JPH07332353A - Dynamic pressurizing bearing - Google Patents

Dynamic pressurizing bearing

Info

Publication number
JPH07332353A
JPH07332353A JP6123950A JP12395094A JPH07332353A JP H07332353 A JPH07332353 A JP H07332353A JP 6123950 A JP6123950 A JP 6123950A JP 12395094 A JP12395094 A JP 12395094A JP H07332353 A JPH07332353 A JP H07332353A
Authority
JP
Japan
Prior art keywords
bearing
shaft
dynamic pressure
thrust
thrust bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6123950A
Other languages
Japanese (ja)
Inventor
Katsuhiko Tanaka
克彦 田中
Hiromitsu Asai
拡光 浅井
Ikunori Sakatani
郁紀 坂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP6123950A priority Critical patent/JPH07332353A/en
Publication of JPH07332353A publication Critical patent/JPH07332353A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/52Polyphenylene sulphide [PPS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/60Polyamides [PA]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/66Acetals, e.g. polyoxymethylene [POM]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/80Thermosetting resins
    • F16C2208/86Epoxy resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/60Thickness, e.g. thickness of coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To provide a dynamic pressurizing bearing which has an excellent slidability of a bearing surface and an excellent productivity at a low cost. CONSTITUTION:On the outer surface of the shaft 30 of a dynamic pressure bearing having a sleeve 2 which cooperates with the shaft 30, a thrust bearing flange 35 is formed through the insertion molding of synthetic resin, and the thrust receiving surfaces 36 and 37 as the bearing surfaces having the grooves 36a and 37a for generating dynamic pressure are formed. Accordingly, the use of the thermoplastic resin having the large contraction performance is enabled, and the excellent dimension precision and the small change through the lapse of time are enabled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、摺動性が良く、低コス
トの動圧軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-cost dynamic pressure bearing having good slidability.

【0002】[0002]

【従来の技術】従来の動圧軸受としては、例えば図4に
示すようなものがある。これは、磁気ディスク装置のス
ピンドルモータに使われているものであって、軸1と、
その軸1と共働する(すなわち、相対回転運動により動
圧を発生する)スリーブ2を備えている。この図の場合
は、軸1が固定されており、スリーブ2はその軸1のま
わりを回転することにより動圧を発生して非接触に支持
されるようになっている。
2. Description of the Related Art As a conventional dynamic pressure bearing, there is, for example, one shown in FIG. This is used for a spindle motor of a magnetic disk device, and includes a shaft 1 and
It has a sleeve 2 which cooperates with the shaft 1 (that is, produces a dynamic pressure by a relative rotational movement). In this case, the shaft 1 is fixed, and the sleeve 2 rotates around the shaft 1 to generate a dynamic pressure and is supported in a non-contact manner.

【0003】スリーブ2は銅合金またはアルミ合金など
の軟質金属製で軸心部に軸孔3を有し、その内周面に一
方の軸受面としての二個のラジアル軸受面4,5を有し
ている。それらの各ラジアル軸受面4,5にはヘリング
ボーン状の動圧発生用のみぞ4a,5aがそれぞれ形成
されている。また、スリーブ2の一端(図4では上端)
の、軸孔3より大径の凹部10には二個のスラスト軸受
面7,8が設けられている。一方のスラスト軸受面7
は、凹部10の上端を蓋するように取り付けたドーナツ
板形のスラスト板9の下面に形成されている。他方のス
ラスト軸受面8は、そのスラスト板9に対向している凹
部10の底面部に形成されている。
The sleeve 2 is made of a soft metal such as a copper alloy or an aluminum alloy, has a shaft hole 3 in the shaft center portion, and has two radial bearing surfaces 4 and 5 as one bearing surface on the inner peripheral surface thereof. is doing. Herringbone-shaped grooves 4a and 5a for generating dynamic pressure are formed on the radial bearing surfaces 4 and 5, respectively. Also, one end of the sleeve 2 (upper end in FIG. 4)
In the recess 10 having a diameter larger than that of the shaft hole 3, two thrust bearing surfaces 7 and 8 are provided. One thrust bearing surface 7
Is formed on the lower surface of a doughnut-shaped thrust plate 9 attached so as to cover the upper end of the recess 10. The other thrust bearing surface 8 is formed on the bottom surface of the recess 10 facing the thrust plate 9.

【0004】軸1はステンレス鋼製で、ハウジング11
の底面に立設されており、上端部の外径面1aに圧入さ
れた銅合金またはアルミ合金などの軟質金属製のスラス
ト軸受フランジ13を有している。スラスト軸受フラン
ジ13はスリーブ2の前記凹部10に位置しており、上
下両面がそれぞれ一方の軸受面としてのスラスト受面1
5,16である。上面のスラスト受面15には動圧発生
用のみぞ15aが形成されていて、他方の軸受面である
スラスト軸受面7とスラスト軸受すきま17を介し対向
している(但し、スリーブ2の非回転時には、両面7,
15は接触してスラスト軸受すきま17は生じない)。
また、下面のスラスト受面16には動圧発生用のみぞ1
6aが形成されていて、他方の軸受面であるスラスト軸
受面8とスラスト軸受すきま18を介し対向している。
The shaft 1 is made of stainless steel and has a housing 11
Has a thrust bearing flange 13 made of a soft metal such as a copper alloy or an aluminum alloy and press-fitted into the outer diameter surface 1a of the upper end portion. The thrust bearing flange 13 is located in the recess 10 of the sleeve 2, and the upper and lower surfaces are the thrust receiving surface 1 as one bearing surface.
5,16. A groove 15a for generating a dynamic pressure is formed on the thrust receiving surface 15 on the upper surface and faces the thrust bearing surface 7 which is the other bearing surface via a thrust bearing clearance 17 (however, the sleeve 2 does not rotate). Sometimes both sides 7,
No. 15 is in contact with each other and no thrust bearing clearance 17 is produced.
Further, the thrust receiving surface 16 on the lower surface has a groove for generating dynamic pressure.
6a is formed and is opposed to the other bearing surface, that is, the thrust bearing surface 8 via the thrust bearing clearance 18.

【0005】軸1の外周面には他方の軸受面としての二
個のラジアル受面21,22が間に潤滑剤溜まり24を
置いて形成され、軸受すきま23を介し前記一方の軸受
面であるラジアル軸受面4,5に対向している。上記ス
リーブ2の外周面にはハブ25が一体回転可能に取り付
けられており、スリーブ2の下部外周とハブ25の下部
内周との間には環状の凹所26が形成されている。その
凹所26のハブ内径面にロータ(マグネット)27が固
定され、そのロータ27に径方向のエアギャップGを隔
てて周対向に配されたステータ28はハウジング11に
固定され、ラジアルギャップ形のブラシレスDCモータ
Mが構成されている。ハブ25の外面には図外の磁気デ
ィスクが搭載され、モータMによりスリーブ2を回転さ
せることにより、磁気ディスクを駆動する構造になって
いる。
On the outer peripheral surface of the shaft 1, two radial receiving surfaces 21 and 22 are formed as the other bearing surface with a lubricant reservoir 24 interposed therebetween, and one bearing surface is provided through a bearing clearance 23. It faces the radial bearing surfaces 4, 5. A hub 25 is integrally rotatably attached to the outer peripheral surface of the sleeve 2, and an annular recess 26 is formed between the lower outer periphery of the sleeve 2 and the lower inner periphery of the hub 25. A rotor (magnet) 27 is fixed to the inner diameter surface of the hub of the recess 26, and a stator 28, which is circumferentially opposed to the rotor 27 with a radial air gap G, is fixed to the housing 11 and has a radial gap shape. A brushless DC motor M is configured. A magnetic disk (not shown) is mounted on the outer surface of the hub 25, and the motor M rotates the sleeve 2 to drive the magnetic disk.

【0006】ここに、ラジアル軸受を構成する一方の軸
受面としての上記ラジアル軸受面4,5の動圧発生用の
みぞ4a,5aは、スリーブ2の内径面にボール転造に
よる塑性加工で形成されている。また、スラスト軸受を
構成する一方の軸受面としてのスラスト受面15,16
の動圧発生用のみぞ15a,16aは、軸1の外径面1
aに圧入されたスラスト軸受フランジ13の両端面にプ
レスによる塑性加工で形成されている。
Here, the grooves 4a and 5a for generating dynamic pressure of the radial bearing surfaces 4 and 5 as one bearing surface constituting the radial bearing are formed on the inner diameter surface of the sleeve 2 by plastic rolling by ball rolling. Has been done. Further, the thrust bearing surfaces 15 and 16 as one bearing surface constituting the thrust bearing
The grooves 15a and 16a for generating the dynamic pressure are formed on the outer diameter surface 1 of the shaft 1.
The thrust bearing flange 13 press-fitted into a is formed on both end faces by plastic working by pressing.

【0007】[0007]

【発明が解決しようとする課題】動圧軸受は、起動・停
止時には軸1とスリーブ2とが接触回転する。したがっ
て、軸受耐久性を向上させるには軸受面に摺動性の良い
材料を使うことが望ましい。しかしながら、従来の動圧
軸受では、スリーブの材料として摺動性が必ずしも良く
ない銅合金やアルミ合金を用いていたため、使用される
潤滑剤の性状如何では起動・停止耐久性に問題た生じる
ことがあった。特に、スラスト軸受では、平面でアキシ
アル荷重を受け外周部では周速も速いので、ラジアル軸
受に比べて起動・停止耐久性が短くなることが多いとい
う問題点がある。
In the dynamic pressure bearing, the shaft 1 and the sleeve 2 rotate in contact with each other when starting and stopping. Therefore, in order to improve the durability of the bearing, it is desirable to use a material having good slidability on the bearing surface. However, in conventional hydrodynamic bearings, copper alloy or aluminum alloy, which does not necessarily have good slidability, is used as the material of the sleeve, so there may be problems in start / stop durability depending on the properties of the lubricant used. there were. In particular, thrust bearings have a problem in that the start / stop durability is often shorter than that of radial bearings, since the peripheral speed of the thrust bearing is high and the peripheral speed is high at the outer peripheral portion.

【0008】また、スラスト軸受フランジを軸の外径面
に圧入しているため、部品点数が増えるとともに、フラ
ンジの内径面を精度良く加工する必要があり、コストが
高くなるという問題点もある。そこで、本発明は、上記
従来の動圧軸受の問題点に着目してなされたものであ
り、軸受面の摺動性に優れ、かつ量産性に優れた低コス
トの動圧軸受を提供することを目的としている。
Further, since the thrust bearing flange is press-fitted into the outer diameter surface of the shaft, the number of parts is increased, and the inner diameter surface of the flange needs to be machined with high precision, which causes a problem of high cost. Therefore, the present invention has been made in view of the problems of the conventional dynamic pressure bearings described above, and provides a low cost dynamic pressure bearing excellent in sliding property of a bearing surface and excellent in mass productivity. It is an object.

【0009】[0009]

【課題を解決するための手段】本発明は、軸と共働する
スリーブを備えた動圧軸受に係り、軸外面にインサート
成形された合成樹脂には動圧発生用の溝を有する軸受面
が設けられていることを特徴とするものである。
SUMMARY OF THE INVENTION The present invention relates to a dynamic pressure bearing having a sleeve that cooperates with a shaft, and a synthetic resin insert-molded on the outer surface of the shaft has a bearing surface having a groove for generating dynamic pressure. It is characterized by being provided.

【0010】[0010]

【作用】本発明の動圧軸受は、動圧発生用の溝を持つ軸
受面が合成樹脂のため摺動性が良い。しかも、当該軸受
面はインサート成形で射出成形され低コストでの量産が
可能である。インサート成形された動圧発生用の溝を持
つ軸受面は、成形後の冷却過程の合成樹脂の収縮を利用
して軸に密着して固着させる。したがって、成形収縮が
比較的大きい熱可塑性樹脂の使用が可能であり、使用樹
脂の制約が少ない。
The dynamic pressure bearing of the present invention has good slidability because the bearing surface having the groove for generating the dynamic pressure is made of synthetic resin. Moreover, the bearing surface is injection-molded by insert molding, and mass production is possible at low cost. The bearing surface having a groove for dynamic pressure generation, which is insert-molded, is closely attached and fixed to the shaft by utilizing shrinkage of the synthetic resin in the cooling process after molding. Therefore, it is possible to use a thermoplastic resin having a relatively large molding shrinkage, and there are few restrictions on the resin used.

【0011】軸外面に合成樹脂のインサート成形で形成
した軸受面は、同時成形で形成する動圧発生用の溝の寸
法が精度が確保しやすい。また合成樹脂層と軸とが密着
し、寸法精度の経時変化が少ない。また、本発明の動圧
軸受の場合、ラジアル軸受面とスラスト軸受面の直角度
は金型精度で決まり、品質が安定する。
In the bearing surface formed by insert molding of synthetic resin on the outer surface of the shaft, it is easy to ensure the accuracy of the dimension of the groove for dynamic pressure generation formed by simultaneous molding. In addition, the synthetic resin layer and the shaft are in close contact with each other, and the dimensional accuracy does not change with time. Further, in the case of the dynamic pressure bearing of the present invention, the squareness of the radial bearing surface and the thrust bearing surface is determined by the precision of the mold, and the quality is stable.

【0012】ちなみに、金属製のスリーブ内径に合成樹
脂層を成形しようとすると、成形後の冷却過程に合成樹
脂がスリーブ面から剥離してしまう。これを防止するに
は、成形収縮の少ない熱硬化性樹脂を用い、あらかじめ
金属製スリーブ内面に接着剤を塗って成形する。その場
合、熱硬化性樹脂を用いるため金型内で硬化するまで保
持する必要があり、成形サイクルが長くなって量産性が
低下する。
Incidentally, if an attempt is made to mold a synthetic resin layer on the inner diameter of a metal sleeve, the synthetic resin will peel off from the sleeve surface during the cooling process after molding. In order to prevent this, a thermosetting resin with less molding shrinkage is used, and an adhesive is applied to the inner surface of the metal sleeve in advance for molding. In that case, since a thermosetting resin is used, it is necessary to hold the resin in the mold until it is cured, which lengthens the molding cycle and reduces the mass productivity.

【0013】[0013]

【実施例】以下に、本発明の実施例を図面を参照して説
明する。なお、従来と同一または相当部分には同一の符
号を付して、重複する説明を省略する。図1は、本発明
の一実施例の動圧軸受の断面図であり、軸30とその周
囲を相対回転運動するスリーブ2とで構成されている。
Embodiments of the present invention will be described below with reference to the drawings. It should be noted that the same or corresponding portions as those of the conventional one are denoted by the same reference numerals, and duplicate description will be omitted. FIG. 1 is a cross-sectional view of a dynamic pressure bearing according to an embodiment of the present invention, which is composed of a shaft 30 and a sleeve 2 which makes a relative rotational movement around the shaft 30.

【0014】前記軸30は、例えば熱処理により硬くし
たステンレス鋼からなる軸体の外周面の上下二箇所に、
潤滑剤溜まり24を間に置いて、軸受面としての円筒状
のラジアル受面33,34を有するとともに、上端部の
外径面31aにインサート成形で形成された合成樹脂製
のスラスト軸受フランジ35を有している。合成樹脂と
しては、例えばPPS(ポリフェニレンサルファイド)
樹脂やエポキシ樹脂,ポリアミド樹脂,ポリアセタール
樹脂に、炭素繊維,エコノール,グラファイト,二硫化
モリブデン,ポリイミド等の耐摩耗性向上物質を充填し
たものが好ましい。
The shaft 30 is provided, for example, at two locations above and below the outer peripheral surface of a shaft body made of stainless steel hardened by heat treatment.
With the lubricant reservoir 24 in between, it has cylindrical radial receiving surfaces 33, 34 as bearing surfaces, and a thrust bearing flange 35 made of synthetic resin formed by insert molding on the outer diameter surface 31a of the upper end portion. Have Examples of the synthetic resin include PPS (polyphenylene sulfide)
A resin, epoxy resin, polyamide resin, or polyacetal resin filled with a wear resistance improving substance such as carbon fiber, econol, graphite, molybdenum disulfide, or polyimide is preferable.

【0015】そのスラスト軸受フランジ35の上下両面
は、それぞれ軸受面としてのスラスト受面36,37と
され、上面のスラスト受面36には動圧発生用のみぞ3
6aが形成され、下面のスラスト受面37には動圧発生
用のみぞ37aが形成されている。これらの動圧発生用
の溝36a,37aは、スラスト軸受フランジ35のイ
ンサート成形時に金型から転写して形成される。
The upper and lower surfaces of the thrust bearing flange 35 are thrust bearing surfaces 36 and 37, respectively, which serve as bearing surfaces. The thrust bearing surface 36 on the upper surface has a groove 3 for generating dynamic pressure.
6a is formed, and a thrust receiving surface 37 on the lower surface is formed with a groove 37a for generating dynamic pressure. These dynamic pressure generating grooves 36a and 37a are formed by transferring from the mold during insert molding of the thrust bearing flange 35.

【0016】軸30にインサート成形されたスラスト軸
受フランジ35は、合成樹脂の収縮によって軸の外径面
31aに密着する。図示のものは、軸外径面31aに予
め抜け止め用の周溝31bを設けてある。しかし、抜け
止め用の周溝31bは必要に応じて設ければよく、アキ
シアル荷重が小さい場合には設けなくて良い。なお、周
溝31bの代わりにローレット加工によるあやめ模様の
ようなものでもよく、その形状や周溝の本数は特に限定
はされない。
The thrust bearing flange 35, which is insert-molded on the shaft 30, comes into close contact with the outer diameter surface 31a of the shaft due to the contraction of the synthetic resin. In the example shown in the figure, a circumferential groove 31b for preventing slipping out is provided in advance on the shaft outer diameter surface 31a. However, the circumferential groove 31b for preventing slippage may be provided if necessary, and may not be provided when the axial load is small. Instead of the circumferential groove 31b, a knurled pattern such as an iris pattern may be used, and the shape and the number of circumferential grooves are not particularly limited.

【0017】この実施例のスリーブ2は軟質金属からな
り、軸孔3の内径面に二個のラジアル軸受面4,5を有
してボール転造により動圧発生用の溝4a,5aがそれ
ぞれ形成され、他方の軸受面である軸30のラジアル受
面33,34に対向している。また、スリーブ2の上端
の凹部10に相対して設けられた二個のスラスト軸受面
7,8は、前記軸30の軸受面であるスラスト受面3
6,37に対向している。
The sleeve 2 of this embodiment is made of a soft metal, has two radial bearing surfaces 4 and 5 on the inner diameter surface of the shaft hole 3, and has grooves 4a and 5a for dynamic pressure generation by ball rolling, respectively. It is formed and faces the radial receiving surfaces 33, 34 of the shaft 30, which is the other bearing surface. Further, the two thrust bearing surfaces 7 and 8 provided facing the recess 10 at the upper end of the sleeve 2 are the thrust receiving surface 3 which is the bearing surface of the shaft 30.
It faces 6,37.

【0018】次に作用を説明する。回転以前の静止状態
では、スラスト軸受面7とこれに対向した他方の軸受面
であるスラスト受面36とが接触しており、両軸受面の
間にスラスト軸受すきま17は介在しない。動圧軸受の
軸30の周りをスリーブ2が回転すると、スラスト軸受
用の動圧発生用みぞ15a,16aのポンピング作用で
スラスト軸受すきま17,18内の流体の圧力が高くな
り、スラスト受面36,37はスラスト軸受面7,8と
非接触で回転する。同時に、ラジアル軸受用の動圧発生
用みぞ4a,5aのポンピング作用でラジアル軸受すき
ま23内の流体の圧力が高くなり、ラジアル受面33,
34はラジアル軸受面4a,5aと非接触で回転する。
Next, the operation will be described. In the stationary state before rotation, the thrust bearing surface 7 is in contact with the thrust bearing surface 36 that is the other bearing surface facing the thrust bearing surface 7, and the thrust bearing clearance 17 is not present between both bearing surfaces. When the sleeve 2 rotates around the shaft 30 of the dynamic pressure bearing, the fluid pressure in the thrust bearing clearances 17, 18 increases due to the pumping action of the dynamic pressure generating grooves 15a, 16a for the thrust bearing, and the thrust receiving surface 36 , 37 rotate in non-contact with the thrust bearing surfaces 7, 8. At the same time, the pumping action of the dynamic pressure generating grooves 4a, 5a for the radial bearing increases the pressure of the fluid in the radial bearing clearance 23, so that the radial receiving surface 33,
34 rotates without contacting the radial bearing surfaces 4a and 5a.

【0019】しかし、回転の初期では、動圧発生用の溝
36aのポンピング作用によるスラスト軸受すきま17
内の流体の圧力はスリーブ2を浮上させるには不十分で
あり、スラスト軸受面7とスラスト受面36とが接触回
転する。また、スリーブ2が軸1に非接触で回転してい
る状態から停止するときも、回転速度が低下してくると
スラスト軸受すきま17内の流体の圧力が減少してスラ
スト軸受面7とスラスト受面36とが同様に接触回転し
はじめる。
However, in the initial stage of rotation, the thrust bearing clearance 17 is generated by the pumping action of the groove 36a for generating dynamic pressure.
The pressure of the fluid inside is insufficient to float the sleeve 2, and the thrust bearing surface 7 and the thrust receiving surface 36 rotate in contact with each other. Even when the sleeve 2 stops rotating from the shaft 1 without contacting the shaft 1, when the rotation speed decreases, the fluid pressure in the thrust bearing clearance 17 decreases and the thrust bearing surface 7 and the thrust bearing surface 7 are reduced. Similarly, the surface 36 starts rotating in contact with the surface 36.

【0020】このとき接触回転するスラスト軸受フラン
ジ35のスラスト受面36は摺動性の良好な合成樹脂で
あり、軟質金属からなるスリーブのスラスト軸受面7と
の接触抵抗は小さく、したがって両者の摩耗は従来に比
べて大幅に低減される。スラスト軸受だけに合成樹脂を
用いたこの実施例の動圧軸受は、特に、アキシアル荷重
に比べてラジアル荷重が小さいものに適用した場合に、
動圧軸受の起動・停止時の耐久性が大幅に向上し、軸受
寿命が延長される。
At this time, the thrust bearing surface 36 of the thrust bearing flange 35 rotating in contact with each other is made of a synthetic resin having a good slidability, and the contact resistance of the sleeve made of a soft metal with the thrust bearing surface 7 is small, so that the wear of both is carried out. Is significantly reduced compared to the conventional one. The dynamic pressure bearing of this embodiment, which uses a synthetic resin only for the thrust bearing, is particularly applicable to a bearing having a smaller radial load than the axial load,
The durability of the hydrodynamic bearing at start and stop is greatly improved, and the bearing life is extended.

【0021】この場合、動圧発生用の溝36aを有する
軸受面であるスラスト受面36が設けられているスラス
ト軸受フランジ35はインサート成形で形成されてお
り、従来の金属製のフランジのように切削加工する必要
がなく、軸への圧入による組み立ても不要であり、しか
も成形時に動圧発生用の溝36a,37aが加工できる
ので、量産性に優れかつコストが安い。また、動圧軸受
内の空気だまりを外部に連通させるための空気抜き孔
も、従来は機械加工していたのに対して必要に応じて上
記インサート成形時に加工することが可能であり、その
点でもコストが低減される。
In this case, the thrust bearing flange 35 provided with the thrust receiving surface 36 which is the bearing surface having the groove 36a for generating the dynamic pressure is formed by insert molding, and like a conventional metal flange. Since there is no need to perform cutting work, assembly by press-fitting into the shaft is unnecessary, and since the grooves 36a and 37a for generating dynamic pressure can be processed during molding, mass productivity is excellent and the cost is low. Further, the air vent hole for communicating the air pocket in the dynamic pressure bearing to the outside can be machined at the time of insert molding as required, whereas it was machined conventionally, but in that respect as well. Cost is reduced.

【0022】図2に他の実施例を示す。この第2の実施
例は、軸30Aのラジアル軸受及びスラスト軸受共に、
合成樹脂のインサート成形により一体に軸本体に形成し
た点が上記第1の実施例と異なっている。すなわち、ス
テンレス鋼製の軸30Aの上端部に合成樹脂のスラスト
軸受フランジ35Aをインサート成形すると同時に、軸
外径面のラジアル受面33A,34Aの部分も同合成樹
脂層40でインサート成形してある。そして、インサー
ト成形時に同時に、スラスト軸受フランジ35Aのスラ
スト受面36A,37Aに動圧発生用の溝36a,37
aを形成すると共に、軸外径面のラジアル受面33A,
34Aに動圧発生用の溝33a,34aを形成してい
る。軸受面であるラジアル受面33A,34Aの合成樹
脂層40の厚さは、薄すぎると樹脂の流動が悪く、厚す
ぎると成形精度が確保しにくくなるので、0.2 〜1 mm
程度が好ましい。
FIG. 2 shows another embodiment. In this second embodiment, both the radial bearing and the thrust bearing of the shaft 30A are
This is different from the first embodiment in that the shaft body is integrally formed by insert molding of synthetic resin. That is, the thrust bearing flange 35A made of synthetic resin is insert-molded on the upper end of the shaft 30A made of stainless steel, and at the same time, the radial receiving surfaces 33A, 34A of the shaft outer diameter surface are also insert-molded with the same synthetic resin layer 40. . At the same time when the insert molding is performed, the thrust receiving surfaces 36A and 37A of the thrust bearing flange 35A have grooves 36a and 37 for generating dynamic pressure.
a is formed, and the radial receiving surface 33A of the shaft outer diameter surface,
Grooves 33a and 34a for generating dynamic pressure are formed in 34A. If the thickness of the synthetic resin layer 40 of the radial receiving surfaces 33A, 34A, which is the bearing surface, is too thin, the resin flow is poor, and if it is too thick, it becomes difficult to secure the molding accuracy.
A degree is preferable.

【0023】この実施例は、ラジアル軸受及びスラスト
軸受共に、合成樹脂のインサート成形により形成したた
め、一層量産性に優れ低コストである。また、軸の外径
面にインサート成形すると、成形時の軸受面の寸法精度
が向上するとともに、合成樹脂が軸に密着しているので
経時変化のおそれが少ないという利点がある。この実施
例にあっては、ラジアル荷重が大きくても、ラジアル軸
受面の起動停止耐久性を向上させることができる。
In this embodiment, since both the radial bearing and the thrust bearing are formed by insert molding of synthetic resin, the mass productivity is further excellent and the cost is low. In addition, insert molding on the outer diameter surface of the shaft has the advantages that the dimensional accuracy of the bearing surface at the time of molding is improved and that the synthetic resin is in close contact with the shaft, so there is little risk of aging. In this embodiment, even if the radial load is large, the start / stop durability of the radial bearing surface can be improved.

【0024】図3に更に他の実施例を示す。この実施例
は、軸30Bがスリーブ2Aを貫通している軸貫通形と
した場合の例である。すなわち、軸30Bは、ステンレ
ス鋼製の軸の中央附近に合成樹脂製のスラスト軸受フラ
ンジ35Bを、又その両側の軸外径面に合成樹脂製軸受
面としてのラジアル受面33B,34Bを一体にインサ
ート成形するとともに、スラスト軸受フランジ35Bの
スラスト受面36B,37Bに動圧発生用の溝36a,
37aを形成し、かつ、軸外径面のラジアル受面33
B,34Bに動圧発生用の溝33a,34aを形成して
いる。
FIG. 3 shows still another embodiment. This embodiment is an example of a shaft penetrating type in which the shaft 30B penetrates the sleeve 2A. That is, the shaft 30B has a thrust bearing flange 35B made of synthetic resin near the center of the stainless steel shaft, and radial receiving surfaces 33B, 34B as synthetic resin bearing surfaces integrally formed on the shaft outer diameter surfaces on both sides thereof. In addition to the insert molding, the thrust bearing surfaces 36B and 37B of the thrust bearing flange 35B have grooves 36a for generating dynamic pressure,
37a and the radial receiving surface 33 of the shaft outer diameter surface
Grooves 33a and 34a for generating dynamic pressure are formed in B and 34B.

【0025】スリーブ2Aの方は、軸芯を貫通する軸孔
3Aの中間により大径の凹部10Aを有し、その凹部1
0Aに軸30Bのスラスト軸受フランジ35Bが配設さ
れている。そして凹部10Aの両側の前記軸孔3Aの内
径面には、軸のラジアル受面33B,34Bにラジアル
軸受すきま23を介して対向するラジアル軸受面4A,
5Aが形成されている。一方、凹部10Aの相対する平
面には、軸にインサート成形されたスラスト軸受フラン
ジ35Bのスラスト受面36B,37Bに(回転状態
で)スラスト軸受すきま17,18を介して対向するス
ラスト軸受面7A,8Aが形成されている。
The sleeve 2A has a large-diameter recess 10A in the middle of the shaft hole 3A penetrating the shaft core.
The thrust bearing flange 35B of the shaft 30B is arranged at 0A. Then, on the inner diameter surface of the shaft hole 3A on both sides of the recess 10A, radial bearing surfaces 4A, which face the radial receiving surfaces 33B, 34B of the shaft through the radial bearing clearance 23,
5A is formed. On the other hand, on the opposing flat surfaces of the recess 10A, the thrust bearing surface 7A, which opposes the thrust receiving surfaces 36B, 37B of the thrust bearing flange 35B insert-molded on the shaft (in the rotating state) via the thrust bearing clearances 17, 18, 8A is formed.

【0026】この実施例によっても、上記第2の実施例
と略同様の作用・効果を得ることができる。なお、上記
各実施例では、アキシアル荷重をスラスト軸受フランジ
の両面の軸受面で受ける構造のものを説明したが、アキ
シアル荷重の負荷される方向が一方向であるならば、直
接に軸の端面をスラスト受面とし、スラスト軸受フラン
ジを省略しても良い。
Also in this embodiment, it is possible to obtain substantially the same actions and effects as those of the second embodiment. In each of the above-described embodiments, the structure in which the bearing surfaces on both sides of the thrust bearing flange receive the axial load has been described, but if the axial load is applied in one direction, the end surface of the shaft is directly attached. The thrust bearing surface may be used and the thrust bearing flange may be omitted.

【0027】また、使用する軸の材質は、実施例の場
合、熱処理で硬くしたステンレス鋼を用いるものとした
が、これに限らず熱処理しない生材でも良い。或いは、
切削製の良い銅合金やアルミ合金でも良い。また、合成
樹脂製の軸受面であるスラスト受面,ラジアル受面と共
働する相手部材であるスリーブの軸受面の材質は特に限
定する必要はなく、実施例で示した銅合金,アルミ合金
の他に例えばステンレス鋼,合成樹脂等を用いることが
できる。
Further, in the embodiment, the material of the shaft to be used is stainless steel which is hardened by heat treatment, but it is not limited to this and may be a raw material which is not heat treated. Alternatively,
A good-cut copper alloy or aluminum alloy may be used. Further, the material of the bearing surface of the sleeve, which is a mating member that cooperates with the thrust bearing surface and the radial bearing surface, which are bearing surfaces made of synthetic resin, is not particularly limited, and may be any of the copper alloy and aluminum alloy shown in the examples. Besides, for example, stainless steel, synthetic resin or the like can be used.

【0028】また、実施例では軸固定でスリーブ回転と
して説明したが、反対にスリーブ固定で軸回転であって
も良く、または軸とスリーブとの双方回転でも良い。ま
た、動圧軸受の使用姿勢は自由であり、実施例で図示さ
れた軸端のスラスト軸受フランジ側が上の場合とは上下
逆であっても良く、更には軸の垂直,水平,斜めを問わ
ない。
In the embodiment, the shaft is fixed and the sleeve is rotated. However, the sleeve may be fixed and the shaft is rotated, or both the shaft and the sleeve may be rotated. Further, the dynamic pressure bearing can be used in any posture, and the thrust bearing flange side of the shaft end shown in the embodiment may be upside down, and the shaft may be vertical, horizontal, or diagonal. Absent.

【0029】また、ラジアル軸受用の動圧発生用みぞ3
3a,34aをラジアル受面33,34にのみ設けた
が、対向するラジアル軸受面の方との双方に設けても良
い。同様に、スラスト軸受用の動圧発生用みぞ36a,
37aについても、スラスト受面36,37のみでなく
対向するスラスト軸受面との双方に設けても良い。ま
た、上記実施例の各動圧発生用の溝33a,34a,3
6a,37aは、ヘリングボーン状溝に限られず、その
他例えばスパイラル状等の公知形状の動圧発生用みぞで
あっても良い。
Further, a groove 3 for generating a dynamic pressure for the radial bearing.
Although 3a and 34a are provided only on the radial receiving surfaces 33 and 34, they may be provided on both of the opposing radial bearing surfaces. Similarly, the dynamic pressure generating groove 36a for the thrust bearing,
37a may be provided not only on the thrust receiving surfaces 36, 37 but also on the opposing thrust bearing surfaces. Further, the grooves 33a, 34a, 3 for generating each dynamic pressure in the above embodiment
6a and 37a are not limited to the herringbone-shaped grooves, but may be a groove for dynamic pressure generation having a known shape such as a spiral shape.

【0030】また、第1及び第2の実施例で図示された
潤滑剤溜まり24は、設計上省略することもできる。ま
た、本発明の動圧軸受の潤滑方式も特に限定はされず、
油潤滑,グリース潤滑の他、磁性流体潤滑,水潤滑,空
気潤滑等種々の潤滑方式が適用できる。なお、水潤滑の
場合は、軸受面だけでなく軸の全面に合成樹脂層を設け
ると軸の錆発生が防止できる。
The lubricant reservoir 24 shown in the first and second embodiments can be omitted in design. Further, the lubrication system of the dynamic pressure bearing of the present invention is not particularly limited,
In addition to oil lubrication and grease lubrication, various lubrication methods such as magnetic fluid lubrication, water lubrication and air lubrication can be applied. In the case of water lubrication, rusting of the shaft can be prevented by providing a synthetic resin layer not only on the bearing surface but also on the entire surface of the shaft.

【0031】以上説明してきたようなこの発明の動圧軸
受は、磁気ディスクや光ディスク装置等のスピンドルモ
ータ,音響機器や映像機器のシリンダモータ,デジタル
複写機等のスキャナモータ,ファンモータ等の各種スピ
ンドルユニットの軸受として最適である。
The dynamic pressure bearing of the present invention as described above includes various spindles such as spindle motors for magnetic disks and optical disk devices, cylinder motors for audio equipment and video equipment, scanner motors for digital copying machines, fan motors and the like. Best suited as a unit bearing.

【0032】[0032]

【発明の効果】以上説明したように、本発明の動圧軸受
によれば、軸外面にインサート成形された合成樹脂に動
圧発生用の溝を有する軸受面が設けられているものとし
たため、軸受面の摺動性に優れ、かつ量産性に優れた低
コストの動圧軸受を提供できるという効果を奏する。
As described above, according to the dynamic pressure bearing of the present invention, the bearing surface having the groove for dynamic pressure generation is provided in the synthetic resin insert-molded on the outer surface of the shaft. It is possible to provide a low-cost dynamic pressure bearing that has excellent slidability on the bearing surface and mass productivity.

【0033】また、合成樹脂の成形収縮を利用すること
から収縮が比較的大きい熱可塑性樹脂の使用が可能であ
り、かつ合成樹脂層と軸とが密着するから寸法精度に優
れるとともに寸法の経時変化も少ない動圧軸受が得られ
るという効果も奏する。更に、ラジアル軸受面とスラス
ト軸受面の直角度が金型精度で決まり、安定した品質の
製品が提供できるという効果も得られる。
Further, since the molding shrinkage of the synthetic resin is utilized, a thermoplastic resin having a relatively large shrinkage can be used, and since the synthetic resin layer and the shaft are in close contact with each other, the dimensional accuracy is excellent and the dimensional change with time. There is also an effect that a dynamic pressure bearing having a small amount can be obtained. Furthermore, the squareness of the radial bearing surface and the thrust bearing surface is determined by the precision of the mold, and it is possible to obtain a product of stable quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

【図2】本発明の他の実施例の断面図である。FIG. 2 is a sectional view of another embodiment of the present invention.

【図3】本発明の更に他の実施例の断面図である。FIG. 3 is a sectional view of still another embodiment of the present invention.

【図4】従来の動圧軸受の断面図である。FIG. 4 is a cross-sectional view of a conventional dynamic pressure bearing.

【符号の説明】[Explanation of symbols]

2 スリーブ 2A スリーブ 30 軸 30A 軸 30B 軸 33 ラジアル受面(軸受面) 34 ラジアル受面(軸受面) 33A ラジアル受面(軸受面) 34A ラジアル受面(軸受面) 33B ラジアル受面(軸受面) 34B ラジアル受面(軸受面) 36 スラスト受面(軸受面) 37 スラスト受面(軸受面) 36A スラスト受面(軸受面) 37A スラスト受面(軸受面) 36B スラスト受面(軸受面) 37B スラスト受面(軸受面) 33a 動圧発生用の溝 34a 動圧発生用の溝 36a 動圧発生用の溝 37a 動圧発生用の溝 2 sleeve 2A sleeve 30 shaft 30A shaft 30B shaft 33 radial receiving surface (bearing surface) 34 radial receiving surface (bearing surface) 33A radial receiving surface (bearing surface) 34A radial receiving surface (bearing surface) 33B radial receiving surface (bearing surface) 34B Radial receiving surface (bearing surface) 36 Thrust receiving surface (bearing surface) 37 Thrust receiving surface (bearing surface) 36A Thrust receiving surface (bearing surface) 37A Thrust receiving surface (bearing surface) 36B Thrust receiving surface (bearing surface) 37B Thrust Bearing surface (bearing surface) 33a Dynamic pressure generating groove 34a Dynamic pressure generating groove 36a Dynamic pressure generating groove 37a Dynamic pressure generating groove

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 軸と共働するスリーブを備えた動圧軸受
において、軸外面にインサート成形された合成樹脂には
動圧発生用の溝を有する軸受面が設けられていることを
特徴とする動圧軸受。
1. A dynamic pressure bearing having a sleeve that cooperates with a shaft, wherein a synthetic resin insert-molded on the outer surface of the shaft is provided with a bearing surface having a groove for generating dynamic pressure. Dynamic bearing.
JP6123950A 1994-06-06 1994-06-06 Dynamic pressurizing bearing Pending JPH07332353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6123950A JPH07332353A (en) 1994-06-06 1994-06-06 Dynamic pressurizing bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6123950A JPH07332353A (en) 1994-06-06 1994-06-06 Dynamic pressurizing bearing

Publications (1)

Publication Number Publication Date
JPH07332353A true JPH07332353A (en) 1995-12-22

Family

ID=14873366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6123950A Pending JPH07332353A (en) 1994-06-06 1994-06-06 Dynamic pressurizing bearing

Country Status (1)

Country Link
JP (1) JPH07332353A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259820A (en) * 1997-03-19 1998-09-29 Nippon Densan Corp Hydrodynamic fluid bearing
JPH11260028A (en) * 1998-03-06 1999-09-24 Fuji Photo Film Co Ltd Magnetic tape cartridge
JP2001020945A (en) * 1999-07-05 2001-01-23 Koyo Seiko Co Ltd Dynamic pressure bearing
WO2005028885A1 (en) * 2003-09-22 2005-03-31 Ntn Corporation Dynamic pressure bearing device
EP1553684A1 (en) * 2002-10-01 2005-07-13 Seiko Instruments Inc. Permanent magnet for motor, motor and magnetizing method
WO2005098251A1 (en) * 2004-03-30 2005-10-20 Ntn Corporation Dynamic pressure bearing device
WO2005098250A1 (en) * 2004-03-30 2005-10-20 Ntn Corporation Dynamic pressure bearing device
JP2005315408A (en) * 2004-03-30 2005-11-10 Ntn Corp Dynamic bearing device
WO2006038444A1 (en) * 2004-10-07 2006-04-13 Ntn Corporation Dynamic pressure bearing device
WO2007029447A1 (en) * 2005-09-09 2007-03-15 Ntn Corporation Fluid bearing unit
JP2007085448A (en) * 2005-09-21 2007-04-05 Ntn Corp Fluid bearing device
WO2011024604A1 (en) * 2009-08-28 2011-03-03 Ntn株式会社 Slide bearing, slide bearing unit with same, and motor with the bearing unit
JP2011247376A (en) * 2010-05-28 2011-12-08 Aisin Seiki Co Ltd Resin injection molded rotary member
CN108006065A (en) * 2017-12-12 2018-05-08 苏州艾柏特精密机械有限公司 Water lubriucated bearing and the compressor with water lubriucated bearing
JP2020165480A (en) * 2019-03-29 2020-10-08 日本電産株式会社 Gas dynamic pressure bearing, motor and blower

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259820A (en) * 1997-03-19 1998-09-29 Nippon Densan Corp Hydrodynamic fluid bearing
JPH11260028A (en) * 1998-03-06 1999-09-24 Fuji Photo Film Co Ltd Magnetic tape cartridge
JP2001020945A (en) * 1999-07-05 2001-01-23 Koyo Seiko Co Ltd Dynamic pressure bearing
EP1553684A4 (en) * 2002-10-01 2007-08-08 Seiko Instr Inc Permanent magnet for motor, motor and magnetizing method
EP1553684A1 (en) * 2002-10-01 2005-07-13 Seiko Instruments Inc. Permanent magnet for motor, motor and magnetizing method
US7921547B2 (en) 2002-10-01 2011-04-12 Seiko Instruments Inc. Method of magnetizing permanent magnet for a motor
EP1919062A1 (en) * 2002-10-01 2008-05-07 Seiko Instruments Inc. Permanent magnet motor
WO2005028885A1 (en) * 2003-09-22 2005-03-31 Ntn Corporation Dynamic pressure bearing device
CN100392264C (en) * 2003-09-22 2008-06-04 Ntn株式会社 Dynamic pressure bearing device
US7798721B2 (en) 2004-03-30 2010-09-21 Ntn Corporation Fluid dynamic bearing device
WO2005098251A1 (en) * 2004-03-30 2005-10-20 Ntn Corporation Dynamic pressure bearing device
JP2005315408A (en) * 2004-03-30 2005-11-10 Ntn Corp Dynamic bearing device
WO2005098250A1 (en) * 2004-03-30 2005-10-20 Ntn Corporation Dynamic pressure bearing device
US8506167B2 (en) 2004-03-30 2013-08-13 Ntn Corporation Dynamic bearing device having a thrust bearing portion
WO2006038444A1 (en) * 2004-10-07 2006-04-13 Ntn Corporation Dynamic pressure bearing device
WO2007029447A1 (en) * 2005-09-09 2007-03-15 Ntn Corporation Fluid bearing unit
JP2007085448A (en) * 2005-09-21 2007-04-05 Ntn Corp Fluid bearing device
US8746977B2 (en) 2009-08-28 2014-06-10 Ntn Corporation Slide bearing, slide bearing unit with same, and motor with the bearing unit
CN102483089A (en) * 2009-08-28 2012-05-30 Ntn株式会社 Slide bearing, slide bearing unit with same, and motor with the bearing unit
JP2011047495A (en) * 2009-08-28 2011-03-10 Ntn Corp Slide bearing, slide bearing unit with the same, and motor with this bearing unit
WO2011024604A1 (en) * 2009-08-28 2011-03-03 Ntn株式会社 Slide bearing, slide bearing unit with same, and motor with the bearing unit
US9127710B2 (en) 2009-08-28 2015-09-08 Ntn Corporation Slide bearing, slide bearing unit with same, and motor with the bearing unit
CN102483089B (en) * 2009-08-28 2015-11-25 Ntn株式会社 Sliding bearing and possess its sliding bearing unit and possess the motor of this bearing unit
JP2011247376A (en) * 2010-05-28 2011-12-08 Aisin Seiki Co Ltd Resin injection molded rotary member
CN102280957A (en) * 2010-05-28 2011-12-14 爱信精机株式会社 Resin injection molded rotary member
CN108006065A (en) * 2017-12-12 2018-05-08 苏州艾柏特精密机械有限公司 Water lubriucated bearing and the compressor with water lubriucated bearing
CN108006065B (en) * 2017-12-12 2024-05-10 苏州艾柏特精密机械有限公司 Water-lubricated bearing and compressor with water-lubricated bearing
JP2020165480A (en) * 2019-03-29 2020-10-08 日本電産株式会社 Gas dynamic pressure bearing, motor and blower

Similar Documents

Publication Publication Date Title
US7556433B2 (en) Fluid dynamic bearing device and motor equipped with the same
JPH07332353A (en) Dynamic pressurizing bearing
KR20000071559A (en) Dynamic pressure bearing-unit and method for manufacturing the same
JP2001187920A (en) Spindle motor
JP3774080B2 (en) Hydrodynamic bearing unit
JP4302463B2 (en) Hydrodynamic bearing device and manufacturing method thereof
WO2004079214A1 (en) Bearing unit and rotation and drive device
JP3983435B2 (en) Hydrodynamic bearing unit
US6024492A (en) Hemispherical bearing apparatus
JPH07310733A (en) Dynamic pressure bearing device
KR101244271B1 (en) Dynamic pressure bearing device
JP3892995B2 (en) Hydrodynamic bearing unit
JP4302462B2 (en) DYNAMIC PRESSURE BEARING DEVICE, ITS MANUFACTURING METHOD, AND RECORDING DISC DRIVE DEVICE
JP2001124059A (en) Dynamic pressure bearing unit
JP2000060063A (en) Fan motor
JPH03181612A (en) Bearing device
JPH11190340A (en) Dynamic pressure type bearing device
KR100284433B1 (en) Metal bearing and its bearing housing therefor and motor with those
JP4233771B2 (en) Hydrodynamic bearing unit
JP2622906B2 (en) Flexible disk drive
JP2002061638A (en) Dynamic pressure type bearing device and manufacturing method thereof
JP3942372B2 (en) Hydrodynamic bearing unit and manufacturing method thereof
JPH0972340A (en) Dynamic pressure bearing device
JPH1127895A (en) Spindle motor
JP2000092773A (en) Disk driving device