領域部分とこ
の第1領域部分の周縁に設けられ底部までの深さが前記
第1領域部分よりも浅い第2領域部分とからなるp形の
ベース領域と、このベース領域の表面に選択的に形成さ
れたn形のソース領域と、このソース領域とエピタキシ
ャル層とに挟まれるベース領域の第2領域部分の表面上
にゲート絶縁膜を介して形成されたゲート電極と、ベー
ス領域の第1領域部分からソース領域に跨って形成され
たソース電極と、基板に形成されたドレイン電極とを備
えたから、素子構成でのオン抵抗Ronを十分に低減させ
得るのであり、また、この素子構成での耐圧について
も、高電圧を印加させたときに延びる空乏層の電界が、
接合部分での不純物濃度分布の緩るやかな傾斜により緩
和されるため、たとえエピタキシャル層の層厚を薄くさ
せても、その阻止電圧VBが損なわれる惧れはなく、これ
らの結果,オン抵抗が低くて耐圧の高いパワーMOS FET
を得ることができ、しかも、構造的にも比較的簡単で容
易に実施できるなどの優れた特長を有するものである。As described above in detail, in the field effect semiconductor device according to the present invention, an n + -type substrate doped with an impurity having a smaller impurity diffusion coefficient than P and a P-doped substrate disposed on this substrate are doped. A n-type buffer layer and an n − -type epitaxial layer formed through a junction surface with the buffer layer, and a n-type epitaxial layer formed in the junction surface between the epitaxial layer and the substrate and the epitaxial layer. A floating region for giving an impurity concentration distribution, and a first region portion which is selectively formed on the main surface of the epitaxial layer and which is a central portion thereof and a peripheral portion of the first region portion, the depth to the bottom is It is sandwiched between a p-type base region including a second region portion shallower than the first region portion, an n-type source region selectively formed on the surface of the base region, and the source region and the epitaxial layer. A gate electrode formed on the surface of the second region portion of the base region via a gate insulating film, a source electrode formed over the first region portion of the base region and the source region, and a drain formed on the substrate. Since it is provided with an electrode, it is possible to sufficiently reduce the on-resistance R on in the element configuration, and also with respect to the breakdown voltage in this element configuration, the electric field of the depletion layer extending when a high voltage is applied,
Since the impurity concentration distribution at the junction is moderated by a gentle slope, even if the epitaxial layer is made thin, its blocking voltage V B is not likely to be impaired. Low power MOSFET with high breakdown voltage
In addition, it has the excellent features that it can be obtained and is relatively simple in structure and can be easily implemented.
第1図はこの発明装置の一実施例を適用したパワーMOS
FETの概要構成を模式的に示す断面図であり、また、第
2図は従来例での同上パワーMOS FETの概要構成を模式
的に示す断面図である。 10……n形バッファ層、11……浮き上り領域、21……n+
形基板、22……n-形エピタキシャル層、23……p形ベー
ス層、24……n+形ソース層、25……チャネル領域、26…
…ゲート絶縁膜、27……ゲート電極、28……ソース電
極、29……ドレイン電極。FIG. 1 shows a power MOS to which an embodiment of the device of the present invention is applied.
FIG. 2 is a cross-sectional view schematically showing the general structure of the FET, and FIG. 2 is a cross-sectional view schematically showing the general structure of the same power MOS FET as the conventional example. 10 …… n-type buffer layer, 11 …… floating region, 21 …… n +
Form substrate, 22 ...... n - -type epitaxial layer, 23 ...... p-type base layer, 24 ...... n + -type source layer 25 ...... channel region, 26 ...
… Gate insulating film, 27 …… Gate electrode, 28 …… Source electrode, 29 …… Drain electrode.
Claims (1)
ドープされたn+形の基板と、 この基板上に配設された、Pがドープされたn形のバッ
ファ層と、 このバッファ層との接合面を介して形成されたn-形のエ
ピタキシャル層と、 このエピタキシャル層の前記接合面内に形成され、前記
基板と前記エピタキシャル層との間に緩やかな不純物濃
度分布を与えるための浮き上がり領域と、 前記エピタキシャル層の主表面に選択的に形成され、そ
の中央部である第1領域部分と前記第1領域部分の周縁
に設けられ底部までの深さが前記第1領域部分よりも浅
い第2領域部分とからなるp形のベース領域と、 このベース領域の表面に選択的に形成されたn形のソー
ス領域と、 このソース領域と前記エピタキシャル層とに挟まれる前
記第2領域部分の表面上にゲート絶縁膜を介して形成さ
れたゲート電極と、 前記ベース領域の第1領域部分から前記ソース領域に跨
って形成されたソース電極と、 前記基板に形成されたドレイン電極と を備えた電界効果型半導体装置。1. An n + -type substrate doped with an impurity having an impurity diffusion coefficient smaller than P, an n-type buffer layer doped with P and disposed on the substrate, and the buffer layer. And an n − -type epitaxial layer formed via the junction surface of the epitaxial layer, and a floating region formed in the junction surface of the epitaxial layer for providing a gentle impurity concentration distribution between the substrate and the epitaxial layer. And a first region portion which is selectively formed on the main surface of the epitaxial layer and which is provided at the center of the first region portion and at the periphery of the first region portion and has a depth to the bottom that is shallower than that of the first region portion. A p-type base region composed of two regions, an n-type source region selectively formed on the surface of the base region, and a second region portion sandwiched between the source region and the epitaxial layer. A gate electrode formed on the surface via a gate insulating film, a source electrode formed over the first region of the base region and the source region, and a drain electrode formed on the substrate. Field effect semiconductor device.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62241841A JPH0734471B2 (en) | 1987-09-24 | 1987-09-24 | Field effect semiconductor device |
EP88111722A EP0308612B1 (en) | 1987-09-24 | 1988-07-20 | Field effect transistor and manufacturing method thereof |
DE3851815T DE3851815T2 (en) | 1987-09-24 | 1988-07-20 | Field effect transistor and its manufacturing method. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62241841A JPH0734471B2 (en) | 1987-09-24 | 1987-09-24 | Field effect semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6482567A JPS6482567A (en) | 1989-03-28 |
JPH0734471B2 true JPH0734471B2 (en) | 1995-04-12 |
Family
ID=17080297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62241841A Expired - Lifetime JPH0734471B2 (en) | 1987-09-24 | 1987-09-24 | Field effect semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0734471B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009158788A (en) * | 2007-12-27 | 2009-07-16 | Oki Semiconductor Co Ltd | Vertical mosfet and manufacturing method of the vertical mosfet |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03188679A (en) * | 1989-12-18 | 1991-08-16 | Matsushita Electron Corp | Manufacture of semiconductor device |
US6635544B2 (en) * | 2001-09-07 | 2003-10-21 | Power Intergrations, Inc. | Method of fabricating a high-voltage transistor with a multi-layered extended drain structure |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5742164A (en) * | 1980-08-27 | 1982-03-09 | Hitachi Ltd | Semiconductor device |
JPS57153469A (en) * | 1981-03-18 | 1982-09-22 | Toshiba Corp | Insulated gate type field effect transistor |
-
1987
- 1987-09-24 JP JP62241841A patent/JPH0734471B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009158788A (en) * | 2007-12-27 | 2009-07-16 | Oki Semiconductor Co Ltd | Vertical mosfet and manufacturing method of the vertical mosfet |
Also Published As
Publication number | Publication date |
---|---|
JPS6482567A (en) | 1989-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3108439B2 (en) | Trench field-effect transistor with reduced punch-through and low RDSon | |
JP2622378B2 (en) | Method for manufacturing high power MOSFET device | |
US5016066A (en) | Vertical power MOSFET having high withstand voltage and high switching speed | |
US6091086A (en) | Reverse blocking IGBT | |
US4837606A (en) | Vertical MOSFET with reduced bipolar effects | |
US5264719A (en) | High voltage lateral semiconductor device | |
US5801431A (en) | MOS gated semiconductor device with source metal covering the active gate | |
US4729001A (en) | Short-channel field effect transistor | |
US4952991A (en) | Vertical field-effect transistor having a high breakdown voltage and a small on-resistance | |
JPH0330310B2 (en) | ||
JPS6359545B2 (en) | ||
JPH0370387B2 (en) | ||
JP2001077363A (en) | Silicon carbide semiconductor device and its manufacturing method | |
JPH08172184A (en) | High-voltage mos transistor | |
EP0071335B1 (en) | Field effect transistor | |
JP2000077663A (en) | Field-effect semiconductor device | |
JPH07101737B2 (en) | Method for manufacturing semiconductor device | |
JP2808871B2 (en) | Method for manufacturing MOS type semiconductor device | |
JPS6152591B2 (en) | ||
JPH0734471B2 (en) | Field effect semiconductor device | |
JPH0888357A (en) | Lateral igbt | |
EP0776048A2 (en) | MOS gated device base region with high breakdown resistance | |
JPH0734470B2 (en) | Field effect semiconductor device | |
JPH0888290A (en) | Semiconductor device and using method therefor | |
JPH03261179A (en) | Insulated gate type bipolar transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080412 Year of fee payment: 13 |