JPH07300665A - Method for forming boron cementation layer and boron film on metallic base material - Google Patents
Method for forming boron cementation layer and boron film on metallic base materialInfo
- Publication number
- JPH07300665A JPH07300665A JP9321194A JP9321194A JPH07300665A JP H07300665 A JPH07300665 A JP H07300665A JP 9321194 A JP9321194 A JP 9321194A JP 9321194 A JP9321194 A JP 9321194A JP H07300665 A JPH07300665 A JP H07300665A
- Authority
- JP
- Japan
- Prior art keywords
- boron
- film
- base material
- substrate
- bias voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、金属基材のホウ素拡散
浸透層・ホウ素膜形成方法に関する。特に、加工歪がな
いことが要求される治工具や、寸法精度が要求される金
型の表面処理に好適なホウ素拡散浸透層・ホウ素膜形成
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a boron diffusion / penetration layer / boron film on a metal substrate. In particular, the present invention relates to a method for forming a boron diffusion / penetration layer / boron film, which is suitable for a jig / tool required to have no processing strain and a surface treatment of a mold required to have dimensional accuracy.
【0002】[0002]
【従来の技術】ホウ化物は、一般的には(六方晶窒化ホ
ウ素(h−BN)は、柔らかく、自己潤滑性に富
む。)、著しく硬く、耐摩耗性、耐食性、耐酸化性に富
み、金属表面にホウ素を拡散浸透させる表面処理、いわ
ゆるホウ化処理が検討されている。例えば、特公昭55
−51510号公報に、下記構成の鉄鋼材料のホウ化処
理方法(ホウ素拡散浸透層形成方法)が提案されてい
る。BACKGROUND OF THE INVENTION Borides are generally (hexagonal boron nitride (h-BN) is soft and rich in self-lubricating property), extremely hard, and excellent in wear resistance, corrosion resistance and oxidation resistance, A so-called boride treatment, which is a surface treatment for diffusing and permeating boron on a metal surface, has been studied. For example, Japanese Patent Publication Sho 55
JP-A-51510 proposes a boring treatment method (boron diffusion permeation layer forming method) for a steel material having the following constitution.
【0003】「鉄鋼材料の表面部に予め窒素を拡散浸透
せしめ、しかる後該部分にホウ素を拡散浸透せしめてホ
ウ素拡散浸透層を形成せしめることを特徴とする鉄鋼材
料の硼化処理方法。」ここで、上記ホウ素拡散浸透層の
形成方法としては、塩化ボロン(BCl3) と水素又はア
ルゴンの混合ガスに被処理材(金属基材)を接触させる
等のガス法、炭化ホウ素(B4C)やホウフッ化カリウム
(KBF4) 等を含む粉末中に被処理材料を埋め込む粉末
法、溶融塩浴に被処理材を浸漬する浸漬法、溶融塩
浴中で電解する電解法、等を適用できる旨記載されてい
る(同公報第2柱第34行〜第3柱3行)。"A method for boriding a steel material, which comprises preliminarily diffusing and permeating nitrogen into the surface of the steel material, and then diffusing and permeating boron into the portion to form a boron diffusion and permeation layer." Then, as a method for forming the above-mentioned boron diffusion / permeation layer, a gas method such as bringing a material to be treated (metal base material) into contact with a mixed gas of boron chloride (BCl 3 ) and hydrogen or argon, boron carbide (B 4 C) It is possible to apply the powder method in which the material to be treated is embedded in a powder containing potassium or potassium borofluoride (KBF 4 ), the immersion method in which the material to be treated is immersed in a molten salt bath, the electrolytic method in which electrolysis is performed in the molten salt bath, etc. It is described (the same publication, column 2, line 34 to column 3, line 3).
【0004】[0004]
【発明が解決しようとする課題】しかし、上記ホウ化処
理方法(ホウ素拡散浸透層の形成方法)の場合、下記の
ような問題点があった。However, in the case of the above boride treatment method (method of forming a boron diffusion / permeation layer), there are the following problems.
【0005】(1) 上記ホウ化処理に使用する方法は、い
ずれも作業環境上問題点がある。即ち、「粉末法」の場
合、粉塵爆発の危険性、「ガス法」の場合、使用ガスの
毒性や発火性、「溶融塩法」「電解法」の場合、水分吸
収時の溶融塩の飛散、等の問題点がそれぞれある。さら
に、「ガス法」では使用原料ガスが腐食性を有する場合
が多く、排気系の腐食対策に充分な注意が必要である。(1) Each of the methods used for the boration treatment has a problem in working environment. That is, in the case of the "powder method", there is a risk of dust explosion, in the case of the "gas method", the toxicity and ignitability of the gas used, and in the case of the "molten salt method" and the "electrolysis method", the scattering of molten salt during water absorption , Etc. have their problems. Further, in the "gas method", the raw material gas used is often corrosive, and therefore sufficient attention must be paid to measures against corrosion of the exhaust system.
【0006】(2) ホウ素拡散浸透層の硬さは充分に硬い
が、その表面硬さを得るには、例えば、処理温度を60
0℃前後の場合、16時間(前記公報の実施例1・2・
3参照)と長時間を要した。(2) The boron diffusion / permeation layer is sufficiently hard, but in order to obtain its surface hardness, for example, the treatment temperature is 60
When the temperature is around 0 ° C., 16 hours (Examples 1.2 and 2
(See 3) and it took a long time.
【0007】(3) また、結晶性ホウ素自体、ビッカース
硬さ(HV )1800kg/mm2と硬いが、未だに、硬質ホ
ウ素膜を金属基材の表面に密着性良好に形成する技術は
確立していない。(3) Further, although crystalline boron itself is as hard as Vickers hardness (H V ) of 1800 kg / mm 2 , a technique for forming a hard boron film on the surface of a metal substrate with good adhesion has been established. Not not.
【0008】本発明は、上記にかんがみて、作業環境に
悪影響を与えることなく、かつ、生産性良好に、ホウ素
拡散浸透層を中間層として形成し、その上に、密着性の
良い硬質ホウ素膜を形成することを目的とする。In view of the above, the present invention forms a boron diffusion / penetration layer as an intermediate layer without adversely affecting the working environment and with good productivity, and a hard boron film having good adhesion on it. Is intended to be formed.
【0009】本発明の他の目的は、さらに、上述の硬質
ホウ素膜の上に密着性の良好な高機能ホウ化物膜を生産
性良好に形成する方法を提供することにある。Another object of the present invention is to provide a method for forming a highly functional boride film having good adhesion on the above hard boron film with good productivity.
【0010】[0010]
(1) 請求項1に係る本発明は、上記第一の目的を下記構
成により達成するものである。(1) The present invention according to claim 1 achieves the first object by the following configuration.
【0011】金属基材(母材)の表面にホウ素拡散浸透
層・ホウ素膜の形成をホウ素またはホウ素化合物をイオ
ン化可能な能力、及び、前記基板に可変バイアス電圧を
印加可能な機構を備えたで基材にバイアス電圧を印加可
能な機構を具備させた機構を有する真空めっき(PV
D)装置またはプラズマCVD装置により行うに際し
て、基板の温度及びバイアス電圧を制御して母材表層部
にホウ素拡散浸透層を形成後、温度およびバイアス電圧
を徐々に設定値まで下げて傾斜構造を有する硬質ホウ素
膜を連続的に形成する、ことを特徴とする。The formation of the boron diffusion / permeation layer / boron film on the surface of the metal base material (base material) has the ability to ionize boron or a boron compound, and a mechanism capable of applying a variable bias voltage to the substrate. Vacuum plating (PV) having a mechanism in which a bias voltage can be applied to the substrate
D) When using an apparatus or a plasma CVD apparatus, the temperature and bias voltage of the substrate are controlled to form a boron diffusion / permeation layer on the surface layer of the base material, and then the temperature and bias voltage are gradually reduced to set values to have an inclined structure. It is characterized in that a hard boron film is continuously formed.
【0012】(2) 請求項2に係る本発明は、上記第二の
目的を下記構成により達成するものである。(2) The present invention according to claim 2 achieves the above second object by the following configuration.
【0013】請求項1において、硬質ホウ素膜の上に、
反応性ガスの導入量を徐々に増加させて、傾斜構造を有
する高機能ホウ化物膜を形成する、ことを特徴とする金
属基材の高機能ホウ化物膜の形成方法。In claim 1, on the hard boron film,
A method for forming a high-performance boride film on a metal substrate, which comprises gradually increasing the amount of reactive gas introduced to form a high-performance boride film having a graded structure.
【0014】[0014]
(1) 本発明は、金属基材表面のホウ素拡散浸透層・ホウ
素膜の形成を、ホウ素またはホウ素化合物をイオン化可
能な能力、及び、基板に可変バイアス電圧を印加可能な
機構を備えた真空めっき(PVD)装置またはプラズマ
CVD装置により行なうことを上位概念とする。(1) The present invention is a vacuum plating with a mechanism capable of ionizing boron or a boron compound, and a mechanism capable of applying a variable bias voltage to a substrate for forming a boron diffusion permeation layer / boron film on a metal substrate surface. It is a superordinate concept that the process is performed by a (PVD) device or a plasma CVD device.
【0015】ここで、金属基材としては、炭素工具鋼、
高速度工具鋼、合金工具鋼、ステンレス、等の鉄系材
料、及び、ベリリウム−銅合金、クロム−銅合金等の銅
系材料、等を挙げることができる。Here, as the metal base material, carbon tool steel,
Examples include iron-based materials such as high speed tool steel, alloy tool steel, and stainless steel, and copper-based materials such as beryllium-copper alloy and chromium-copper alloy.
【0016】上記真空めっき(PVD:Physical Vapor
Deposition )装置としては、イオンプレーティング装
置、スパッタリング装置、活性化反応性蒸着装置、等を
例示でき、ホウ素を充分蒸発でき、さらには反応めっき
が可能なものなら、特に限定されない。例えば、イオン
プレーティング装置においてはHCD法、RF励磁法、
多陰極法、高真空アーク放電法、等の装置を好適に使用
可能である。The above-mentioned vacuum plating (PVD: Physical Vapor)
Examples of the Deposition) device include an ion plating device, a sputtering device, an activated reactive vapor deposition device, and the like, and are not particularly limited as long as boron can be sufficiently evaporated and reactive plating can be performed. For example, in the ion plating device, HCD method, RF excitation method,
Devices such as a multi-cathode method and a high vacuum arc discharge method can be preferably used.
【0017】また、プラズマCVD(Chemical Vapor
Deposition)装置を使用する場合は、ガスをホウ素源と
して、プラズマによりイオン化する。ガスとしてはBC
l3、B2 H6 、B−OR(R:メチル基等の炭化水素
基)等を使用可能である。Plasma CVD (Chemical Vapor)
In the case of using the Deposition apparatus, the gas is used as a boron source and ionized by plasma. BC as gas
l 3, B 2 H 6, B-OR: can be used and the like (R hydrocarbon group such as a methyl group).
【0018】上記装置のうち、特に、図1に示すHCD
方式のイオンプレーティング装置を好適に使用可能であ
る。Of the above devices, the HCD shown in FIG.
A system type ion plating apparatus can be preferably used.
【0019】チャンバー12の略上壁中央部に圧力勾配
型HCDガン14が配設され、該HCDガン14の下方
対応位置に、ハース(るつぼ)16が配されている。そ
して、HCDガン14からハース16の間に形成される
プラズマ発生部位18の側部略中央部には、基板ホルダ
20が、その下方に反応性ガス導入ノズル22が配され
ている。A pressure gradient type HCD gun 14 is arranged at the center of the upper wall of the chamber 12, and a hearth (crucible) 16 is arranged at a position corresponding to the lower side of the HCD gun 14. A substrate holder 20 is provided at a substantially central portion of a side of the plasma generation site 18 formed between the HCD gun 14 and the hearth 16, and a reactive gas introduction nozzle 22 is provided below the substrate holder 20.
【0020】上記HCDガン14は、圧力勾配型であ
り、上部中央から、キャリアガス(Ar)を導入可能と
なっているとともに、電流を可変できイオン化及び蒸発
等を調整可能となっている。この圧力勾配型はチャンバ
ー内装型に比して、反応ガス・反応性イオン等によるガ
ン部品(ノズル)の化学的・物理的損傷(酸化やスパッ
タエッチング)が少なく、酸素等の活性な反応ガスの使
用が可能である、また、このため長寿命である等の長所
がある。The HCD gun 14 is of a pressure gradient type, and it is possible to introduce a carrier gas (Ar) from the center of the upper portion thereof, and to change the current and adjust the ionization and evaporation. Compared to the chamber internal type, this pressure gradient type has less chemical and physical damage (oxidation and sputter etching) to the gun part (nozzle) due to reaction gas, reactive ions, etc. It has the advantages of being usable and having a long life.
【0021】また、ハース16は、冷却水を循環させて
蒸発量を制御可能となっている。Further, the hearth 16 can control the amount of evaporation by circulating cooling water.
【0022】さらに、基板ホルダ20には、基板に高周
波により負のバイアス電圧を印加可能となっている。図
例中、24は高周波供給器、26は高周波制御器であ
る。Further, a negative bias voltage can be applied to the substrate holder 20 by a high frequency on the substrate. In the illustrated example, 24 is a high-frequency supply device, and 26 is a high-frequency controller.
【0023】なお、反応ガスには、正の電圧を印加可能
となっている。 (2) 本発明は、基板、即ち金属基材(母材)の温度及び
バイアス電圧を制御して、母材表層部にホウ素拡散浸透
層を形成後、基板温度及び基板バイアス電圧を徐々に設
定値まで下げることにより、傾斜構造(ホウ素拡散浸透
層のホウ化物から硬質ホウ素への)を有する硬質ホウ素
膜を連続的に形成することを第1の特徴とする。A positive voltage can be applied to the reaction gas. (2) In the present invention, the temperature of the substrate, that is, the metal base material (base material) and the bias voltage are controlled to form the boron diffusion / permeation layer on the surface layer of the base material, and then the substrate temperature and the substrate bias voltage are gradually set. The first feature is to continuously form a hard boron film having a graded structure (from the boride of the boron diffusion and permeation layer to the hard boron) by reducing the value to a value.
【0024】まず、金属ホウ素をプラズマ電子ビーム
(E=30〜80V、I=20〜100A)等により、
蒸発させ、さらに、蒸発させたホウ素を大電流プラズマ
及び高周波プラズマ(通常、パワー密度Wd =5〜20
W/cm2 )によりイオン化させる。First, metallic boron is irradiated with a plasma electron beam (E = 30 to 80 V, I = 20 to 100 A) or the like.
The vaporized boron is further vaporized, and the vaporized boron is supplied with a high current plasma and a high frequency plasma (usually, a power density W d = 5 to 20).
W / cm 2 ) for ionization.
【0025】そして、高周波あるいはDC電源により負
バイアス(−130〜−200V)を基材に印加して
(高周波の場合、自己バイアスにより負のバイアスとな
る)、基材に、ホウ素イオン及びアルゴンイオンを衝突
させ、真空イオン窒化法と同様の原理により、基材表層
部にホウ素拡散浸透層を形成する。この際、基板(基
材)は700℃〜800℃の温度に加熱しておく。Then, a negative bias (-130 to -200 V) is applied to the base material by a high frequency or a DC power source (in the case of a high frequency, a negative bias is generated by self-bias), and the base material has boron ions and argon ions. Are made to collide with each other to form a boron diffusion and penetration layer on the surface layer of the base material by the same principle as the vacuum ion nitriding method. At this time, the substrate (base material) is heated to a temperature of 700 ° C to 800 ° C.
【0026】このとき、大電流プラズマ中には、大量の
電子及びアルゴンイオンが存在する。ホウ素およびアル
ゴンイオン(いずれも正イオン)は、真空中を拡散によ
り基材に接近する。ある距離まで接近した正イオンは、
基板高周波自己バイアス(RFES =−130〜−20
0V)に引きつけられ、加速されて衝突する。すると、
基材表面の鉄原子がスパッタリング作用によりたたき出
され、ホウ素イオンと結合しホウ化鉄(Fe2 B、ある
いはFeB)を形成する。この化合物が基板(基材)に
再付着し、化合物層を形成する。この際、基材の温度が
充分に高い(700℃以上)と、表面にできた化合物中
のホウ素が基材内部に拡散していく。このホウ素の拡散
浸透層の厚さは、通常10μm前後とし、このときの処
理時間は約60分とする。At this time, a large amount of electrons and argon ions are present in the high-current plasma. Boron and argon ions (both positive ions) approach the substrate by diffusion in a vacuum. Positive ions approaching to a certain distance,
Board RF self-bias (RFE S = -130~-20
0V), it accelerates and collides. Then,
Iron atoms on the surface of the base material are knocked out by the sputtering action and combine with boron ions to form iron boride (Fe 2 B or FeB). This compound redeposits on the substrate (base material) to form a compound layer. At this time, when the temperature of the base material is sufficiently high (700 ° C. or higher), boron in the compound formed on the surface diffuses into the base material. The thickness of the diffusion / penetration layer of boron is usually about 10 μm, and the treatment time at this time is about 60 minutes.
【0027】次に、基板の温度及びバイアス電圧を設定
値まで徐々に下げて傾斜構造を有する硬質ホウ素膜を形
成する。このときの温度・電圧の降下速度は、それぞれ
20〜30℃/分、5〜10V/分とする。また、最終
設定温度・電圧は、例えば、500℃前後、バイアス電
圧−130〜−200Vとする。処理時間は20〜60
分とする。Next, the substrate temperature and the bias voltage are gradually lowered to a set value to form a hard boron film having a graded structure. The rate of temperature / voltage drop at this time is 20 to 30 ° C./minute and 5 to 10 V / minute, respectively. The final set temperature / voltage is, for example, about 500 ° C. and the bias voltage is −130 to −200V. Processing time is 20-60
Minutes.
【0028】(3) さらに、高機能を要求される場合に
は、正バイアスを印加した反応ガス導入ノズルから導入
する反応ガス量を徐徐に増加させて、傾斜構造(ホウ素
から高機能ホウ素系化合物への)を有する高機能ホウ化
物膜を、上記硬質ホウ素膜の上に形成する。このときの
プラズマ量、及び基板温度、及びバイアス電圧は、それ
ぞれWd=5〜30W/cm2 、200〜500℃、−
80〜−200Vとする。(3) Further, when high functionality is required, the amount of reaction gas introduced from the reaction gas introduction nozzle to which a positive bias is applied is gradually increased to obtain a graded structure (from boron to a high-performance boron-based compound). A high-performance boride film having a) is formed on the hard boron film. At this time, the plasma amount, the substrate temperature, and the bias voltage are Wd = 5 to 30 W / cm 2 , 200 to 500 ° C., −, respectively.
It is set to 80 to -200V.
【0029】ここで、高機能ホウ化物膜とは、六方晶窒
化ホウ素(h−BN)、立方晶窒化ホウ素(c−B
N)、硬質アモルファス窒化ホウ素(a−BN、i−B
N)などの各種窒化ホウ素膜、ホウ化チタン(TiB
X )、ホウ化クロム(CrBX )、などの金属ホウ化物
からなる膜のことである。Here, the high-performance boride film means hexagonal boron nitride (h-BN) and cubic boron nitride (c-B).
N), hard amorphous boron nitride (a-BN, i-B)
N), various boron nitride films, titanium boride (TiB)
X ), chromium boride (CrB X ), and other metal borides.
【0030】[0030]
【実施例】本発明の効果を確認するために行なった実施
例について説明する。イオンプレーティング装置は、図
3に示すものを使用した。EXAMPLES Examples carried out to confirm the effects of the present invention will be described. As the ion plating device, the one shown in FIG. 3 was used.
【0031】なお、ホウ素膜・高機能ホウ化物膜の密着
性試験であるスクラッチテストは、自社製スクラッチテ
スター(荷重連続増加方式)を用いて行った。テスト条
件は、スクラッチ針:ロックウェルCスケール用ダイア
モンド圧子(円錐角度:120°、先端半径:0.2±
0.02mm)、荷重増加速度1N/sec 、ステージ移動
速度:10mm/min とした。The scratch test, which is an adhesion test of the boron film / high-performance boride film, was carried out by using a scratch tester (a continuous load increasing method) manufactured in-house. The test conditions are: Scratch needle: Diamond indenter for Rockwell C scale (Cone angle: 120 °, Tip radius: 0.2 ±
0.02 mm), the load increasing speed was 1 N / sec, and the stage moving speed was 10 mm / min.
【0032】<実施例1> (1) 通常の表面処理を行なう場合の前洗浄工程を経た基
材(ダイス鋼SKD−11)をイオンプレーティング装
置内の基板ホルダーに設置する。<Example 1> (1) A base material (die steel SKD-11) which has undergone a pre-cleaning step in the case of performing a normal surface treatment is placed on a substrate holder in an ion plating apparatus.
【0033】(2) チャンバー12内を10-6Torr台まで
真空引きした後、基材を約700℃に加熱する。(2) After the inside of the chamber 12 is evacuated to the order of 10 -6 Torr, the substrate is heated to about 700 ° C.
【0034】(3) アルゴンガス(30SCCM) をHCDガン
14より導入し、HCDガンを加熱するための補助放電
(最初300V×1Aが徐徐に下がり80V、5Aで安
定)を点灯する。基板に高周波バイアス(RFES ≒−
400V)を印加して、、高周波プラズマ及びプラズマ
ビームに基板表面を曝してプラズマ洗浄する(約10
分)。ここで、反応ガス導入ノズル22よりアルゴン−
水素(それぞれ10SCCM、20SCCM)混合ガスを導入し
た。(3) Argon gas (30 SCCM) is introduced from the HCD gun 14 to turn on an auxiliary discharge for heating the HCD gun (first 300 V × 1 A gradually decreases and is stable at 80 V, 5 A). Substrate to a high frequency bias (RFE S ≒ -
400 V) is applied to expose the substrate surface to high frequency plasma and plasma beam for plasma cleaning (about 10
Minutes). Here, from the reaction gas introduction nozzle 22, argon-
A mixed gas of hydrogen (10 SCCM and 20 SCCM, respectively) was introduced.
【0035】(4) 上記補助放電により加熱したHCDガ
ン14を熱陰極、ハース16を陽極とする大電流プラズ
マ(主放電)(30V×20Aから80V×40Aに徐
徐に上昇)に移行させ、ホウ素源である金属ホウ素Bを
溶融蒸発させるとともに、、プラズマ(パワー密度Wd
=15W/cm2 )によりイオン化する。そして、基材
にRFES =−200Vの負のバイアス電圧を印加する
とともに、基材表面を700℃に加熱して、拡散浸透層
を形成した。ホウ素溶融から60分で母材表層部にホウ
素拡散浸透層(約10μm)が形成された。(4) The HCD gun 14 heated by the auxiliary discharge is transferred to a high-current plasma (main discharge) (gradual increase from 30V × 20A to 80V × 40A) with a hot cathode and a hearth 16 as an anode, and boron is added. Metal boron B, which is the source, is melted and evaporated, and at the same time, plasma (power density W d
= 15 W / cm 2 ) for ionization. Then, a negative bias voltage of RFE S = −200 V was applied to the base material, and the base material surface was heated to 700 ° C. to form a diffusion permeation layer. A boron diffusion / infiltration layer (about 10 μm) was formed in the surface layer of the base material 60 minutes after the melting of boron.
【0036】(5) 拡散浸透層形成後、基板の温度を、設
定値(500℃)まで徐々に下げていくとともに、高周
波自己バイアスもRFES =−130Vまで徐々に下げ
ていきホウ素の内部への拡散を止める。さらに、基板の
温度を200℃程度まで下げ、そのまま成膜を継続し
て、硬質ホウ素膜を形成した。ここで、基材温度を50
0℃近辺まで下げた時点から60分でホウ素拡散浸透層
のホウ化物からの傾斜構造を含む膜厚約4μmの硬質ホ
ウ素膜が形成された。(5) After forming the diffusion / permeation layer, the temperature of the substrate is gradually lowered to a set value (500 ° C.), and the high frequency self-bias is also gradually lowered to RFES s = −130 V to the inside of boron. Stop the spread of. Further, the temperature of the substrate was lowered to about 200 ° C., and the film formation was continued to form a hard boron film. Here, the substrate temperature is set to 50
A hard boron film having a film thickness of about 4 μm including a graded structure from the boride of the boron diffusion / permeation layer was formed 60 minutes after the temperature was lowered to around 0 ° C.
【0037】この硬質ホウ素膜のビッカース硬度:Hv
0.051800kg/mm2 前後、密着性(スクラッチテス
ト)はLc(臨界荷重):50Nであった。Vickers hardness of this hard boron film: Hv
The adhesion (scratch test) was Lc (critical load): 50 N, around 0.05 1800 kg / mm 2 .
【0038】<実施例2>実施例1において形成時間を
20分として約2μmの硬質ホウ素膜を形成後、連続し
て、DC正バイアス(150V×4A)を印加した反応
ガス導入ノズル6より、窒素ガスを導入し、導入開始か
ら60分間処理を行い、前記硬質ホウ素膜上に窒化ホウ
素(i−BN)膜を形成した。<Embodiment 2> After forming a hard boron film of about 2 μm with the formation time of 20 minutes in Embodiment 1, the reaction gas introducing nozzle 6 to which a DC positive bias (150 V × 4 A) was continuously applied was used. Nitrogen gas was introduced, and treatment was performed for 60 minutes from the start of introduction to form a boron nitride (i-BN) film on the hard boron film.
【0039】この際、反応ガス導入量は、0SCCMから1
0SCCMまで10分かけて、徐々に増加させた。また、高
周波パワー密度Wd =20W/cm2 、高周波自己バイ
アス電圧RFES =−220〜−240Vとした。At this time, the amount of reaction gas introduced is from 0 SCCM to 1
It was gradually increased to 0 SCCM over 10 minutes. Further, the high frequency power density W d = 20 W / cm 2 and the high frequency self-bias voltage RFE S = −220 to −240 V were set.
【0040】この窒化ホウ素(i−BN)膜は、硬質ホ
ウ素膜から徐々に窒素量が増加する傾斜構造を有し、膜
厚約1.5μmで、ビッカース硬度:Hv0.053000
kg/mm2 であった。また、密着性(スクラッチテス
ト)はLc(臨界荷重):45Nであった。This boron nitride (i-BN) film has a graded structure in which the amount of nitrogen gradually increases from the hard boron film, the film thickness is about 1.5 μm, and the Vickers hardness: Hv 0.05 3000.
It was kg / mm 2 . The adhesion (scratch test) was Lc (critical load): 45N.
【0041】<実施例3>実施例1において形成時間を
20分として約2μmの硬質ホウ素膜を形成後、連続し
て、DC正バイアス(100V×3A)を印加した反応
ガス導入ノズル6より、窒素ガスを導入し、導入開始か
ら60分間下記のようにして処理を行い、前記硬質ホウ
素膜上に六方晶窒化ホウ素(h−BN)膜を形成した。<Embodiment 3> After forming a hard boron film of about 2 μm with the formation time of 20 minutes in Embodiment 1, the reaction gas introducing nozzle 6 to which a DC positive bias (100 V × 3 A) was continuously applied was used. Nitrogen gas was introduced, and treatment was performed for 60 minutes from the start of introduction as described below to form a hexagonal boron nitride (h-BN) film on the hard boron film.
【0042】この際、反応ガス導入量は、0SCCMから2
0SCCMまで10分かけて、徐々に増加させた。また、高
周波パワー密度Wd =10W/cm2 、高周波自己バイ
アス電圧RFES =−140Vとした。At this time, the amount of the reaction gas introduced is 0 SCCM to 2
It was gradually increased to 0 SCCM over 10 minutes. Further, the high frequency power density W d = 10 W / cm 2 and the high frequency self-bias voltage RFE S = −140 V.
【0043】この窒化ホウ素(h−BN)膜は、硬質ホ
ウ素膜から徐々に窒素量が増加する傾斜構造を有し、膜
厚約2.5μmで、ビッカース硬度:Hv0.05200k
g/mm2 で、非常に自己潤滑性の高い膜であった。This boron nitride (h-BN) film has a graded structure in which the amount of nitrogen gradually increases from the hard boron film, the film thickness is about 2.5 μm, and the Vickers hardness: Hv 0.05 200 k.
The film had a very high self-lubricating property at g / mm 2 .
【0044】[0044]
(1) 請求項1に係る本発明のホウ素拡散浸透層・ホウ素
膜形成方法は、上記の如き構成により、基板(金属基
材)の温度及びバイアス電圧を制御することにより、母
材表層部にホウ素拡散浸透層を形成後、傾斜構造を有す
る硬質ホウ素膜を連続的にイオンプレーティングにより
形成できる。このため、従来のイオンプレーティングで
は不充分な密着性しか得られなかった金属基材への硬質
ホウ素膜が形成可能になる。さらに、この硬質ホウ素膜
を下地として、下記の如く連続的に高機能ホウ化物膜
(各種窒化ホウ素膜)の形成が可能となる。(1) The method for forming a boron diffusion / permeation layer / boron film according to claim 1 of the present invention is such that the substrate (metal base material) temperature and the bias voltage are controlled to form a base material surface layer portion on the base material surface layer portion by the above configuration. After forming the boron diffusion / permeation layer, a hard boron film having a graded structure can be continuously formed by ion plating. For this reason, it becomes possible to form a hard boron film on a metal base material, which was obtained with insufficient adhesion by conventional ion plating. Further, it becomes possible to continuously form high-performance boride films (various boron nitride films) as described below using this hard boron film as a base.
【0045】従って、従来のガス法、粉末法、浸漬法、
電解法の如く、作業環境に悪影響が発生せず、しかも生
産性良好に密着性の良いホウ素拡散浸透層及び硬質ホウ
素膜が金属基材上に得られる。Therefore, the conventional gas method, powder method, dipping method,
As in the electrolysis method, a boron diffusion / permeation layer and a hard boron film which do not adversely affect the working environment and have good productivity and good adhesion can be obtained on a metal substrate.
【0046】(2) 請求項2に係る本発明の高機能ホウ化
物膜の形成方法は、上記の如く、請求項1において得ら
れた硬質ホウ素膜の上に、反応性ガスの導入量を徐々に
増加させて、傾斜構造を有する高機能ホウ化物膜を形成
する、ことにより、硬質ホウ素膜の上に密着性の良好な
各種窒化ホウ素膜等の高機能ホウ化物膜を生産性良好に
形成可能となる。(2) In the method for forming a high-performance boride film according to the second aspect of the present invention, as described above, the reactive gas is gradually introduced onto the hard boron film obtained in the first aspect. By forming a highly functional boride film having a graded structure, it is possible to form highly functional boride films such as various boron nitride films with good adhesion on the hard boron film with good productivity. Becomes
【図1】本発明のホウ素拡散浸透層・ホウ素膜形成方法
に使用するイオンプレーティング装置の概略断面図。FIG. 1 is a schematic cross-sectional view of an ion plating device used in the method for forming a boron diffusion / permeation layer / boron film of the present invention.
12 チャンバー 14 HCDガン 16 ハース 18 プラズマ発生部位 20 基板ホルダ 12 chamber 14 HCD gun 16 hearth 18 plasma generation site 20 substrate holder
Claims (2)
層・ホウ素膜の形成を、ホウ素またはホウ素化合物をイ
オン化可能な能力、及び、基板に可変バイアス電圧を印
加可能な機構を備えた真空めっき(PVD)装置または
プラズマCVD装置により行うに際して、 基板の温度及びバイアス電圧を制御して母材表層部にホ
ウ素拡散浸透層を形成後、 前記温度およびバイアス電圧を徐々に設定値まで下げて
傾斜構造を有する硬質ホウ素膜を連続的に形成する、 ことを特徴とする金属基材のホウ素拡散浸透層・ホウ素
膜形成方法。1. A mechanism for forming a boron diffusion / permeation layer / boron film on the surface of a metal base material (base material), capable of ionizing boron or a boron compound, and a mechanism capable of applying a variable bias voltage to a substrate. When performing with a vacuum plating (PVD) apparatus or a plasma CVD apparatus, the temperature and bias voltage of the substrate are controlled to form a boron diffusion / permeation layer on the surface layer of the base material, and then the temperature and bias voltage are gradually lowered to set values. A method for forming a boron diffusion / penetration layer / boron film of a metal substrate, characterized in that a hard boron film having a graded structure is continuously formed.
反応性ガスの導入量を徐々に増加させて、傾斜構造を有
する高機能ホウ化物膜を形成する、 ことを特徴とする金属基材の高機能ホウ化物膜の形成方
法。2. On the boron film according to claim 1,
A method for forming a high-performance boride film on a metal substrate, which comprises gradually increasing the amount of reactive gas introduced to form a high-function boride film having a graded structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9321194A JPH07300665A (en) | 1994-05-02 | 1994-05-02 | Method for forming boron cementation layer and boron film on metallic base material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9321194A JPH07300665A (en) | 1994-05-02 | 1994-05-02 | Method for forming boron cementation layer and boron film on metallic base material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07300665A true JPH07300665A (en) | 1995-11-14 |
Family
ID=14076240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9321194A Pending JPH07300665A (en) | 1994-05-02 | 1994-05-02 | Method for forming boron cementation layer and boron film on metallic base material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07300665A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011083869A1 (en) * | 2010-01-11 | 2011-07-14 | 国立大学法人九州大学 | Cubic boron nitride coating method and material produced by the method |
KR101101948B1 (en) * | 2011-02-25 | 2012-01-02 | 아이시스 주식회사 | Diffusion thinfilm deposition method |
JP2014051740A (en) * | 2008-10-22 | 2014-03-20 | Rohm Co Ltd | Laminated structure |
JP2019186306A (en) * | 2018-04-04 | 2019-10-24 | 東京エレクトロン株式会社 | Boron-based film deposition method and film deposition apparatus |
WO2023189258A1 (en) * | 2022-03-31 | 2023-10-05 | 住友化学株式会社 | Production method for hexagonal boron nitride thin film, laminate |
-
1994
- 1994-05-02 JP JP9321194A patent/JPH07300665A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014051740A (en) * | 2008-10-22 | 2014-03-20 | Rohm Co Ltd | Laminated structure |
WO2011083869A1 (en) * | 2010-01-11 | 2011-07-14 | 国立大学法人九州大学 | Cubic boron nitride coating method and material produced by the method |
JP5669107B2 (en) * | 2010-01-11 | 2015-02-12 | 国立大学法人九州大学 | Cubic boron nitride coating method and material obtained thereby |
KR101101948B1 (en) * | 2011-02-25 | 2012-01-02 | 아이시스 주식회사 | Diffusion thinfilm deposition method |
JP2019186306A (en) * | 2018-04-04 | 2019-10-24 | 東京エレクトロン株式会社 | Boron-based film deposition method and film deposition apparatus |
WO2023189258A1 (en) * | 2022-03-31 | 2023-10-05 | 住友化学株式会社 | Production method for hexagonal boron nitride thin film, laminate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62294160A (en) | Thermochemical surface treatment of material in reactive gaseous plasma | |
Zhang et al. | TiN coating of tool steels: a review | |
US5346600A (en) | Plasma-enhanced magnetron-sputtered deposition of materials | |
US4401719A (en) | Highly hard material coated articles | |
CA2846434C (en) | Stripping process for hard carbon coatings | |
MX2011005039A (en) | Method for pretreating substrates for pvd methods. | |
JPH09510500A (en) | Method for forming a layer of cubic boron nitride | |
JP2004043867A (en) | Coated article with carbon film, and manufacturing method therefor | |
JPH06322543A (en) | Improvement of adhesion between cemented carbide substrate and diamond film | |
JP2002371351A (en) | Film forming apparatus | |
JPH07300665A (en) | Method for forming boron cementation layer and boron film on metallic base material | |
Rie et al. | Plasma surface engineering of metals | |
JP2001192861A (en) | Surface treating method and surface treating device | |
JPH08296064A (en) | Article coated with oxidation and wear resistant film | |
JPH0770735A (en) | Improvement of abrasion resistance of surface of workpiece and workpiece processed thereby | |
KR100920725B1 (en) | Thin film deposition apparatus, thin film deposition process and coated tool thereof | |
GB2227755A (en) | Improving the wear resistance of metallic components by coating and diffusion treatment | |
JP2590349B2 (en) | Wear-resistant coating method | |
JPS6342362A (en) | Production of surface coated steel material | |
JP2006169614A (en) | Metal-diamond-like-carbon (dlc) composite film, forming method therefor and sliding member | |
JP3572240B2 (en) | Method and apparatus for physically modifying a conductive member | |
JP4210141B2 (en) | Method for forming hard carbon nitride film | |
JPS6224501B2 (en) | ||
JPH06346239A (en) | Production of ceramic coated metallic material | |
KR100193365B1 (en) | How to Form Titanium Nitride Film on Metal Surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19981117 |