JPH07311236A - Method for detecting defect of power cable line - Google Patents
Method for detecting defect of power cable lineInfo
- Publication number
- JPH07311236A JPH07311236A JP7005934A JP593495A JPH07311236A JP H07311236 A JPH07311236 A JP H07311236A JP 7005934 A JP7005934 A JP 7005934A JP 593495 A JP593495 A JP 593495A JP H07311236 A JPH07311236 A JP H07311236A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- power cable
- wave
- defect
- partial discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Testing Relating To Insulation (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ゴム、プラスチック絶
縁電力ケーブル(以下電力ケーブルと称する)の電気絶
縁性能に有害となる欠陥部(絶縁体中の異物、ボイド、
半導電層表面上の突起等)を検出する電力ケーブル線路
の欠陥検出方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect portion (foreign matter in an insulator, void, etc.) that is harmful to the electric insulation performance of rubber and plastic insulated power cables (hereinafter referred to as power cables).
The present invention relates to a method for detecting defects in a power cable line, which detects protrusions on the surface of a semiconductive layer.
【0002】[0002]
【従来技術】従来、長距離送電に用いられる電力ケーブ
ルの電気絶縁性能に有害となる絶縁体中の異物やボイド
等の欠陥部を検出する方法として、直流電圧による課電
が行われており、試験用の電源装置は非常にコンパクト
であるものの、直流電圧ではこのような欠陥を検出する
能力が低い場合が多く、商用周波電圧で運転を開始した
直後に直流電圧で検出されなかった欠陥部から絶縁破壊
が起こることがあった。そこで、商用周波交流電圧、減
衰振動波電圧、超低周波電圧(明細書中超低周波とは1
Hz以下の周波数のものをいう)等の課電による検出方
法が提案されている。2. Description of the Related Art Conventionally, as a method of detecting a defect such as a foreign substance or a void in an insulator, which is harmful to the electric insulation performance of a power cable used for long-distance power transmission, a voltage is applied by a DC voltage. Although the power supply unit for the test is very compact, it often has a low ability to detect such defects at DC voltage, and from the defect that was not detected at DC voltage immediately after starting operation at commercial frequency voltage. Dielectric breakdown sometimes occurred. Therefore, commercial frequency AC voltage, damped oscillatory wave voltage, ultra-low frequency voltage (
A detection method by applying a voltage such as a frequency of less than Hz) is proposed.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、前記の
ような提案の検出方法単独では、長距離送電線路に適用
することを考慮すると種々の問題がある。However, the proposed detection method alone as described above has various problems when it is applied to a long-distance transmission line.
【0004】商用周波交流電圧の課電による場合は、欠
陥部の検出能力は優れているものの、長距離送電線路の
場合充電電流が非常に大きくなるため課電用の電源装置
が非常に巨大なものとなり、該装置の運搬等が困難であ
る。When the commercial frequency AC voltage is applied, the defect detection capability is excellent, but in the case of a long-distance power transmission line, the charging current becomes very large, so that the power supply device for power application is very huge. However, it is difficult to transport the device.
【0005】また、減衰振動波電圧の場合長距離線路へ
の適用は、装置のサイズから考えても十分可能であり、
欠陥部からトリーを発生させる能力は十分高いが、最終
的に欠陥部の検出を行う(トリーをさせてから破壊に至
らしめるまで)ための課電回数が不明であったり、部分
放電の測定が困難であったりするため、この電圧波形単
独の検出ではその遂行上の問題点が多々ある。Further, in the case of a damped oscillatory wave voltage, application to a long distance line is sufficiently possible considering the size of the device,
Although the ability to generate a tree from a defective part is sufficiently high, the number of times the voltage is applied to finally detect the defective part (from the time the tree is made until it is destroyed) or the partial discharge measurement is not possible. Since it is difficult, the detection of the voltage waveform alone has many problems in its execution.
【0006】また、超低周波電圧の課電による場合は、
課電の周波数を低くすることで充電電流を大幅に低減さ
せることが可能なため長距離線路への適用は可能であ
り、部分放電の測定も行うことができるが、単独で課電
を行う場合欠陥部の検出を行うための課電電圧が高くな
る傾向があり、運用上の問題、課電装置の出力電圧が高
くなる等の問題点がある。Further, in the case of applying an ultra low frequency voltage,
By lowering the frequency of charging, the charging current can be significantly reduced, so it can be applied to long-distance lines, and partial discharge can be measured. The voltage applied to detect a defective portion tends to be high, which causes operational problems and increases in the output voltage of the power applying device.
【0007】[0007]
【発明の目的】本発明は上述の問題点を一掃し、電力ケ
ーブルの前記欠陥部の検出を確実かつ容易に行うことの
できる電力ケーブル線路の欠陥検出方法を提供すること
を目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned problems and to provide a method of detecting a defect in a power cable line which can reliably and easily detect the defective portion of the power cable.
【0008】[0008]
【課題を解決するための手段】本発明は上述の目的を達
成するため、電力ケーブルの欠陥部を減衰振動波電圧、
超低周波電圧の課電により検出する電力ケーブル線路の
欠陥検出方法において、第1ステップで直流電圧を印加
し、第2ステップで減衰振動波を1または複数回印加
し、第3ステップで超低周波電圧波を印加し、第1ステ
ップと第2ステップおよび第3ステップを一組とした課
電を1または複数回繰り返して行い、この課電によりケ
ーブルを破壊させ、ケーブルの欠陥部を検出することを
特徴とする。SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a power cable with a defective vibration wave voltage,
In a defect detection method for a power cable line that is detected by applying an ultra-low frequency voltage, a DC voltage is applied in the first step, a damped oscillatory wave is applied one or more times in the second step, and an ultra-low voltage is applied in the third step. Frequency voltage wave is applied, and the first step, the second step, and the third step are electrically charged once or a plurality of times, and the cable is destroyed by this voltage application, and the defective portion of the cable is detected. It is characterized by
【0009】また、前記第1のステップと第2のステッ
プおよび第3ステップを一組とした課電を1または複数
回繰り返して行い、各第3ステップにおいて部分放電測
定を行い、電気トリーの進展に伴う部分放電信号を検知
してケーブルの欠陥部を検出することを特徴とする。Further, the charging of the first step, the second step, and the third step as a set is repeated one or more times, and the partial discharge is measured in each of the third steps to develop the electric tree. Is detected to detect a defective portion of the cable.
【0010】[0010]
【作用】本発明は、第1ステップで直流電圧を印加し、
第2ステップで減衰振動波を1または複数回印加し、第
3ステップで超低周波電圧波を印加し、第1ステップと
第2ステップおよび第3ステップを一組とした課電を1
または複数回繰り返して行うので、絶縁体内部に空間電
荷の蓄積を発生させやすい直流電圧で電界集中の強い欠
陥形状などの周辺部に空間電荷層の発生を促進させ、電
気トリーを発生させる能力の高い減衰振動波で欠陥部か
ら電気トリーを発生させ、超低周波電圧で前記発生した
電気トリーが容易に進展させられ、また一回で発生しな
かった電気トリーを確実に発生させる。The present invention applies the DC voltage in the first step,
In the second step, the damped oscillatory wave is applied one or more times, in the third step, the ultra-low frequency voltage wave is applied, and in the first step, the second step, and the third step are combined into a single charge.
Alternatively, since it is repeated a plurality of times, it is possible to accelerate the generation of the space charge layer in the peripheral portion such as a defect shape where the electric field concentration is strong with a DC voltage that easily causes the accumulation of the space charge inside the insulator and to generate an electric tree. An electric tree is generated from a defect portion by a high damping vibration wave, the generated electric tree is easily developed by an ultralow frequency voltage, and an electric tree which is not generated at one time is surely generated.
【0011】また、前記第1のステップと第2のステッ
プおよび第3ステップを一組とした課電を1または複数
回繰り返して行い、各第3ステップにおいて部分放電測
定を行い、電気トリーの進展に伴う部分放電信号を検知
するので、部分放電が容易に測定できる。Further, the charging of the first step, the second step, and the third step as a set is repeated one or more times, and the partial discharge is measured at each third step to develop the electric tree. Since the partial discharge signal associated with is detected, the partial discharge can be easily measured.
【0012】[0012]
【実施例】以下本発明の実施例を詳細に説明する。本実
施例で使用した電力ケーブルは絶縁厚10mm、長さ2
0mのCVケーブルであり、前記電力ケーブル中央部に
模擬突起として、金属針をケーブル外部より絶縁体中に
深さ2mm挿入したものである。EXAMPLES Examples of the present invention will be described in detail below. The power cable used in this example has an insulation thickness of 10 mm and a length of 2
This is a 0 m CV cable in which a metal needle is inserted into the insulator from the outside of the cable to a depth of 2 mm as a simulated protrusion at the center of the power cable.
【0013】この電力ケーブルに第1ステップで−18
0kvの直流電圧を15分間印加し、この状態から第2
ステップとして−180kvのピーク値を持つ減衰振動
波を10回印加し、続いて第3ステップで130kvの
ピーク値を持つ繰り返し周波数0.1Hzの超低周波の
三角波電圧を10分間印加して同時に部分放電の測定を
行った(図1参照)。その結果、課電サイクル3回目の
三角波電圧印加開始と同時に部分放電の発生が確認され
た。更に、三角波の課電を継続すると、前記三角波印加
開始より5分経過後に絶縁破壊が発生した。In this power cable, in the first step, -18
Apply a direct current voltage of 0 kv for 15 minutes, and from this state,
As a step, a damped oscillatory wave having a peak value of −180 kv was applied 10 times, and then, in the third step, a super low frequency triangular wave voltage having a repetition frequency of 0.1 Hz having a peak value of 130 kv was applied for 10 minutes to simultaneously perform partial The discharge was measured (see FIG. 1). As a result, it was confirmed that the partial discharge was generated at the same time when the triangular wave voltage was applied for the third time in the charging cycle. Furthermore, when the triangular wave was continuously applied, dielectric breakdown occurred 5 minutes after the start of the triangular wave application.
【0014】次に、同じサイズ、寸法の別の試料に第1
ステップで−230kvの直流電圧を15分間印加し、
この状態から第2ステップとして−230kvのピーク
値を持つ減衰振動波を10回印加し、続いて第3ステッ
プで180kvのピーク値を持つ繰り返し周波数0.1
Hzの超低周波の三角波電圧を印加して同時に部分放電
の測定を行った。その結果、最初の三角波印加の開始と
同時に部分放電が発生した。これは部分放電発生の直前
の減衰振動波印加により欠陥部から電気トリーが発生し
たことを示す。そして課電を継続すると、その後5分で
絶縁破壊が生じた。Next, another sample of the same size and size is
In step, apply DC voltage of -230kv for 15 minutes,
From this state, a damping vibration wave having a peak value of −230 kv is applied 10 times as a second step, and then a repetition frequency 0.1 having a peak value of 180 kv is applied in a third step.
The partial discharge was measured at the same time by applying a triangular wave voltage of ultra low frequency of Hz. As a result, partial discharge was generated at the same time when the first triangular wave application was started. This indicates that an electrical tree was generated from the defect due to the application of the damping oscillatory wave immediately before the occurrence of partial discharge. When the electricity was applied continuously, dielectric breakdown occurred within 5 minutes.
【0015】そこで、印加電圧と破壊までの課電サイク
ル数の関係に着目して、第1ステップの直流電圧、第2
ステップの減衰振動波電圧、第3ステップの超低周波電
圧の印加値を低下させて、課電サイクル数を増加させる
ことによる効果の検証を行った。なお、実験に使用した
試料は前記と同じであり、印加する直流、減衰振動波の
電圧は同一とし、これに超低周波を組み合わせて絶縁破
壊が生じるまで上記の実験を繰り返した。その結果を表
1に示す。Therefore, paying attention to the relationship between the applied voltage and the number of charging cycles until breakdown, the DC voltage of the first step, the second
The effect of increasing the number of charging cycles by lowering the applied values of the damping vibration wave voltage of the step and the ultra low frequency voltage of the third step was verified. The samples used in the experiment were the same as those described above, the applied DC voltage and the voltage of the damped oscillatory wave were the same, and the above experiment was repeated by combining this with an ultra-low frequency until dielectric breakdown occurred. The results are shown in Table 1.
【0016】[0016]
【表1】 [Table 1]
【0017】その結果から、課電サイクルは1回の状態
でも以下に示すように各電圧波形単独の場合と比較して
低電圧での欠陥検出は可能であるが、そのサイクル数を
複数回繰り返すことにより、試験電圧の更なる低電圧化
が可能であり、これにより課電機器のコンパクト化がで
きることができる。しかし、課電サイクル数が多くなる
と、逆に試験に要する時間が長くなり好ましくないの
で、10回以下とするのが望ましい。From the result, it is possible to detect a defect at a low voltage as compared with the case of each voltage waveform alone as shown below even in the state of one voltage application cycle, but the number of cycles is repeated a plurality of times. As a result, the test voltage can be further reduced, and the power-applying device can be made compact. However, if the number of power application cycles increases, the time required for the test becomes longer, which is not preferable. Therefore, it is desirable to set the number of times to 10 or less.
【0018】以上示したように、本発明の検出方法で
は、電圧の印加時間、印加回数および電圧波のピーク値
をいずれも低減することができ、装置の低電圧化、コン
パクト化、試験運用の効率化等で著しい効果を持つこと
がわかる。As described above, according to the detection method of the present invention, it is possible to reduce the voltage application time, the number of applications, and the peak value of the voltage wave. It can be seen that there is a remarkable effect in improving efficiency.
【0019】次に本発明との比較例(従来例)について
説明する。実験に用いた電力ケーブルは本発明の上記2
つの実施例で用いたものと同じ構造、サイズのものであ
る。第1比較例は、直流電圧のみ印加するもので、−5
50kvの直流電圧を20分間印加した。しかしこの電
圧の印加では試料の絶縁破壊は確認されなかった。Next, a comparative example (conventional example) with the present invention will be described. The power cable used in the experiment is the above-mentioned 2 of the present invention.
It has the same structure and size as those used in the one embodiment. The first comparative example applies only a DC voltage, and is -5
A DC voltage of 50 kv was applied for 20 minutes. However, no dielectric breakdown of the sample was confirmed by applying this voltage.
【0020】また第2比較例は減衰振動波のみ印加し欠
陥を検出するもので、−400kvのピーク値を持つ波
形(図3参照)を繰り返し印加する。この結果印加58
回目に模擬突起から絶縁破壊が発生した。そこで部分放
電の検出を試みたが、減衰振動波発生時のインパルス性
のノイズのため測定できなかった。In the second comparative example, only a damped oscillatory wave is applied to detect a defect, and a waveform having a peak value of -400 kv (see FIG. 3) is repeatedly applied. This result is applied 58
Dielectric breakdown occurred from the simulated protrusion at the fourth time. Therefore, we tried to detect the partial discharge, but could not measure it because of impulsive noise when the damped oscillatory wave was generated.
【0021】さらに第3比較例は超低周波のみを印加し
欠陥を検出するもので、350kvのピーク値を持つ繰
り返し周波数0.1Hzの三角波電圧(図4参照)を印
加する。該三角波を印加しながら同時に部分放電の測定
を行うと課電を開始してから15分後に部分放電が発生
し、課電を継続するとその後37分して絶縁破壊が生じ
た。Further, in the third comparative example, only a very low frequency is applied to detect a defect, and a triangular wave voltage having a peak value of 350 kv and a repetition frequency of 0.1 Hz (see FIG. 4) is applied. When partial discharge was simultaneously measured while applying the triangular wave, partial discharge occurred 15 minutes after the start of voltage application, and dielectric breakdown occurred 37 minutes after the application of voltage continued.
【0022】また第4比較例は、図5(a)に示すよう
な−280kvのピーク値を持つ減衰振動波を20回印
加し、続いて図5(b)に示すような130kvのピー
ク値を持つ繰り返し周波数0.1Hzの三角波電圧を印
加して同時に部分放電の測定を行う課電サイクルを数回
繰り返す。この結果課電サイクル5回目の三角波電圧の
印加開始と同時に部分放電の発生が確認された。このこ
とは減衰振動波の印加により、電力ケーブルの模擬突起
部分から電気トリーが発生したことを示す。更に、三角
波の課電を継続したところ、前記三角波印加開始より9
分で部分放電が急増して破壊が生じた。In the fourth comparative example, a damped oscillatory wave having a peak value of −280 kv as shown in FIG. 5A was applied 20 times, and then a peak value of 130 kv as shown in FIG. 5B was applied. A triangular wave voltage having a repetition frequency of 0.1 Hz is applied to simultaneously measure partial discharge and the charging cycle is repeated several times. As a result, it was confirmed that the partial discharge occurred at the same time when the triangular wave voltage was applied for the fifth time of the charging cycle. This indicates that an electrical tree was generated from the simulated protrusion of the power cable due to the application of the damped oscillatory wave. Furthermore, when the triangular wave was continuously charged, the
In minutes, the partial discharge increased rapidly and destruction occurred.
【0023】以上示したように、従来の直流電圧単独の
印加では試料の絶縁破壊が生じず、また減衰振動波単独
の印加による検出方法では部分放電の測定が困難である
ばかりでなく、絶縁破壊までの印加回数が多くなり、さ
らに超低周波単独の印加による検出方法では絶縁破壊が
生じるまでの印加時間および印加電圧が共に増加し、装
置の低電圧化、コンパクト化、試験運用の効率化等で問
題が多いことがわかる。As described above, the conventional application of the DC voltage alone does not cause the dielectric breakdown of the sample, and it is not only difficult to measure the partial discharge by the detection method by applying the damping vibration wave alone, but also the dielectric breakdown is caused. In addition, the detection time by applying the ultra-low frequency alone increases both the application time and the applied voltage until dielectric breakdown occurs, resulting in lower voltage of the device, downsizing, efficient test operation, etc. It turns out that there are many problems.
【0024】また、減衰振動波と超低周波とを組み合わ
せると単独の電圧印加に比べては欠陥の検出能力が向上
しているのがわかる。Further, it can be seen that the combination of the damped oscillatory wave and the ultra low frequency improves the defect detection capability as compared with the case of applying a single voltage.
【0025】なお、本実施例では超低周波として0.1
Hzの三角波を用いたが、超低周波としては他に1Hz
以下の周波数である三角波、矩形波(図2(a)参
照)、正弦波(図2(b)参照)等の波形を用いること
もできる。また、減衰振動波の充電電圧は負極性のみを
用いたが、正極性を用いるもしくは、負極性と正極性を
交互に用いる方法等さまざまな組合わせが考えられる
が、これらのいずれでも適用することができる。さらに
減衰振動波電圧の印加回数、超低周波電圧の印加時間等
も適宜選択しうる。In this embodiment, the ultra low frequency is 0.1.
I used a triangular wave of 1Hz, but as an ultra-low frequency, another 1Hz
Waveforms such as a triangular wave, a rectangular wave (see FIG. 2A), and a sine wave (see FIG. 2B) having the following frequencies can also be used. Also, although only the negative polarity was used for the charging voltage of the damped oscillatory wave, various combinations such as the method of using the positive polarity or the method of alternately using the negative polarity and the positive polarity are conceivable. Any of these may be applied. You can Further, the number of times the damping vibration wave voltage is applied, the application time of the ultra-low frequency voltage, and the like can be appropriately selected.
【0026】また、減衰振動波の振動周波数は、電力ケ
ーブル全長に対する波形の一様性の面から1〜10KH
zの範囲に含まれることが望ましい。さらに、部分放電
測定は必要に応じて省略することもよい。The vibration frequency of the damped vibration wave is 1 to 10 KH in terms of waveform uniformity with respect to the entire length of the power cable.
It is desirable to be included in the range of z. Further, the partial discharge measurement may be omitted if necessary.
【0027】[0027]
【発明の効果】本発明の電力ケーブル線路の欠陥検出方
法は、第1ステップで直流電圧を印加し、第2ステップ
で減衰振動波を1または複数回印加し、第3ステップで
超低周波電圧波を印加し、第1ステップと第2ステップ
および第3ステップを一組とした課電を1または複数回
繰り返して行うので、絶縁体内部に空間電荷の蓄積を発
生させやすい直流電圧で電界集中の強い欠陥形状などの
周辺部に空間電荷層の発生を促進させ、電気トリーを発
生させる能力の高い減衰振動波で欠陥部から電気トリー
を発生させ、超低周波電圧で前記発生した電気トリーが
容易に進展させられ、また一回で発生しなかった電気ト
リーを確実に発生させる。According to the method of detecting a defect in a power cable line of the present invention, a DC voltage is applied in the first step, a damped oscillatory wave is applied one or more times in the second step, and an ultra low frequency voltage is applied in the third step. Applying a wave and applying the first step, the second step, and the third step as a set repeatedly one or more times, the electric field is concentrated with a DC voltage that easily causes the accumulation of space charge inside the insulator. The generation of a space charge layer in the peripheral part of a strong defect shape, etc. is promoted, and an electrical tree is generated from the defect part by a damped oscillatory wave having a high ability to generate an electrical tree. Easily evolved and reliably generate electrical trees that did not occur at one time.
【0028】また、前記第1のステップと第2のステッ
プおよび第3ステップを一組とした課電を1または複数
回繰り返して行い、各第3ステップにおいて部分放電測
定を行い、電気トリーの進展に伴う部分放電信号を検知
するので、部分放電が容易に測定できる。したがって、
試験電圧を低電圧化でき、装置がコンパクト化でき、ま
た試験運用が効率よくできる等の効果を発揮する。Further, the charging of the first step, the second step and the third step as one set is repeated one or more times, and the partial discharge measurement is performed at each third step to develop the electric tree. Since the partial discharge signal associated with is detected, the partial discharge can be easily measured. Therefore,
The test voltage can be lowered, the device can be made compact, and the test operation can be efficiently performed.
【図1】本発明の実施例で用いる課電波形を示すもので
ある。FIG. 1 shows an applied waveform used in an embodiment of the present invention.
【図2】本発明に用いる超低周波の変形例を示すもの
で、(a)は矩形波、(b)は正弦波である。2A and 2B show modifications of an ultralow frequency used in the present invention, where FIG. 2A is a rectangular wave and FIG. 2B is a sine wave.
【図3】従来の減衰振動波電圧の課電による波形を示す
ものである。FIG. 3 shows a waveform of a conventional damped oscillatory voltage caused by charging.
【図4】従来の超低周波電圧の課電による三角波形を示
すものである。FIG. 4 is a diagram showing a triangular waveform due to charging of a conventional ultra-low frequency voltage.
【図5】従来の組み合わせで用いる課電波形で、(a)
は減衰振動波、(b)は超低周波である。FIG. 5 is a waveform of charging voltage used in a conventional combination, (a)
Is a damped oscillatory wave, and (b) is an extremely low frequency.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 秀郎 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 佐久間 進 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 藤井 治 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 田辺 輝義 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Tanaka 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Susumu Sakuma 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Osamu Fujii 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Teruyoshi Tanabe 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.
Claims (2)
圧、超低周波電圧の課電により検出する電力ケーブル線
路の欠陥検出方法において、第1ステップで直流電圧を
印加し、第2ステップで減衰振動波を1または複数回印
加し、第3ステップで超低周波電圧波を印加し、第1ス
テップと第2ステップおよび第3ステップを一組とした
課電を1または複数回繰り返して行い、この課電により
ケーブルを破壊させ、ケーブルの欠陥部を検出すること
を特徴とする電力ケーブル線路の欠陥検出方法。1. A method for detecting a defect in a power cable in which a defective portion of the power cable is detected by applying an oscillating wave voltage or an ultra-low frequency voltage, a direct current voltage is applied in the first step, and a damping is performed in the second step. Applying an oscillating wave one or more times, applying an ultra-low frequency voltage wave in the third step, and repeating the application of electricity by combining the first step, the second step, and the third step one or more times, A method of detecting a defect in a power cable line, characterized in that the cable is broken by this voltage application and a defective portion of the cable is detected.
び第3ステップを一組とした課電を1または複数回繰り
返して行い、各第3ステップにおいて部分放電測定を行
い、電気トリーの進展に伴う部分放電信号を検知してケ
ーブルの欠陥部を検出することを特徴とする請求項1記
載の電力ケーブル線路の欠陥検出方法。2. The charging of the first step, the second step, and the third step as a set is repeated one or more times, and partial discharge measurement is performed at each third step to develop the electrical tree. 2. The method of detecting a defect in a power cable line according to claim 1, wherein a defective portion of the cable is detected by detecting a partial discharge signal associated with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7005934A JPH07311236A (en) | 1994-01-18 | 1995-01-18 | Method for detecting defect of power cable line |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-3498 | 1994-01-18 | ||
JP349894 | 1994-01-18 | ||
JP7005934A JPH07311236A (en) | 1994-01-18 | 1995-01-18 | Method for detecting defect of power cable line |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07311236A true JPH07311236A (en) | 1995-11-28 |
Family
ID=26337087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7005934A Pending JPH07311236A (en) | 1994-01-18 | 1995-01-18 | Method for detecting defect of power cable line |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07311236A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106556782A (en) * | 2016-11-17 | 2017-04-05 | 中国电力科学研究院 | A kind of Partial Discharge Sources location determining method and system |
CN107358788A (en) * | 2017-09-13 | 2017-11-17 | 广州市厚德物联科技有限公司 | Power supply cable disconnection monitoring and alarming device based on LoRa technology |
CN107528292A (en) * | 2017-07-04 | 2017-12-29 | 西南交通大学 | A kind of detection of tractive power supply system low frequency net voltage fluctuation and guard method |
CN112130032A (en) * | 2020-08-11 | 2020-12-25 | 国网天津市电力公司电力科学研究院 | Method for judging cable defect degree by using oscillation wave to excite partial discharge frequency |
-
1995
- 1995-01-18 JP JP7005934A patent/JPH07311236A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106556782A (en) * | 2016-11-17 | 2017-04-05 | 中国电力科学研究院 | A kind of Partial Discharge Sources location determining method and system |
CN106556782B (en) * | 2016-11-17 | 2020-12-18 | 中国电力科学研究院 | Partial discharge source position determining method and system |
CN107528292A (en) * | 2017-07-04 | 2017-12-29 | 西南交通大学 | A kind of detection of tractive power supply system low frequency net voltage fluctuation and guard method |
CN107528292B (en) * | 2017-07-04 | 2019-01-08 | 西南交通大学 | A kind of detection of tractive power supply system low frequency net voltage fluctuation and guard method |
CN107358788A (en) * | 2017-09-13 | 2017-11-17 | 广州市厚德物联科技有限公司 | Power supply cable disconnection monitoring and alarming device based on LoRa technology |
CN112130032A (en) * | 2020-08-11 | 2020-12-25 | 国网天津市电力公司电力科学研究院 | Method for judging cable defect degree by using oscillation wave to excite partial discharge frequency |
CN112130032B (en) * | 2020-08-11 | 2023-10-31 | 国网天津市电力公司电力科学研究院 | Method for judging cable defect degree by utilizing frequency of partial discharge excited by oscillating wave |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ren et al. | Research on the effect of unipolar pulse wave voltage on space charge characteristics for high-frequency equipment insulation | |
CN103492889A (en) | Inverter-driven rotating electrical machine, interphase insulation partial discharge test method, and interphase insulation partial discharge test device | |
JPH07311236A (en) | Method for detecting defect of power cable line | |
JP4378478B2 (en) | Method and apparatus for measuring partial discharge start voltage | |
CN111505463A (en) | Device and method for measuring charge distribution of front and back surfaces of surface flashover of basin-type insulator | |
Foulon et al. | Investigation of the failure mechanism of insulation subjected to repetitive fast voltage surges | |
JPH06337280A (en) | Method for detecting defect of power cable line | |
Kagawa et al. | Acoustic emission associated with tree growth in polymeric materials | |
CN110531227A (en) | A kind of device and method of the quality of insulation of detection high pressure extrusion cable | |
JP4101120B2 (en) | Test method for solid insulated cable | |
JPH11202019A (en) | Test method for withstand voltage of power cable | |
JP3524320B2 (en) | Withstand voltage test method for rubber and plastic insulated power cables | |
JP5479774B2 (en) | Quality test method for solid insulated cable | |
JP2562490B2 (en) | Insulation performance test method for plastic insulated cables | |
JPH09251003A (en) | Testing method for judging life of rubber and plastic cable | |
Koo et al. | A study on the oscillating wave voltage test as an after-laying test for distribution power cables | |
JPH10253693A (en) | Method for detecting insulator deterioration of rubber or plastic cable | |
Hozumi et al. | Space charge measurement in water tree degraded XLPE cables | |
JP3524345B2 (en) | Withstand voltage test method for rubber and plastic insulated power cables | |
JP4343664B2 (en) | Withstand voltage test method for power cables | |
Liu et al. | Influence of impulse frequency on partial discharge under PWM | |
SU1218352A1 (en) | Method of locating damage of cable insulation | |
JPH07159478A (en) | Method for detecting defect of power cable line | |
Zhou et al. | The influence of thermal aging on space charge distribution in oil-impregnated paper under AC field | |
JPS62273469A (en) | Method and apparatus for detection and forecasting of external partial discharge and creeping flashover at withstand voltage test of electric equipment |