JPH07332109A - Compressed air storage type power generating plant - Google Patents

Compressed air storage type power generating plant

Info

Publication number
JPH07332109A
JPH07332109A JP6123570A JP12357094A JPH07332109A JP H07332109 A JPH07332109 A JP H07332109A JP 6123570 A JP6123570 A JP 6123570A JP 12357094 A JP12357094 A JP 12357094A JP H07332109 A JPH07332109 A JP H07332109A
Authority
JP
Japan
Prior art keywords
compressed air
turbine
stored
steam
storage type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6123570A
Other languages
Japanese (ja)
Other versions
JP3605141B2 (en
Inventor
Tadashi Tsuji
正 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12357094A priority Critical patent/JP3605141B2/en
Publication of JPH07332109A publication Critical patent/JPH07332109A/en
Application granted granted Critical
Publication of JP3605141B2 publication Critical patent/JP3605141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To stabilize control characteristics of a gas turbine, realize a stable load rated operation, use a balance piston or the like so as to balance shaft thrust. increase a heat recovery rate in a plant, and improve power generating efficiency. CONSTITUTION:A compressed air storage type power generating plant, where extra electric power produces compressed air so as to generate power by utilizing the compressed air at the time when a demand for electric power is large, comprises compressors 12, 13 for producing stored compressed air, a motor 11 for driving the compressors 12, 13, an expansion turbine 5 connected onto one side of a rotor shaft of a generator 7 via a clutch 6 and operated by the stored compressed air, a gas turbine 1 of a simple one-shaft type connected onto the other side of the rotor shaft and provided with a compressor 2 for compressing exhaust air from the expansion turbine 5 or air from the atmosphere, and a steam turbine 22 to be operated by steam generated by exhaust heat of the gas turbine 1 and for driving the generator 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、DSS(Daily Start
Stop)運用に供される圧縮空気貯蔵形発電プラントに関
する。
The present invention relates to a DSS (Daily Start)
Stop) The present invention relates to a compressed air storage type power plant used for operation.

【0002】[0002]

【従来の技術】従来のガスタービンを使用した圧縮空気
貯蔵形発電プラントの系統図を図3に示す。図に示すも
のは、完全なDSS運用に供するようにしたもので、ク
ラッチ01を嵌、クラッチ02を脱にし、発電・電動機
03を電動機として使用し、夜間の余剰電力によって作
動させ、増速歯車装置04を介して低圧空気圧縮機0
5、および高圧空気圧縮機06を駆動する。このとき、
大気は吸気フィルタ07を通って、低圧空気圧縮機05
に導入され、該低圧空気圧縮機05で低圧縮空気にさ
れ、低圧空気圧縮機05を出た低圧縮空気は、インター
クーラ08で冷却された後、高圧空気圧縮機06で、さ
らに高圧の高圧縮空気にされる。さらに、高圧空気圧縮
機06を出た高圧縮空気は、アフタークーラ09により
50℃程度まで冷却されて、廃抗等の地下空洞を利用し
て作られた貯気槽010に、電動弁011を介して流入
させ、貯えられる。インタークーラ08による低圧縮空
気の冷却は、高圧空気圧縮機06の動力を削減し、アフ
タークーラ09による高圧縮空気の冷却は、高圧縮空気
の貯蔵体積を減らして貯蔵容量を増大させる働きをす
る。
2. Description of the Related Art A system diagram of a compressed air storage type power plant using a conventional gas turbine is shown in FIG. The one shown in the figure is designed for complete DSS operation. The clutch 01 is engaged, the clutch 02 is disengaged, the generator / motor 03 is used as an electric motor, and it is operated by surplus power at night to increase the speed-increasing gear. Low pressure air compressor 0 via device 04
5 and the high-pressure air compressor 06. At this time,
Atmospheric air passes through the intake filter 07 and passes through the low pressure air compressor 05.
The low-compressed air introduced into the low-pressure air compressor 05 is converted into low-compressed air by the low-pressure air compressor 05, and the low-compressed air discharged from the low-pressure air compressor 05 is cooled by the intercooler 08, and then further compressed by the high-pressure air compressor 06. Compressed air. Further, the highly compressed air discharged from the high-pressure air compressor 06 is cooled to about 50 ° C. by the aftercooler 09, and the motor-operated valve 011 is installed in the storage tank 010 made by using the underground cavity such as the waste resistance. Inflow through and stored. Cooling the low compressed air by the intercooler 08 reduces the power of the high pressure air compressor 06, and cooling the high compressed air by the aftercooler 09 serves to reduce the storage volume of the high compressed air and increase the storage capacity. .

【0003】次に、昼間の電力需要時間帯においては、
クラッチ01を脱、クラッチ02を嵌にして、発電・電
動機03と増速歯車装置04との連結を解除するととも
に、発電・電動機03を減速歯車装置013に連結し
て、電動弁011を閉じて、電動弁012を開く。これ
により、貯気槽010に貯えられている圧縮空気は、再
生器013で後述する低圧ガスタービン018からの排
気により加熱されて、高圧燃焼器015に流入する。高
圧燃焼器015では、流入した圧縮空気に別途供給した
燃料016を混合して、高圧の燃焼ガスを発生させる。
また、高圧の燃焼ガスは、高圧ガスタービン017に導
入され、高圧ガスタービン017を作動させた後、低圧
燃焼器019に流入する。低圧燃焼器019では、さら
に、新たに供給された燃料020と混合されて低圧の燃
焼ガスを発生させる。低圧の燃焼ガスは低圧ガスタービ
ン018を作動させた後、再生器013に流入し、前述
の通り圧縮空気を加熱した後、排ガスとなって煙突02
1から大気へ排出される。
Next, in the daytime power demand time zone,
The clutch 01 is disengaged and the clutch 02 is fitted to disconnect the generator / motor 03 from the speed increasing gear device 04, and the generator / motor 03 is connected to the reduction gear device 013 to close the motor valve 011. , Open the electric valve 012. As a result, the compressed air stored in the storage tank 010 is heated by the exhaust gas from the low pressure gas turbine 018 described later in the regenerator 013 and flows into the high pressure combustor 015. In the high-pressure combustor 015, the fuel 016 separately supplied is mixed with the inflowing compressed air to generate high-pressure combustion gas.
The high-pressure combustion gas is introduced into the high-pressure gas turbine 017, operates the high-pressure gas turbine 017, and then flows into the low-pressure combustor 019. The low pressure combustor 019 further mixes with the newly supplied fuel 020 to generate low pressure combustion gas. The low-pressure combustion gas, after operating the low-pressure gas turbine 018, flows into the regenerator 013 and heats the compressed air as described above, and then becomes exhaust gas and the stack 02
Emission from 1 to the atmosphere.

【0004】高圧の燃焼ガスで作動する高圧ガスタービ
ン017、および低圧の燃焼ガスで作動する低圧ガスタ
ービン018は同軸状に連結されて、減速歯車装置01
3のピニオンと連結しており、クラッチ02を嵌にする
ことにより、減速歯車装置013を介して連結された発
電・電動機03を駆動する。このとき発電・電動機03
は発電機として機能し発電を行う。また、再生器014
による圧縮空気の加熱は、高圧燃焼器015の入口空気
温度を上げて燃料を節約する働きをする。
The high-pressure gas turbine 017 operating with high-pressure combustion gas and the low-pressure gas turbine 018 operating with low-pressure combustion gas are coaxially connected to each other, and the reduction gear device 01
3 is connected to the pinion, and the clutch 02 is engaged to drive the generator / motor 03 connected via the reduction gear device 013. At this time, generator / motor 03
Functions as a generator and generates electricity. Also, the regenerator 014
The heating of the compressed air by means of raising the inlet air temperature of the high-pressure combustor 015 serves to save fuel.

【0005】なお、別の圧縮空気貯蔵形発電プラントで
は、上記高圧燃焼器015を設けず、高圧ガスタービン
017に代えて、圧縮空気で作動させる膨脹タービンを
採用する場合もある。
In another compressed air storage type power plant, the high pressure combustor 015 may not be provided and a high pressure gas turbine 017 may be replaced with an expansion turbine operated by compressed air.

【0006】しかしながら、上述した従来の圧縮空気貯
蔵形発電プラントにおいては、次に示す不具合があっ
た。 (1)ガスタービン017,018による発電運転時、
軸系に負荷の大きい空気圧縮機が結合されていないため
に、昇速及び昇負荷が急激に行われ、制御特性が不安定
となる。また、負荷遮断時過速して、過速度危急遮断装
置が作動することがあり、さらには、制御性が低いため
に無負荷定格回転状態の確保が困難である。 (2)空気圧縮機の設置によるガスタービンの軸推力の
釣合いをとることができないため、特別な、大形バラン
スピストンをガスタービンに設ける必要がある。 (3)インタークーラ、及びアフタークーラで圧縮空気
を冷却して昇温した冷却水の熱量は回収されることな
く、例えばラジェータ等から大気へ放出されるだけであ
るので、プラントの熱効率が低下する。
However, the above-mentioned conventional compressed air storage type power plant has the following problems. (1) During power generation operation by the gas turbines 017 and 018,
Since the air compressor having a large load is not connected to the shaft system, the speed increase and the load increase are rapidly performed, and the control characteristics become unstable. Further, the overspeed emergency cutoff device may be activated due to overspeed at the time of load shedding, and furthermore, it is difficult to secure the unloaded rated rotation state due to the low controllability. (2) Since it is not possible to balance the axial thrust of the gas turbine by installing the air compressor, it is necessary to install a special large balance piston in the gas turbine. (3) The heat efficiency of the plant is reduced because the calorific value of the cooling water heated by cooling the compressed air by the intercooler and the aftercooler is not recovered but is released to the atmosphere from, for example, a radiator. .

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来の圧縮
空気貯蔵形発電プラントの、上述不具合を解消し、
(1)制御特性が安定し、負荷遮断時においても過速度
危急遮断装置が作動することなく、また無負荷定格回転
状態の確保が容易で、(2)ガスタービン軸推力を釣合
すためのバランスピストンの設置が不安で、(3)プラ
ントの熱効率を向上できる、圧縮空気貯蔵形発電プラン
トを提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the conventional compressed air storage type power plant,
(1) The control characteristics are stable, the overspeed emergency cutoff device does not operate even when the load is cut off, and it is easy to ensure the no-load rated rotation state. (2) For balancing the gas turbine shaft thrust An object of the present invention is to provide a compressed air storage type power plant that can improve the thermal efficiency of the plant (3) because installation of the balance piston is uneasy.

【0008】[0008]

【課題を解決するための手段】このため、本発明の圧縮
空気貯蔵形発電プラントは次の手段とした。 (1)貯蔵用空気圧縮機を駆動して、大気から取入れた
空気を圧縮し、貯蔵圧縮空気にする電動機を設けた。 (2)発電機ロータ軸の一側に、嵌脱自在のクラッチを
介装して連結され、貯気槽からの貯蔵圧縮空気により作
動し、発電機を駆動する膨脹タービンを設けた。 (3)発電機ロータ軸の他側に連結され、膨脹タービン
の排気、若しくは大気から取入れた空気を圧縮し、燃焼
用圧縮空気にする空気圧縮機を同軸状に軸結し、燃焼用
圧縮空気と燃料とを燃焼させた燃焼ガスにより作動し、
空気圧縮機および発電機を駆動するガスタービンを設け
た。 (4)ガスタービンの排気により蒸気を発生させる排ガ
スボイラを設けた。 (5)排ガスボイラで発生した蒸気により作動し、発電
機を駆動する蒸気タービンを設けた。なお、蒸気タービ
ンで駆動される発電機は、膨脹タービン、およびガスタ
ービンで駆動される発電機と同じものでも、又は当該発
電機とは別に設置された発電機であっても良い。
Therefore, the compressed air storage type power plant of the present invention has the following means. (1) An electric motor is provided which drives the storage air compressor to compress the air taken in from the atmosphere to produce the stored compressed air. (2) An expansion turbine, which is connected to one side of the generator rotor shaft via a clutch that can be freely inserted and removed, is operated by the stored compressed air from the air storage tank and drives the generator, is provided. (3) A compressed air for combustion is connected coaxially to an air compressor which is connected to the other side of the generator rotor shaft and which compresses air taken from the exhaust gas of the expansion turbine or the atmosphere to produce compressed air for combustion. It operates by the combustion gas that burns the fuel and the fuel,
A gas turbine was provided to drive the air compressor and generator. (4) An exhaust gas boiler that generates steam by the exhaust of the gas turbine is provided. (5) A steam turbine that operates with steam generated in the exhaust gas boiler and drives a generator is provided. The generator driven by the steam turbine may be the same as the generator driven by the expansion turbine and the gas turbine, or may be a generator installed separately from the generator.

【0009】また、他の本発明の圧縮空気貯蔵形発電プ
ラントは上記(1)〜(5)の手段に加え次の手段とし
た。 (6)膨脹タービンを作動するため、貯気槽と膨脹ター
ビンとの間に配設された貯蔵圧縮空気の供給管に介装さ
れ、排ガスボイラからの蒸気、若しくは高温水で貯蔵圧
縮空気を加熱する加熱器を設けた。
Another compressed air storage type power plant of the present invention has the following means in addition to the above means (1) to (5). (6) In order to operate the expansion turbine, the storage compressed air is provided between the storage tank and the expansion turbine, and the storage compressed air is heated by steam from the exhaust gas boiler or high-temperature water. A heater was installed.

【0010】また、他の本発明の圧縮空気貯蔵形発電プ
ラントは、上記(1)〜(6)に加え、次の手段とし
た。 (7)加熱器で貯蔵圧縮空気を加熱する加熱媒体を、排
ガスボイラからの蒸気で作動する蒸気タービンから抽気
された蒸気を使用するものとした。
Further, another compressed air storage type power plant of the present invention has the following means in addition to the above (1) to (6). (7) As the heating medium for heating the stored compressed air by the heater, the steam extracted from the steam turbine operated by the steam from the exhaust gas boiler is used.

【0011】また、他の本発明の圧縮空気貯蔵形発電プ
ラントは、上記(1)〜(5)に加え、次の手段とし
た。 (8)貯蔵用空気圧縮機で圧縮され、高温になった貯蔵
圧縮空気を、貯気槽に貯蔵する前に、排ガスボイラの給
水を利用して冷却する冷却器を設けた。
In addition to the above-mentioned (1) to (5), another compressed air storage type power plant of the present invention has the following means. (8) A cooler is provided for cooling the stored compressed air that has been compressed by the storage air compressor and has reached a high temperature by using the feed water of the exhaust gas boiler before storing it in the storage tank.

【0012】[0012]

【作用】上記(1)〜(5)の手段とした、本発明の圧
縮空気貯蔵形発電プラントによれば (1)夜間等における余剰電力を使って、独立した電動
機により、貯蔵空気圧縮機を駆動し、大気から取入れた
空気を貯蔵圧縮空気にして、地下空洞等を利用して作ら
れた貯気槽に貯えることができる。 (2)昼間の電力需要の大きい時間帯等に、貯蔵圧縮空
気で膨脹タービンを作動させ、発電機を駆動することに
より、余剰電力による、いわゆる動力源(燃料)を必要
としない、電力供給ができる。 (3)膨脹タービンから排出された低温の排気を空気圧
縮機で圧縮し、その燃焼ガスでガスタービンを作動させ
るので、ガスタービンの出力及び効率を向上させること
ができる。また、発電機は、ガスタービン又は膨脹ター
ビンの何れか一方で駆動することもでき、若しくは、こ
れらを協同させて駆動することもでき、電力需要に応じ
た運転ができる。 (4)ガスタービンは空気圧縮機と軸結して作動するた
め、昇速など昇負荷が緩かに行われ、制御特性の安定し
たものになる。また、発電機負荷の遮断時、過速して過
速度危急遮断装置が作動することもなく、無負荷定格回
転状態を確保できる。 (5)ガスタービンは空気圧縮機と軸結して作動するた
め、軸推力の釣合せができ、ガスタービンへのバランス
ピストンの設置が不要になる。 (6)ガスタービンの排気により、排ガスボイラで蒸気
を発生させ、この蒸気で蒸気タービンを作動させ発電機
を駆動するので、熱回収率が向上でき、発電効率を上げ
ることができる。
According to the compressed air storage type power generation plant of the present invention having the above-mentioned means (1) to (5), (1) the stored air compressor is operated by an independent electric motor by using the surplus power at night. The air that has been driven and taken from the atmosphere can be stored as compressed air and stored in an air storage tank made using an underground cavity or the like. (2) By operating the expansion turbine with the stored compressed air and driving the generator during the daytime when the power demand is large, etc., the surplus power does not require a so-called power source (fuel), and power supply is possible. it can. (3) Since the low temperature exhaust gas discharged from the expansion turbine is compressed by the air compressor and the combustion gas is used to operate the gas turbine, the output and efficiency of the gas turbine can be improved. Further, the generator can be driven by either the gas turbine or the expansion turbine, or can be driven in cooperation with each other, and can be operated according to the power demand. (4) Since the gas turbine operates by being connected to the air compressor by a shaft, a rising load such as a rising speed is gently performed, and the control characteristic becomes stable. Further, when the generator load is cut off, the overspeed emergency cutoff device does not operate due to excessive speed, and the unloaded rated rotation state can be secured. (5) Since the gas turbine operates by being axially connected to the air compressor, the axial thrust can be balanced, and the balance piston need not be installed in the gas turbine. (6) Since the steam is generated in the exhaust gas boiler by the exhaust of the gas turbine and the steam turbine is operated by the steam to drive the generator, the heat recovery rate can be improved and the power generation efficiency can be increased.

【0013】また、上記(6)の手段とした、本発明の
圧縮空気貯蔵形発電プラントによれば、上記(1)〜
(6)に加え、 (7)膨脹タービンに供給される貯蔵圧縮空気を、高温
高圧にでき膨脹タービンを効率良く運転でき、出力及び
効率を向上させることができる。
Further, according to the compressed air storage type power plant of the present invention which is the means of the above (6), the above (1) to
(7) In addition to (6), the stored compressed air supplied to the expansion turbine can be made into high temperature and high pressure, the expansion turbine can be operated efficiently, and the output and efficiency can be improved.

【0014】また、上記(7)の手段とした、本発明の
圧縮空気貯蔵形発電プラントによれば、上記(1)〜
(7)に加え、 (8)膨脹タービンの出力及び効率向上に加え、蒸気タ
ービンの熱効率も向上させることができ、発電プラント
の熱効率をさらに向上させることができる。
Further, according to the compressed air storage type power plant of the present invention which is the means of the above (7), the above (1) to
In addition to (7), (8) In addition to improving the output and efficiency of the expansion turbine, the thermal efficiency of the steam turbine can also be improved, and the thermal efficiency of the power plant can be further improved.

【0015】また、上記(8)の手段とした、本発明の
圧縮空気貯蔵形発電プラントによれば、上記(1)〜
(6)に加え、 (9)貯蔵用空気圧縮機で圧縮されるとき、昇温した貯
蔵圧縮空気の熱量が大気に放出されることなく、排ガス
ボイラの熱源として回収できるので、発電プラントの熱
効率が、さらに一層向上できる。
Further, according to the compressed air storage type power plant of the present invention, which is the means of (8) above, the above (1) to
In addition to (6), (9) When compressed by a storage air compressor, the heat quantity of the stored compressed air that has been heated can be recovered as a heat source for an exhaust gas boiler without being released to the atmosphere. However, it can be further improved.

【0016】[0016]

【実施例】本発明の圧縮空気貯蔵形発電プラントの実施
例を図面にもとづき説明する。図1は、本発明の圧縮空
気貯蔵形発電プラントの第1実施例、図2は第2実施例
を、それぞれ示す系統図である。
Embodiments of the compressed air storage type power plant of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing a first embodiment of a compressed air storage type power plant of the present invention, and FIG. 2 is a system diagram showing a second embodiment.

【0017】図1において、空気圧縮機2、燃焼器3、
及び空気圧縮機2と同軸状に連結されて、燃焼ガスで作
動するタービン4で構成される、単純1軸形の従来形を
したガスタービン1と、膨脹タービン5とはクラッチ6
を介して、発電機7の各々の側に1軸に結合されてお
り、発電機7を駆動して発電を行うとともに、ガスター
ビン1はタービン4に供給される燃焼ガスを発生させる
ための空気圧縮機2を駆動する。また、膨脹タービン5
の排気口はガスタービン1の空気圧縮機2の吸入口へ連
結されている。また、ガスタービン1の単独運転に備
え、空気圧縮機2の吸入口に連結する吸気フィルタ9が
別に設置されており、空気圧縮機2は膨脹タービン5の
排気、又は大気から導入した空気、又は膨脹タービン5
の排気と大気から導入した空気を一定の割合で混合した
ガスを圧縮し、燃焼用圧縮空気にする。燃焼用圧縮空気
は燃焼器3に導入され、燃焼器3に別途供給された燃料
29と混合され燃焼ガスとなってタービン4を作動す
る。
In FIG. 1, an air compressor 2, a combustor 3,
And a conventional single-shaft type gas turbine 1 that is coaxially connected to the air compressor 2 and that operates by combustion gas, and an expansion turbine 5 includes a clutch 6
Is connected to each side of the generator 7 via a shaft, and drives the generator 7 to generate electric power, and the gas turbine 1 supplies air to the combustion gas supplied to the turbine 4. The compressor 2 is driven. Also, the expansion turbine 5
The exhaust port is connected to the intake port of the air compressor 2 of the gas turbine 1. Further, in preparation for the independent operation of the gas turbine 1, an intake filter 9 connected to the intake port of the air compressor 2 is separately installed. The air compressor 2 exhausts the expansion turbine 5 or air introduced from the atmosphere, or Expansion turbine 5
The gas obtained by mixing the exhaust gas and the air introduced from the atmosphere at a constant ratio is compressed into compressed air for combustion. The compressed air for combustion is introduced into the combustor 3 and mixed with the fuel 29 separately supplied to the combustor 3 to form combustion gas, which operates the turbine 4.

【0018】貯蔵圧縮空気9を製造する貯蔵用空気圧縮
機としての、低圧空気圧縮機12、及び高圧空気圧縮機
13は独立した電動機11により増速歯車装置14を介
して駆動される。また、低圧空気圧縮機12の吸入口に
は、吸気フィルタ16が設置されるとともに、低圧空気
圧縮機12の吐出口と高圧空気圧縮機13の吸入口との
間には、低圧空気圧縮機12で圧縮され昇温した低圧縮
空気を冷却し、高圧空気圧縮機13の動力を削減するた
めの冷却器としての、インタークーラ15が設けられて
いる。しかし、本実施例では、従来高圧空気圧縮機13
の吐出側に設置されていた、アフタークーラは廃止され
ている。これにより、貯蔵圧縮空気9は高圧空気圧縮機
13で高圧縮空気にされ、電動弁17を経由して、廃抗
等を利用して地下空間に形成された貯気槽18に貯蔵さ
れる。
A low-pressure air compressor 12 and a high-pressure air compressor 13, which are storage air compressors for producing the stored compressed air 9, are driven by an independent electric motor 11 via a speed increasing gear device 14. An intake filter 16 is installed at the suction port of the low-pressure air compressor 12, and the low-pressure air compressor 12 is provided between the discharge port of the low-pressure air compressor 12 and the suction port of the high-pressure air compressor 13. An intercooler 15 is provided as a cooler for cooling the low-compressed air that has been compressed and heated by the above and reduces the power of the high-pressure air compressor 13. However, in this embodiment, the conventional high pressure air compressor 13 is used.
The aftercooler, which was installed on the discharge side of, has been abolished. As a result, the stored compressed air 9 is made into highly compressed air by the high-pressure air compressor 13, and is stored in the air storage tank 18 formed in the underground space using the waste resistance and the like via the electric valve 17.

【0019】また、燃焼ガスで駆動されるタービン4の
排気は、排ガスボイラ21に流入し、給水を加熱し蒸気
を発生させた後、排ガスとなって、煙突30より大気へ
放出される。排ガスボイラ21で発生した蒸気は、蒸気
タービン22を作動させた後、復水器24で復水とな
り、排ガスボイラ21へ再循環する。また、蒸気タービ
ン22は軸結した発電機23を駆動し発電を行う。
The exhaust gas of the turbine 4 driven by the combustion gas flows into the exhaust gas boiler 21, heats the feed water to generate steam, and then becomes exhaust gas, which is discharged from the chimney 30 to the atmosphere. After operating the steam turbine 22, the steam generated in the exhaust gas boiler 21 becomes condensed water in the condenser 24 and is recirculated to the exhaust gas boiler 21. Further, the steam turbine 22 drives a generator 23 connected to the shaft to generate electric power.

【0020】本実施例は上述のように構成されるので、
夜間の余剰電力を使って、独立した電動機11により、
低圧、および高圧空気圧縮機12,13を駆動し、貯蔵
圧縮空気9を地下空洞等に設けた貯気槽18に貯える。
このとき高圧空気圧縮機13の吐出側に従来設けている
アフタークーラを廃止することにより、貯蔵圧縮空気9
の温度は高く、200〜300℃に保持できる。
Since this embodiment is constructed as described above,
By using the surplus power at night, the independent electric motor 11
The low pressure and high pressure air compressors 12 and 13 are driven to store the stored compressed air 9 in an air storage tank 18 provided in an underground cavity or the like.
At this time, by removing the aftercooler conventionally provided on the discharge side of the high-pressure air compressor 13, the stored compressed air 9
The temperature is high and can be maintained at 200 to 300 ° C.

【0021】一方、昼間の電力需要時、高温高圧の貯蔵
圧縮空気9を膨脹タービン5に流入させ発電機7を駆動
し、燃料を使用することなく、発電を行い、膨脹タービ
ン5の排気は0〜15℃にまで低下して、単純1軸形に
代表される従来形をしたガスタービン1の空気圧縮機2
の吸気室へ流入する。また、吸気室は吸気フィルタ8を
介して大気とも連通しているので、大気吸込との割合は
自由に制御する。また、膨脹タービン5排気温度を0℃
近くの常温以下に制御することにより、ガスタービン1
の出力及び効率の向上が可能となる。
On the other hand, during daytime power demand, the stored compressed air 9 of high temperature and high pressure is introduced into the expansion turbine 5 to drive the generator 7 to generate electricity without using fuel, and the exhaust gas of the expansion turbine 5 is 0. Air compressor 2 of gas turbine 1 of a conventional type represented by a simple 1-shaft type by decreasing to -15 ° C.
Flows into the intake chamber of. Further, since the intake chamber communicates with the atmosphere via the intake filter 8, the ratio with the intake of the atmosphere is freely controlled. Also, the exhaust gas temperature of the expansion turbine 5 is set to 0 ° C.
By controlling the temperature below a nearby room temperature, the gas turbine 1
It is possible to improve the output and efficiency of

【0022】さらに、ガスタービン1の排気は排ガスボ
イラ21へ導かれて、ガスタービン1、蒸気タービン2
2、コンバインドプラントとして発電を行うので熱効率
を向上させることができる。また、発電機7のロータ軸
のクラッチはガスタービン1、及び膨脹タービン5のそ
れぞれ単独運転を可能にするので、色々の負荷に対応し
た運転ができる。なお、本実施例では発電機7及び23
を別体のものとして示したが、勿論これは一体の発電機
とすることもできるものである。
Further, the exhaust gas of the gas turbine 1 is guided to the exhaust gas boiler 21, where the gas turbine 1 and the steam turbine 2 are connected.
2. Since it generates electricity as a combined plant, it is possible to improve thermal efficiency. Further, since the clutch of the rotor shaft of the generator 7 enables the gas turbine 1 and the expansion turbine 5 to operate independently, the operation corresponding to various loads can be performed. In this embodiment, the generators 7 and 23
Although shown separately, this can of course be an integral generator.

【0023】次に、図2に示す第2実施例においては、
上記第1実施例に加え貯気槽18から膨脹タービン5へ
貯蔵圧縮空気を供給する配管27の途中に加熱器10を
設け、加熱器10の加熱媒体として蒸気タービン22か
ら抽気した蒸気を使用するようにしている。また、本実
施例においては、第一実施例では廃止した、高圧空気圧
縮機13の吐出側の冷却器としての、アフタークーラ2
0を設け、アフタークーラ20の冷却媒体として、低圧
空気圧縮機12の吐出側に設けられた、冷却器としての
インタークーラ15とともに、復水器31で復水された
蒸気タービン22の排気、及び加熱器10で貯蔵圧縮空
気を加熱しドレンとなった、排ガスボイラ21の給水2
6を使用するようにしている。
Next, in the second embodiment shown in FIG.
In addition to the first embodiment, the heater 10 is provided in the middle of the pipe 27 for supplying the stored compressed air from the air storage tank 18 to the expansion turbine 5, and the steam extracted from the steam turbine 22 is used as the heating medium of the heater 10. I am trying. Further, in the present embodiment, the aftercooler 2 serving as the discharge side cooler of the high-pressure air compressor 13, which has been abolished in the first embodiment, is used.
0, as the cooling medium of the aftercooler 20, together with the intercooler 15 as the cooler provided on the discharge side of the low-pressure air compressor 12, the exhaust of the steam turbine 22 condensed by the condenser 31, and Water supply 2 of the exhaust gas boiler 21 which has become a drain by heating the stored compressed air with the heater 10.
I am trying to use 6.

【0024】本実施例は、上述の構成により、高圧空気
圧縮機13で高圧にされた貯蔵圧縮空気9は、アフター
クーラで50℃程度に冷却され貯気槽18に貯蔵され
る。また、貯蔵圧縮空気9は、加熱器20で蒸気タービ
ン22の抽気25で加熱され、高温となって膨脹タービ
ン5へ流入し、膨脹タービン5の出力及び効率を向上さ
せる。また復水器24からの復水は上記加熱器からのド
レンと合流して、貯蔵圧縮空気を冷却するインタークー
ラ15、及びアフタークーラ20へ導かれ、圧縮空気を
冷却すると共に温度が上がって、排ガスボイラ21へ給
水され、従来、大気へ放出されていた熱エネルギーを回
収でき、発電プラントとしての熱効率を向上させること
ができる。
In the present embodiment, the stored compressed air 9 having a high pressure by the high-pressure air compressor 13 is cooled to about 50 ° C. by the aftercooler and stored in the air storage tank 18 according to the above-mentioned configuration. The stored compressed air 9 is heated by the bleed air 25 of the steam turbine 22 by the heater 20, becomes a high temperature and flows into the expansion turbine 5, and the output and efficiency of the expansion turbine 5 are improved. Further, the condensate from the condenser 24 joins the drain from the heater and is guided to the intercooler 15 and the aftercooler 20 for cooling the stored compressed air, cooling the compressed air and raising the temperature, It is possible to recover the thermal energy that was conventionally supplied to the exhaust gas boiler 21 and released to the atmosphere, and improve the thermal efficiency of the power generation plant.

【0025】なお、本実施例では加熱器10の加熱媒体
に蒸気タービン22の抽気蒸気を使用する例を示した
が、これは排ガスボイラ21から蒸気、又は高温水を直
接供給するようにしても良い。これらは発電プラントの
経済性を考慮して適宜選択すれば良い。
In the present embodiment, the example in which the extraction steam of the steam turbine 22 is used as the heating medium of the heater 10 has been shown. However, this is also possible if steam or high-temperature water is directly supplied from the exhaust gas boiler 21. good. These may be appropriately selected in consideration of the economic efficiency of the power plant.

【0026】[0026]

【発明の効果】本発明の圧縮空気貯蔵形発電プラントに
よれば、請求項1に示す構成により、次の効果がえられ
る。 (1)ガスタービンによる発電運転時、ガスタービンの
軸系に空気圧縮機を有するため、制御特性が安定し、負
荷遮断時に過速せず、また安定した無負荷定格回転運転
ができる。また、空気圧縮機を設けたことにより、ガス
タービンの軸推力が釣合い、特別な大形バランスピスト
ンをガスタービンに設ける必要がない。 (2)夜間等における余剰電力を使って、独立した電動
機により貯蔵空気圧縮機を駆動し、大気から取入れた空
気を貯蔵圧縮空気にして、地下空洞等を利用して作られ
た貯気槽に貯えることができ、昼間の電力需要の大きい
時間帯等に、これで膨脹タービンを作動させ、発電機を
駆動することにより、余剰電力による、いわゆる動力源
(燃料)を必要としない電力供給ができる。 (3)膨脹タービンから排出された低温の排気を空気圧
縮機で圧縮し、その燃焼ガスでガスタービンを作動させ
るのでガスタービンの出力及び効率を向上させることが
できる。また、発電機は、ガスタービン又は膨脹タービ
ンの何れかの単独でも、若しくはガスタービン、膨脹タ
ービンの協同でも駆動できるので、電力需要に対応した
運転ができる。 (4)排ガスボイラで、ガスタービンの排気を利用して
発生させた蒸気で、蒸気タービンを作動し発電機を駆動
するので、熱回収率が向上できプラントの発電効率を上
げることができる。
According to the compressed air storage type power generation plant of the present invention, the following effects can be obtained by the configuration described in claim 1. (1) Since the gas turbine has an air compressor in the shaft system during power generation operation by the gas turbine, the control characteristics are stable, no overspeed occurs when the load is cut off, and stable no-load rated rotation operation is possible. Further, by providing the air compressor, the axial thrust of the gas turbine is balanced, and it is not necessary to provide a special large balance piston in the gas turbine. (2) Using the surplus power at night, etc., drive the storage air compressor by an independent electric motor, make the air taken in from the atmosphere storage compressed air, and use it as an air storage tank made using underground cavities etc. By operating the expansion turbine and driving the generator, it is possible to supply electric power that does not require a so-called power source (fuel) by operating the expansion turbine during the daytime when power demand is large. . (3) The low temperature exhaust gas discharged from the expansion turbine is compressed by the air compressor and the combustion gas is used to operate the gas turbine, so that the output and efficiency of the gas turbine can be improved. Further, since the generator can be driven by either the gas turbine or the expansion turbine alone, or by the cooperation of the gas turbine and the expansion turbine, the generator can be operated according to the power demand. (4) Since the steam turbine is operated and the generator is driven by the steam generated by using the exhaust gas of the gas turbine in the exhaust gas boiler, the heat recovery rate can be improved and the power generation efficiency of the plant can be increased.

【0027】また、請求項2に示す構成により、 (5)膨脹タービンに供給される貯蔵圧縮空気を高温高
圧にでき、膨脹タービンを効率良く運転でき、出力及び
効率を向上させることができる。
According to the second aspect of the present invention, (5) the stored compressed air supplied to the expansion turbine can be heated to a high temperature and high pressure, the expansion turbine can be operated efficiently, and the output and efficiency can be improved.

【0028】また、請求項3に示す構成により、 (6)膨脹タービンの出力、及び効率向上に加え、蒸気
タービンの熱効率も向上させることができ、発電プラン
トの熱効率をさらに向上させることができる。
According to the third aspect of the invention, (6) in addition to improving the output and efficiency of the expansion turbine, the thermal efficiency of the steam turbine can be improved, and the thermal efficiency of the power plant can be further improved.

【0029】また、請求項4に示す構成により、 (7)圧縮機で圧縮されるとき、昇温した貯蔵圧縮空気
の熱量が大気に放出されることなく、排ガスボイラの熱
源として回収できるので、発電プラントの熱効率が一層
向上できる。
Further, according to the structure of claim 4, (7) when compressed by the compressor, the heat quantity of the stored compressed air whose temperature has been raised can be recovered as a heat source of the exhaust gas boiler without being released to the atmosphere, The thermal efficiency of the power plant can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の圧縮空気貯蔵形発電プラントの第1実
施例を示す系統図。
FIG. 1 is a system diagram showing a first embodiment of a compressed air storage type power plant of the present invention.

【図2】本発明の第2実施例を示す系統図。FIG. 2 is a system diagram showing a second embodiment of the present invention.

【図3】従来の圧縮空気貯蔵形発電プラントを示す系統
図。
FIG. 3 is a system diagram showing a conventional compressed air storage type power plant.

【符号の説明】[Explanation of symbols]

1 ガスタービン 2 空気圧縮機 3 燃焼器 4 タービン 5 膨脹タービン 6 クラッチ 7 発電機 8 吸気フィルタ 9 貯蔵圧縮空気 10 加熱器 11 電動機 12 貯蔵用空気圧縮機としての低圧空気圧縮
機 13 貯蔵用空気圧縮機としての高圧空気圧縮
機 14 増速歯車装置 15 冷却器としてのインタークーラ 16 吸気フィルタ 17,19 電動弁 18 貯気槽 20 冷却器としてのアフタークーラ 21 排ガスボイラ 22 蒸気タービン 23 発電機 24 復水器 25 抽気 26 給水 27 貯蔵空気供給用の配管 29 燃料 30 煙突
1 Gas Turbine 2 Air Compressor 3 Combustor 4 Turbine 5 Expansion Turbine 6 Clutch 7 Generator 8 Intake Filter 9 Storage Compressed Air 10 Heater 11 Electric Motor 12 Low Pressure Air Compressor 13 as Storage Air Compressor 13 Storage Air Compressor High-pressure air compressor as an engine 14 Speed-up gear device 15 Intercooler as a cooler 16 Intake filter 17, 19 Motorized valve 18 Storage tank 20 Aftercooler as a cooler 21 Exhaust gas boiler 22 Steam turbine 23 Generator 24 Condenser 25 Bleed air 26 Water supply 27 Pipe for supplying stored air 29 Fuel 30 Chimney

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電力需要の大きい時間帯に貯蔵圧縮空気
を使用して発電を行う圧縮空気貯蔵形発電プラントにお
いて、貯蔵用空気圧縮機を駆動して前記貯蔵圧縮空気を
製造する電動機と、発電機のロータ軸の一側とクラッチ
を介して連結され、前記貯蔵圧縮空気で作動する膨脹タ
ービンと、前記ロータ軸の他側に連結され、前記膨脹タ
ービンからの排気、若しくは大気から導入された空気を
燃焼用圧縮空気にする空気圧縮機を軸結し前記燃焼用圧
縮空気の燃焼ガスで作動するガスタービンと、前記ガス
タービンの排気により蒸気を発生させる排ガスボイラ
と、前記排ガスボイラからの蒸気により作動し、発電機
を駆動する蒸気タービンとを具えたことを特徴とする圧
縮空気貯蔵形発電プラント。
1. A compressed air storage type power plant for generating electric power by using stored compressed air during a time period when electric power demand is high, and an electric motor for driving a storage air compressor to produce the stored compressed air; Expansion turbine, which is connected to one side of a rotor shaft of a machine through a clutch and operates with the stored compressed air, and the other side of the rotor shaft, which is exhausted from the expansion turbine or air introduced from the atmosphere. , A gas turbine that is connected to an air compressor that makes compressed air for combustion and that operates with combustion gas of the compressed air for combustion, an exhaust gas boiler that generates steam by exhaust gas of the gas turbine, and a steam from the exhaust gas boiler. A compressed air storage type power plant comprising a steam turbine which operates and drives a generator.
【請求項2】 前記膨脹タービンを作動させる前記貯蔵
圧縮空気の供給管に介装され排ガスボイラからの蒸気、
若しくは高温水で前記貯蔵圧縮空気を加熱する加熱器を
設けたことを特徴とする請求項1の圧縮空気貯蔵形発電
プラント。
2. Steam from an exhaust gas boiler, which is interposed in a supply pipe of the stored compressed air for operating the expansion turbine,
Alternatively, the compressed air storage type power plant according to claim 1, further comprising a heater for heating the stored compressed air with high temperature water.
【請求項3】 前記加熱器における前記貯蔵圧縮空気の
加熱は前記蒸気タービンから抽気された蒸気で行うこと
を特徴とする請求項2の圧縮空気貯蔵形発電プラント。
3. The compressed air storage type power plant according to claim 2, wherein the compressed compressed air stored in the heater is heated by the steam extracted from the steam turbine.
【請求項4】 貯蔵される前記貯蔵圧縮空気を前記排ガ
スボイラの給水を使用して冷却する冷却器を設けたこと
を特徴とする請求項1の圧縮空気貯蔵形発電プラント。
4. The compressed air storage type power plant according to claim 1, further comprising a cooler for cooling the stored compressed air to be stored by using feed water of the exhaust gas boiler.
JP12357094A 1994-06-06 1994-06-06 Compressed air storage type power plant Expired - Fee Related JP3605141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12357094A JP3605141B2 (en) 1994-06-06 1994-06-06 Compressed air storage type power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12357094A JP3605141B2 (en) 1994-06-06 1994-06-06 Compressed air storage type power plant

Publications (2)

Publication Number Publication Date
JPH07332109A true JPH07332109A (en) 1995-12-22
JP3605141B2 JP3605141B2 (en) 2004-12-22

Family

ID=14863854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12357094A Expired - Fee Related JP3605141B2 (en) 1994-06-06 1994-06-06 Compressed air storage type power plant

Country Status (1)

Country Link
JP (1) JP3605141B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278288A (en) * 2006-04-05 2007-10-25 General Electric Co <Ge> System for providing air to compressor of aircraft auxiliary gas turbine engine
WO2008052809A1 (en) * 2006-11-03 2008-05-08 Erwin Johan Croughs Anti greenhouse energy
WO2008091502A2 (en) 2007-01-19 2008-07-31 Michael Nakhamkin Power augmentation of combustion turbines by injection of cold air upstream of compressor
JP2013509531A (en) * 2009-10-28 2013-03-14 ゼネラル・エレクトリック・カンパニイ Air compression and expansion system with single shaft compressor and turbine deployment
CN103233820A (en) * 2013-05-10 2013-08-07 华北电力大学(保定) Integrated power generation system for compressed air energy storage and combined cycle
CN103821575A (en) * 2014-03-11 2014-05-28 华北电力大学 Deep load changing generating device with capacity increasing and transmission gain function
JP2014206162A (en) * 2013-04-10 2014-10-30 ゼネラル・エレクトリック・カンパニイ System and method for augmenting gas turbine power output
US9249728B2 (en) 2011-06-30 2016-02-02 Hanwha Techwin Co., Ltd. Power generation system and power generation method
JP2016506472A (en) * 2012-12-19 2016-03-03 エレクトリシテ・ドゥ・フランス Method for controlling a thermal power plant using a regulating valve
CN110410664A (en) * 2019-09-03 2019-11-05 贵州电网有限责任公司 A kind of compressed-air energy storage combined type gas storage can system and its adjusting method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278288A (en) * 2006-04-05 2007-10-25 General Electric Co <Ge> System for providing air to compressor of aircraft auxiliary gas turbine engine
WO2008052809A1 (en) * 2006-11-03 2008-05-08 Erwin Johan Croughs Anti greenhouse energy
WO2008091502A2 (en) 2007-01-19 2008-07-31 Michael Nakhamkin Power augmentation of combustion turbines by injection of cold air upstream of compressor
EP2122139A2 (en) * 2007-01-19 2009-11-25 Michael Nakhamkin Power augmentation of combustion turbines by injection of cold air upstream of compressor
EP2122139A4 (en) * 2007-01-19 2012-01-25 Michael Nakhamkin Power augmentation of combustion turbines by injection of cold air upstream of compressor
JP2013509531A (en) * 2009-10-28 2013-03-14 ゼネラル・エレクトリック・カンパニイ Air compression and expansion system with single shaft compressor and turbine deployment
US9249728B2 (en) 2011-06-30 2016-02-02 Hanwha Techwin Co., Ltd. Power generation system and power generation method
JP2016506472A (en) * 2012-12-19 2016-03-03 エレクトリシテ・ドゥ・フランス Method for controlling a thermal power plant using a regulating valve
JP2014206162A (en) * 2013-04-10 2014-10-30 ゼネラル・エレクトリック・カンパニイ System and method for augmenting gas turbine power output
CN103233820A (en) * 2013-05-10 2013-08-07 华北电力大学(保定) Integrated power generation system for compressed air energy storage and combined cycle
CN103821575A (en) * 2014-03-11 2014-05-28 华北电力大学 Deep load changing generating device with capacity increasing and transmission gain function
CN110410664A (en) * 2019-09-03 2019-11-05 贵州电网有限责任公司 A kind of compressed-air energy storage combined type gas storage can system and its adjusting method

Also Published As

Publication number Publication date
JP3605141B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
EP3623602B1 (en) Hybrid expander cycle with intercooling and turbo-generator
US11686250B2 (en) Gas turbine energy supplementing systems and heating systems, and methods of making and using the same
JP3178961B2 (en) Compressed air energy storage method and system
US5678401A (en) Energy supply system utilizing gas and steam turbines
KR102075550B1 (en) Oxy-fuel combustion power generation system
US6782703B2 (en) Apparatus for starting a combined cycle power plant
US9890707B2 (en) Gas turbine efficiency and regulation speed improvements using supplementary air system continuous and storage systems and methods of using the same
CA2263036C (en) Gas turbine combined cycle
JPH10184315A (en) Gas turbine generating device
JPH07332109A (en) Compressed air storage type power generating plant
CN105849370A (en) High pressure ratio twin spool industrial gas turbine engine
JPH09144560A (en) Hydrogen combustion gas turbine plant and its operating method
JPH0968006A (en) Gas turbine plant
JPH0688538A (en) Gas turbine plant
GB2402172A (en) Generator system
JP2003269188A (en) Steam injection reheating gas turbine generating set
CN209308835U (en) A kind of cold and heat combined supply gas turbine
JPS63215842A (en) Gas turbine generating system
CN109184910A (en) A kind of cold and heat combined supply gas turbine and method of operation
JP2004190558A (en) Cogeneration plant
JP2000008878A (en) Co-generation equipment
CN118442148A (en) Combined cycle rapid starting system and method of coupling heat storage technology
JPH11280493A (en) Compound steam injection gas turbine
RU2550214C1 (en) Steam-gas plant with steam-driven gas fuel metering unit-compressor
CN114991956A (en) Split-shaft gas turbine system for energy storage peak regulation and frequency modulation and working method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees