JPH07298620A - Dc high-voltage power source - Google Patents
Dc high-voltage power sourceInfo
- Publication number
- JPH07298620A JPH07298620A JP10476394A JP10476394A JPH07298620A JP H07298620 A JPH07298620 A JP H07298620A JP 10476394 A JP10476394 A JP 10476394A JP 10476394 A JP10476394 A JP 10476394A JP H07298620 A JPH07298620 A JP H07298620A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- detection signal
- high voltage
- output
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- X-Ray Techniques (AREA)
- Emergency Protection Circuit Devices (AREA)
- Rectifiers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は,X線発生装置などの高
電圧負荷装置に用いられる直流高電圧電源装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC high voltage power supply device used in a high voltage load device such as an X-ray generator.
【0002】[0002]
【従来の技術】近年、 医療用レントゲン電源装置の小型
高周波化が一部分で進められてきている。特に歯科用レ
ントゲン電源装置は、医療現場のスペースを有効利用す
るため小型化が要求されており、この小型化の要求に対
してインバータ化、高電圧回路とX線管の同一タンク内
実装(以下ワンタンク化という。)等がなされている。
このようにワンタンク化し、小型化するのに伴い、接地
される金属製タンクと直流高電圧電源装置を構成するプ
リント板、回路部品又は接続導体などの間の距離が狭く
なり、これらが金属製タンクに接触して、短絡を生じる
事故が増えている。また、X線管の発生する熱などによ
り金属製タンク内の絶縁油の温度上昇が高くなるために
その劣化が早まることも事故の一因となっている。2. Description of the Related Art In recent years, miniaturization and high frequency operation of medical X-ray power supply devices have been partially promoted. In particular, the dental X-ray power supply is required to be downsized in order to effectively use the space in the medical field. To meet this demand for downsizing, an inverter is used, and the high voltage circuit and the X-ray tube are mounted in the same tank (hereinafter It is called one-tank).
With this one-tank and downsizing, the distance between the grounded metal tank and the printed circuit board, circuit parts, or connecting conductors that compose the DC high-voltage power supply becomes narrower, and these are the metal tanks. The number of accidents that cause a short circuit by contacting the Another cause of the accident is that the temperature of the insulating oil in the metal tank increases due to the heat generated by the X-ray tube and the deterioration of the insulating oil accelerates.
【0003】従来のこのような直流高電圧電源装置にあ
っては、単一のコッククロフトウォルトン回路を用いて
正又は負のいずれかの極性の直流高電圧を出力する方式
を採用しているものがほとんどであり、過電流検出機能
を利用して、短絡事故が発生すると回路を流れる電流が
著しく増大する現象を検出し、この現象が検出されたと
きインバータ回路の動作を停止させていた。In such a conventional DC high voltage power supply device, there is one that employs a method of outputting a DC high voltage of either positive or negative polarity using a single Cockcroft-Walton circuit. In most cases, the overcurrent detection function is used to detect a phenomenon in which the current flowing through the circuit remarkably increases when a short circuit accident occurs, and when this phenomenon is detected, the operation of the inverter circuit is stopped.
【0004】[0004]
【発明が解決しようとする課題】しかし,工業用、医療
用などのレントゲン装置のような負荷装置において、特
に高い直流電圧を必要とするものでは、電気絶縁設計を
簡易化するために、一対の極性の異なるコッククロフト
ウォルトン回路を用い、接地点を基準として逆極性の等
しい電圧値の出力電圧+VO 、−VO を発生し、X線管
の両端に2VO の直流高電圧を印加することも行われ始
めている。このような構成の直流高電圧電源装置では、
正の直流出力端子と接地間の電気絶縁状態、負の直流出
力端子と接地間の電気絶縁状態、及び正の直流出力端子
と負の直流出力端子間の電気絶縁状態の3か所の電気絶
縁状態を検出する必要があるが、過電流検出機能だけで
は正の直流出力端子と負の直流出力端子間の電気絶縁状
態を検出できないという問題がある。また、これらすべ
てを行おうとすると、従来の考え方では双方の出力電圧
+VO 、−VO を検出する電圧検出機能、双方の電流を
検出する機能、及びそれぞれの検出信号を判別する判別
機能が必要となるために回路が複雑になると共に、信頼
性が低下し、またコストの低減が難しいという欠点があ
る。However, in a load device such as an X-ray device for industrial use or medical use, which requires a particularly high DC voltage, a pair of load devices is required in order to simplify the electrical insulation design. using different Cockcroft Walton circuit polarities, the output voltage + V O equal voltage value of the reverse polarity relative to the ground point, the -V O occurs, also applying a DC high voltage of 2V O across the X-ray tube Is beginning to take place. In the DC high voltage power supply device having such a configuration,
Electrical insulation between positive DC output terminal and ground, electrical insulation between negative DC output terminal and ground, and electrical insulation between positive DC output terminal and negative DC output terminal Although it is necessary to detect the state, there is a problem that the electrical insulation state between the positive DC output terminal and the negative DC output terminal cannot be detected only by the overcurrent detection function. Also, when attempting all of these, both in the traditional view of the output voltage + V O, a voltage detecting function of detecting the -V O, the ability to detect both current and requires determination function to determine the respective detection signals Therefore, the circuit becomes complicated, the reliability is lowered, and it is difficult to reduce the cost.
【0005】本発明はこのような従来装置の課題を解決
すると同時に、経済性と信頼性に優れた直流高電圧電源
装置を提供することを主目的とする。The main object of the present invention is to solve the above problems of the conventional device and to provide a high voltage DC power supply device which is economical and reliable.
【0006】[0006]
【課題を解決するための手段】このような問題点を解決
するため,第1の発明では,直流電力を高周波出力に変
換するインバータ回路、該インバータ回路を制御する制
御回路、前記インバータ回路の交流出力端子に接続され
た1次巻線と2次巻線とを備えたトランス、該トランス
の2次巻線間に接続されて正の直流高電圧と負の直流高
電圧をそれぞれ出力する第1の直流高電圧発生回路と第
2の直流高電圧発生回路、出力電圧検出回路、及び電流
検出回路とを備え、中性点が接地された直流高電圧電源
装置において、前記出力電圧検出回路は前記第1の直流
高電圧発生回路が発生する直流高電圧を検出して出力電
圧検出信号を出力し、前記電流検出回路は前記第2の直
流高電圧発生回路と前記接地された中性点との間を流れ
る電流を検出して電流検出信号を出力し、前記出力電圧
検出信号と前記電流検出信号は前記制御回路に与えられ
ると共に、電気絶縁状態判別回路に与えられ、この電気
絶縁状態判別回路が前記出力電圧検出信号と前記電流検
出信号とそれぞれの基準値とを比較し、前記出力電圧検
出信号が前記対応する基準値より低下した場合、あるい
は前記電流検出信号が前記対応する基準値より高くなっ
た場合には、前記インバータ回路の動作を停止させる停
止信号を制御回路に与えることを特徴とする直流高電圧
電源装置を提供するものである。In order to solve such a problem, in the first invention, an inverter circuit for converting DC power into a high frequency output, a control circuit for controlling the inverter circuit, and an AC circuit for the inverter circuit are provided. A transformer having a primary winding and a secondary winding connected to an output terminal, and a first winding connected to the secondary winding of the transformer to output a positive DC high voltage and a negative DC high voltage, respectively. In the DC high-voltage power supply device including a DC high-voltage generating circuit, a second DC high-voltage generating circuit, an output voltage detecting circuit, and a current detecting circuit, the output voltage detecting circuit includes: The DC high voltage generated by the first DC high voltage generation circuit is detected and an output voltage detection signal is output, and the current detection circuit connects the second DC high voltage generation circuit and the grounded neutral point. By detecting the current flowing between A current detection signal, and the output voltage detection signal and the current detection signal are given to the control circuit and also to an electrical insulation state determination circuit, and the electrical insulation state determination circuit outputs the output voltage detection signal and the current. When the output voltage detection signal is lower than the corresponding reference value or the current detection signal is higher than the corresponding reference value by comparing the detection signal with each reference value, the inverter circuit The present invention provides a DC high-voltage power supply device characterized in that a stop signal for stopping the operation of is supplied to a control circuit.
【0007】このような問題点を解決するため,第2の
発明では,前記出力電圧検出回路は前記第1の直流高電
圧発生回路が発生する直流高電圧を検出して出力電圧検
出信号を前記電気絶縁状態判別回路に出力し、また前記
電流検出回路は前記第2の直流高電圧発生回路と前記接
地された中性点との間を流れる直流電流を検出して前記
出力電圧検出信号と同一極性の電流検出信号を前記電気
絶縁状態判別回路に出力し、前記電気絶縁状態判別回路
は前記それぞれの検出信号を単一極性の電源電圧を持つ
コンパレータで比較する機能を有することを特徴とする
請求項1に記載の直流高電圧電源装置を提供するもので
ある。In order to solve such a problem, in the second invention, the output voltage detection circuit detects the DC high voltage generated by the first DC high voltage generation circuit and outputs the output voltage detection signal as the output voltage detection signal. The current detection circuit outputs the same to the output voltage detection signal by detecting the DC current flowing between the second DC high voltage generation circuit and the grounded neutral point. A polar current detection signal is output to the electrical insulation state determination circuit, and the electrical insulation state determination circuit has a function of comparing the respective detection signals with a comparator having a single polarity power supply voltage. An object of the present invention is to provide a DC high voltage power supply device according to item 1.
【0008】このような問題点を解決するため,第3の
発明では,前記電気絶縁状態判別回路は、直流高電圧出
力端子間に接続される負荷がオン状態にあるか、あるい
はオフ状態にあるかを示す信号を受け、負荷電圧が設定
値以上であるときに、電気絶縁状態の判別を行うことを
特徴とする請求項1又は請求項2に記載の直流高電圧電
源装置を提供するものである。In order to solve such a problem, in the third aspect of the invention, in the electrical insulation state determination circuit, the load connected between the DC high voltage output terminals is in the on state or in the off state. The DC high-voltage power supply device according to claim 1 or 2, wherein the electrical insulation state is determined when a load voltage is equal to or higher than a set value by receiving a signal indicating that. is there.
【0009】[0009]
【実施例】図1により本発明の一実施例について説明す
る。図1はX線発生装置用の直流高電圧電源装置の一実
施例をを示すもので,1は商用交流電力を直流電力に変
換するACーDCコンバータ、2はACーDCコンバー
タからの直流電力をほぼ80kHzの高周波交流電力に
変換するインバータ回路、3は電流制限用のインダク
タ、4は1次巻線4Pと2次巻線4Sとを有するトラン
ス、5は通常の構成のコッククロフトウォルトン回路か
らなって正の直流高電圧を出力するる第1の直流電圧発
生回路、6は第1の直流電圧発生回路5と同様な構成
で、負の直流高電圧を出力する第2の直流電圧発生回
路、7は複数の直列接続された抵抗とコンデンサとから
なり、第1の直流電圧発生回路5の出力電圧を分割し比
例した電圧を検出して出力電圧検出信号S1 を与える出
力電圧検出回路、8と8’はそれぞれ正、負の出力端
子、9は出力端子8と8’間に接続されるX線管、10
は中性点である接地点と第2の直流電圧発生回路の一方
の交流入力点との間に接続された電流検出回路であり、
簡単な構成では抵抗器と高周波電流をバイパスするコン
デンサとを並列接続したものからなる。したがって、正
常時には電流検出回路10はX線管9のアノードAとカ
ソードK間を流れる管電流にほぼ比例する電流検出信号
S2 を与える。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. FIG. 1 shows an embodiment of a DC high voltage power supply for an X-ray generator, 1 is an AC-DC converter for converting commercial AC power into DC power, and 2 is DC power from the AC-DC converter. Circuit for converting a high frequency AC power of approximately 80 kHz, 3 is an inductor for limiting current, 4 is a transformer having a primary winding 4P and a secondary winding 4S, and 5 is a Cockcroft-Walton circuit having a normal configuration. A first DC voltage generating circuit for outputting a positive DC high voltage, and 6 is a second DC voltage generating circuit for outputting a negative DC high voltage, which has the same configuration as the first DC voltage generating circuit 5. Reference numeral 7 is an output voltage detection circuit composed of a plurality of resistors and capacitors connected in series, which divides the output voltage of the first DC voltage generation circuit 5 and detects a proportional voltage to give an output voltage detection signal S 1. And 8 ' Zoresei, X-rays tube negative output terminal, 9 is connected between the output terminal 8 8 ', 10
Is a current detection circuit connected between the ground point, which is a neutral point, and one AC input point of the second DC voltage generation circuit,
In a simple configuration, it consists of a resistor and a capacitor that bypasses the high frequency current connected in parallel. Therefore, under normal conditions, the current detection circuit 10 gives a current detection signal S 2 which is substantially proportional to the tube current flowing between the anode A and the cathode K of the X-ray tube 9.
【0010】11は出力電圧検出信号S1 と電流検出信
号S2 を受けて、インバータ回路2を制御する制御回
路、12はACーDCコンバータ1の直流出力を受け、
正常の動作時には管電流にほぼ比例する電流検出信号S
2 に基づいて制御されるフィラメント電力を出力するフ
ィラメント電力制御回路、13は絶縁トランス、14は
電気絶縁状態の不良が検出されたとき制御回路11にイ
ンバータ動作停止信号S3 を与える電気絶縁状態判別回
路である。この電気絶縁状態判別回路14は、出力電圧
検出信号S1 と第1の基準源14Aの基準値とを比較す
る第1のコンパレータ14B、電流検出信号S2 と第2
の基準源14Cの基準値とを比較する第2のコンパレー
タ14D、コンデンサと抵抗などからなり、この電源装
置のオン/オフ信号を所定時間遅延する遅延回路14
E、遅延されたオン/オフ信号と第1のコンパレータ1
4B、第2のコンパレータ14Dからの出力信号をそれ
ぞれNAND論理する第1、第2のNANDゲート回路
14F,14G及びこれらNANDゲート回路14F,
14Gからのそれぞれの信号をある一定時間ラッチする
ための第1、第2のフリップフロップ回路14H,14
Iからなる。[0010] 11 receives the output voltage detection signals S 1 and the current detection signal S 2, the control circuit for controlling the inverter circuit 2, 12 receives the DC output of the AC over DC converter 1,
During normal operation, the current detection signal S that is almost proportional to the tube current
Filament power control circuit that outputs filament power controlled based on 2 , 13 is an insulation transformer, and 14 is an electric insulation state determination that gives an inverter operation stop signal S 3 to the control circuit 11 when a defect in the electric insulation state is detected. Circuit. The electrical insulation state determination circuit 14 includes a first comparator 14B that compares the output voltage detection signal S 1 with a reference value of the first reference source 14A, a current detection signal S 2 and a second comparator 14B.
A second comparator 14D for comparing with a reference value of the reference source 14C, a delay circuit 14 for delaying an ON / OFF signal of this power supply device for a predetermined time.
E, delayed on / off signal and first comparator 1
4B, the first and second NAND gate circuits 14F and 14G which perform NAND logic on the output signals from the second comparator 14D, and these NAND gate circuits 14F and 14F, respectively.
First and second flip-flop circuits 14H and 14 for latching respective signals from 14G for a certain period of time
It consists of I.
【0011】次に動作説明を行う。オペレータが図示さ
れていないX線撮影装置のスイッチをオンさせたとする
と、オン信号が制御回路11に与えられ、制御回路11
は起動信号をインバータ回路2に与えてこれを起動し、
制御する。これに伴い、インバータ回路2はほぼ80k
Hzの高周波交流電力をトランス4を通して第1の直流
電圧発生回路5と第2の直流電圧発生回路6に供給し、
これら第1、第2の直流電圧発生回路5と6はそれぞれ
所定の直流出力電圧+VO 、−VO を、出力端子8、
8’に接続されたX線管9のアノードAとカソードK間
に印加する。このとき、オン信号が電気絶縁状態判別回
路14にも印加されるが、遅延回路14Eは出力端子8
の直流出力電圧が所定の値まで立ち上がるまでの予め決
められた遅延時間だけ、オン信号をNANDゲート回路
14F,14Gに通過させないので、電気絶縁状態判別
回路14は出力電圧検出信号S1 、電流検出信号S2 が
どのような状態にあろうともインバータ動作停止信号S
3 を与えない。所定時間が経過すると、オン信号が遅延
回路14Eを通してNANDゲート回路14F,14G
に入力される。正常な状態では、出力電圧検出信号S1
は基準源14Aの基準値よりも高く、電流検出信号S2
はX線管9のアノードAとカソードK間を流れる管電流
にほぼ比例し、基準源14Cの基準値よりも低い。した
がって、コンパレータ14B,14Dの出力信号は低レ
ベルであり、第1、第2のフリップフロップ回路14
H,14Iにより、インバータ動作停止信号S3 は低レ
ベルにラッチされ、制御回路11に影響を与えない。Next, the operation will be described. When the operator turns on a switch of an X-ray imaging apparatus (not shown), an ON signal is given to the control circuit 11 and the control circuit 11
Gives a start signal to the inverter circuit 2 to start it,
Control. As a result, the inverter circuit 2 is approximately 80k.
High frequency AC power of Hz is supplied to the first DC voltage generating circuit 5 and the second DC voltage generating circuit 6 through the transformer 4,
These first, second DC voltage generation circuit 5 and 6 each predetermined DC output voltage + V O, the -V O, the output terminal 8,
The voltage is applied between the anode A and the cathode K of the X-ray tube 9 connected to 8 '. At this time, the ON signal is also applied to the electrical insulation state determination circuit 14, but the delay circuit 14E causes the output terminal 8
Since the ON signal is not passed through the NAND gate circuits 14F and 14G for a predetermined delay time until the DC output voltage of rises to a predetermined value, the electrical insulation state determination circuit 14 outputs the output voltage detection signal S 1 and the current detection signal. Inverter operation stop signal S regardless of signal S 2
Do not give 3 . When a predetermined time has passed, the ON signal passes through the delay circuit 14E and the NAND gate circuits 14F and 14G.
Entered in. In a normal state, the output voltage detection signal S 1
Is higher than the reference value of the reference source 14A, and the current detection signal S 2
Is approximately proportional to the tube current flowing between the anode A and the cathode K of the X-ray tube 9 and is lower than the reference value of the reference source 14C. Therefore, the output signals of the comparators 14B and 14D are at low level, and the first and second flip-flop circuits 14
The inverter operation stop signal S 3 is latched at a low level by H and 14I and does not affect the control circuit 11.
【0012】このような状態で運転しているとき、仮に
第1の直流電圧発生回路5側の出力端子8と接地間に短
絡事故が発生すると、出力端子8の直流出力電圧が大幅
に低下してほぼゼロになり、出力電圧検出信号S1 が基
準源14Aの基準値よりも低くなる。したがって、コン
パレータ14Bの出力信号は低レベルから高レベルに変
化し、NANDゲート回路14Fの出力信号も低レベル
から高レベルに変化して、フリップフロップ回路14H
をトリガする。これに伴いフリップフロップ回路14H
の出力信号は高レベルに遷移し、電気絶縁状態判別回路
14がインバータ動作停止信号S3 を制御回路11に与
え、インバータ回路2は動作を停止する。したがって、
過大な電流が第1の直流電圧発生回路5側に流れて回路
部品などを損傷する事故を防げる。このときX線管9を
流れる管電流は当然に減少するから、電流検出信号S2
は基準源14Cの基準値よりも低いままであり、第2の
フリップフロップ回路14Iの出力状態は変化しない。When operating in such a state, if a short circuit accident occurs between the output terminal 8 of the first DC voltage generating circuit 5 side and the ground, the DC output voltage of the output terminal 8 will drop significantly. Becomes almost zero, and the output voltage detection signal S 1 becomes lower than the reference value of the reference source 14A. Therefore, the output signal of the comparator 14B changes from the low level to the high level, the output signal of the NAND gate circuit 14F also changes from the low level to the high level, and the flip-flop circuit 14H
Trigger. Along with this, the flip-flop circuit 14H
The output signal of 1 transitions to a high level, the electrical insulation state determination circuit 14 gives an inverter operation stop signal S 3 to the control circuit 11, and the inverter circuit 2 stops its operation. Therefore,
It is possible to prevent an accident in which an excessive current flows to the first DC voltage generating circuit 5 side and damages circuit components and the like. At this time, the tube current flowing through the X-ray tube 9 naturally decreases, so the current detection signal S 2
Remains lower than the reference value of the reference source 14C, and the output state of the second flip-flop circuit 14I does not change.
【0013】また、第2の直流電圧発生回路6側の出力
端子8’と接地間に電気絶縁不良が発生、例えば出力端
子8’が接地点に短絡されたとすると、トランス4の2
次巻線4Sの黒点側が正極性のときには、電流はその黒
点側から中性点N,出力端子8’及び第2の直流電圧発
生回路6を通してトランス4の2次巻線4Sの非黒点側
に流れ込むので、この半サイクルでは電流検出回路10
を電流は流れない。次にトランス4の2次巻線4Sの黒
点側が負極性のときには、電流はトランス4の2次巻線
4Sの非黒点側から第2の直流電圧発生回路6の第1段
目のコンデンサ6C1とダイオード6D1、電流検出回
路10及び中性点Nを通してトランス4の2次巻線4S
の黒点側に流れ込む。したがって、電流検出回路10を
通して矢印方向に流れる直流電流が増大し、電流検出信
号S2 が基準源14Cの基準値よりも高くなり、コンパ
レータ14Dの出力信号は低レベルから高レベルに変化
し、NANDゲート回路14Gの出力信号も低レベルか
ら高レベルに変化して、フリップフロップ回路14Iを
トリガする。これに伴いフリップフロップ回路14Iの
出力信号は高レベルに遷移し、電気絶縁状態判別回路1
4がインバータ動作停止信号S3 を制御回路11に与
え、インバータ回路2は動作を停止する。If an electrical insulation defect occurs between the output terminal 8'on the side of the second DC voltage generating circuit 6 and the ground, for example, if the output terminal 8'is short-circuited to the ground point, the transformer 4's 2
When the black dot side of the secondary winding 4S has a positive polarity, current flows from the black dot side to the non-black dot side of the secondary winding 4S of the transformer 4 through the neutral point N, the output terminal 8'and the second DC voltage generating circuit 6. Since it flows in, in this half cycle, the current detection circuit 10
No current flows. Next, when the black dot side of the secondary winding 4S of the transformer 4 has a negative polarity, current flows from the non-black dot side of the secondary winding 4S of the transformer 4 to the first-stage capacitor 6C1 of the second DC voltage generating circuit 6. Secondary winding 4S of transformer 4 through diode 6D1, current detection circuit 10 and neutral point N
Flows into the sunspot side. Therefore, the DC current flowing in the arrow direction through the current detection circuit 10 increases, the current detection signal S 2 becomes higher than the reference value of the reference source 14C, the output signal of the comparator 14D changes from the low level to the high level, and the NAND The output signal of the gate circuit 14G also changes from low level to high level to trigger the flip-flop circuit 14I. Along with this, the output signal of the flip-flop circuit 14I transits to a high level, and the electrical insulation state determination circuit 1
4 supplies the inverter operation stop signal S 3 to the control circuit 11, and the inverter circuit 2 stops its operation.
【0014】次に、出力端子8と8’との間で電気絶縁
不良が生ずると、トランス4の2次巻線4Sの一方の端
子側から第1の直流電圧発生回路5、出力端子8、
8’、第2の直流電圧発生回路6、電流検出回路10及
び中性点Nを通してトランス4の2次巻線4Sの他方の
端子側に流れる電流、つまり電流検出回路10を通して
矢印方向に流れる直流電流が増大し、電流検出信号S2
が基準源14Cの基準値よりも高くなる。したがって、
コンパレータ14Dの出力信号は低レベルから高レベル
に変化し、NANDゲート回路14Gの出力信号も低レ
ベルから高レベルに変化して、フリップフロップ回路1
4Iをトリガする。これに伴いフリップフロップ回路1
4Iの出力信号は高レベルに遷移し、電気絶縁状態判別
回路14がインバータ動作停止信号S3 を制御回路11
に与え、インバータ回路2は動作を停止する。Next, when an electrical insulation failure occurs between the output terminals 8 and 8 ', the first DC voltage generating circuit 5, the output terminal 8 and the first DC voltage generating circuit 5 from one terminal side of the secondary winding 4S of the transformer 4.
8 ', the second DC voltage generating circuit 6, the current detecting circuit 10 and the neutral point N, the current flowing to the other terminal side of the secondary winding 4S of the transformer 4, that is, the DC flowing in the arrow direction through the current detecting circuit 10. The current increases and the current detection signal S 2
Becomes higher than the reference value of the reference source 14C. Therefore,
The output signal of the comparator 14D changes from the low level to the high level, and the output signal of the NAND gate circuit 14G also changes from the low level to the high level.
4I trigger. Along with this, the flip-flop circuit 1
The 4I output signal transits to a high level, and the electrical insulation state determination circuit 14 outputs the inverter operation stop signal S 3 to the control circuit 11
The inverter circuit 2 stops operating.
【0015】以上の説明からも分かるように、この発明
によれば、一般に単一の直流電圧発生回路の場合でも必
要とされる電圧検出回路と電流検出回路の数を増やすこ
となく、一対の直流電圧発生回路を備えた直流電圧電源
装置における3か所の電気絶縁破壊、つまり第1の直流
電圧発生回路5側の出力端子8、第2の直流電圧発生回
路6側の出力端子8’及び出力端子8と8’地間で電気
絶縁不良が検出できる。しかも正常時でも異常時でも電
圧検出信号S1 、電流検出信号S2 の双方とも正極性で
あるので、電気絶縁状態判別回路14のコンパレータ1
4B、14Dとも正の極性の電圧を与える電源を有する
だけで良く、双方の極性の電圧を与える電源を有する価
格の高いコンパレータである必要はないから、経済的に
優れている。As can be seen from the above description, according to the present invention, a pair of direct currents can be provided without increasing the number of voltage detecting circuits and current detecting circuits which are generally required even in the case of a single direct current voltage generating circuit. Electrical breakdown in three places in a DC voltage power supply device provided with a voltage generating circuit, that is, an output terminal 8 on the first DC voltage generating circuit 5 side, an output terminal 8'on the second DC voltage generating circuit 6 side, and an output Defective electrical insulation can be detected between terminals 8 and 8 '. Moreover, since both the voltage detection signal S 1 and the current detection signal S 2 are positive in both normal and abnormal states, the comparator 1 of the electrical insulation state determination circuit 14
Both 4B and 14D need only have a power source that supplies a voltage of positive polarity, and need not be a high-priced comparator that has a power source that supplies a voltage of both polarities, which is economically superior.
【0016】なお、以上述べた実施例では電流検出回路
10を高周波交流電流が流れたが、図2に示すように第
2の直流電圧発生回路6のダイオード6D1のカソード
とコンデンサ6C2との間を切り離し、コンデンサ6C
2のその切り離した一端を接地することにより、矢印方
向の直流電流が流れるだけである。この点について述べ
ると、図1のトランス4の2次巻線4Sに誘起される電
圧がその黒点側に対して非黒点側が正極性のとき、電流
は直流電圧発生回路6のコンデンサ6C1、ダイオード
6D1、電流検出回路10及び中性点Nを矢印方向に流
れるが、トランス4の2次巻線4Sに誘起される電圧が
その非黒点側に対して黒点側が正極性のとき、電流は中
性点N、接地及び直流電圧発生回路6を流れ、電流検出
回路10はバイパスされる。したがって、正常時、異常
時のいずれの場合も電流検出回路10には図示矢印方向
の直流電流が流れるだけであり、正確に負荷電流を検出
できる。また、前記実施例では第1、第2の直流電圧発
生回路5、6はコッククロフトウォルトン回路で示した
が、倍電圧回路などの別の昇圧・整流タイプの回路でも
良い。さらにまた、実施例ではX線発生装置について述
べたが、他の高電圧負荷に対しても同様に適用でき、イ
ンバータ回路の変換周波数は任意で良い。In the embodiment described above, a high-frequency alternating current flows through the current detection circuit 10, but as shown in FIG. 2, the cathode of the diode 6D1 of the second DC voltage generation circuit 6 and the capacitor 6C2 are connected. Disconnect, capacitor 6C
By grounding the separated one end of 2, only the direct current in the direction of the arrow flows. Regarding this point, when the voltage induced in the secondary winding 4S of the transformer 4 in FIG. 1 is positive on the non-black dot side with respect to the black dot side, the current is the capacitor 6C1 and the diode 6D1 of the DC voltage generating circuit 6. , The current detection circuit 10 and the neutral point N flow in the direction of the arrow, but when the voltage induced in the secondary winding 4S of the transformer 4 is positive on the black dot side with respect to the non-black dot side, the current is at the neutral point. It flows through the N, ground and DC voltage generation circuit 6, and the current detection circuit 10 is bypassed. Therefore, in both normal and abnormal cases, only the direct current in the direction of the arrow in the drawing flows through the current detection circuit 10, and the load current can be accurately detected. Further, in the above embodiment, the first and second DC voltage generating circuits 5 and 6 are shown as Cockcroft-Walton circuits, but other boosting / rectifying type circuits such as a voltage doubler circuit may be used. Furthermore, although the X-ray generator has been described in the embodiment, it can be similarly applied to other high voltage loads, and the conversion frequency of the inverter circuit may be arbitrary.
【0017】[0017]
【発明の効果】以上述べたように,この発明によれば電
圧検出回路と電流検出回路の数を増やすことなく各箇所
の電気絶縁不良を検出できるので、経済性に優れている
と共に、信頼性も向上し、また電気絶縁状態判別回路を
安価なものとすることができるので、実用上の効果が非
常に大きい。As described above, according to the present invention, it is possible to detect the electrical insulation failure at each location without increasing the number of voltage detection circuits and current detection circuits. Therefore, it is economical and reliable. Also, since the electric insulation state determination circuit can be made inexpensive, the practical effect is very large.
【図1】この発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.
【図2】この発明の一実施例における電流検出の他の例
を示す図である。FIG. 2 is a diagram showing another example of current detection in one embodiment of the present invention.
1・・・ACーDCコンバータ 2・・・インバー
タ回路 3・・・インダクタ 4・・・トランス 5・・・第1の直流電圧発生回路 6・・・第2の直
流電圧発生回路 7・・・出力電圧検出回路 8、8’・・・出
力端子 9・・・X線管 10・・電流検出
回路 11・・制御回路 12・・フィラメ
ント電力制御回路 13・・絶縁トランス 14・・電気絶縁
状態判別回路 14A,14C・・・基準源 14B,14D・
・・コンパレータ 14E・・・遅延回路 14F,14G・・・NANDゲート回路 14H,14I・・・フリップフロップ回路DESCRIPTION OF SYMBOLS 1 ... AC-DC converter 2 ... Inverter circuit 3 ... Inductor 4 ... Transformer 5 ... 1st DC voltage generation circuit 6 ... 2nd DC voltage generation circuit 7 ... Output voltage detection circuit 8, 8 '... Output terminal 9 ... X-ray tube 10 ... Current detection circuit 11 ... Control circuit 12 ... Filament power control circuit 13 ... Insulation transformer 14 ... Circuits 14A, 14C ... Reference sources 14B, 14D
..Comparator 14E ... Delay circuit 14F, 14G ... NAND gate circuit 14H, 14I ... Flip-flop circuit
Claims (3)
ータ回路、該インバータ回路を制御する制御回路、前記
インバータ回路の交流出力端子に接続された1次巻線と
2次巻線とを備えたトランス、該トランスの2次巻線間
に接続されて正の直流高電圧と負の直流高電圧をそれぞ
れ出力する第1の直流高電圧発生回路と第2の直流高電
圧発生回路、出力電圧検出回路、及び電流検出回路とを
備え、中性点が接地された直流高電圧電源装置におい
て、 前記出力電圧検出回路は前記第1の直流高電圧発生回路
が発生する直流高電圧を検出して出力電圧検出信号を出
力し、 前記電流検出回路は前記第2の直流高電圧発生回路と前
記接地された中性点との間を流れる電流を検出して電流
検出信号を出力し、 前記出力電圧検出信号と前記電流検出信号は前記制御回
路に与えられると共に、電気絶縁状態判別回路に与えら
れ、 該電気絶縁状態判別回路が前記出力電圧検出信号と前記
電流検出信号とそれぞれの基準値とを比較し、前記出力
電圧検出信号が前記対応する基準値より低下した場合、
あるいは前記電流検出信号が前記対応する基準値より高
くなった場合には、前記インバータ回路の動作を停止さ
せる停止信号を制御回路に与えることを特徴とする直流
高電圧電源装置。1. A transformer comprising an inverter circuit for converting DC power into a high frequency output, a control circuit for controlling the inverter circuit, and a primary winding and a secondary winding connected to an AC output terminal of the inverter circuit. A first direct current high voltage generation circuit, a second direct current high voltage generation circuit, and an output voltage detection circuit which are connected between the secondary windings of the transformer and output a positive direct current high voltage and a negative direct current high voltage, respectively. , And a current detection circuit, wherein the output voltage detection circuit detects a DC high voltage generated by the first DC high voltage generation circuit, and outputs the output voltage. Outputting a detection signal, the current detection circuit detects a current flowing between the second DC high voltage generation circuit and the grounded neutral point, and outputs a current detection signal; And the current detection signal is The electrical insulation state determination circuit is provided to the control circuit and the electrical isolation state determination circuit, and the electrical isolation state determination circuit compares the output voltage detection signal and the current detection signal with respective reference values, and the output voltage detection signal is If it falls below the corresponding reference value,
Alternatively, when the current detection signal becomes higher than the corresponding reference value, a stop signal for stopping the operation of the inverter circuit is given to the control circuit, and the DC high voltage power supply device is characterized.
高電圧発生回路が発生する直流高電圧を検出して出力電
圧検出信号を前記電気絶縁状態判別回路に出力し、また
前記電流検出回路は前記第2の直流高電圧発生回路と前
記接地された中性点との間を流れる直流電流を検出して
前記出力電圧検出信号と同一極性の電流検出信号を前記
電気絶縁状態判別回路に出力し、前記電気絶縁状態判別
回路は前記それぞれの検出信号を単一極性の電源電圧を
持つコンパレータで比較する機能を有することを特徴と
する請求項1に記載の直流高電圧電源装置。2. The output voltage detection circuit detects a DC high voltage generated by the first DC high voltage generation circuit and outputs an output voltage detection signal to the electrical insulation state determination circuit, and the current detection circuit. Detects a DC current flowing between the second DC high voltage generating circuit and the grounded neutral point, and outputs a current detection signal having the same polarity as the output voltage detection signal to the electrical insulation state determination circuit. The DC high voltage power supply device according to claim 1, wherein the electrical insulation state determination circuit has a function of comparing the respective detection signals with a comparator having a single polarity power supply voltage.
圧出力端子間に接続される負荷がオン状態にあるか、あ
るいはオフ状態にあるかを示す信号を受け、負荷電圧が
設定値以上であるときに、電気絶縁状態の判別を行うこ
とを特徴とする請求項1又は請求項2に記載の直流高電
圧電源装置。3. The electrical insulation state determination circuit receives a signal indicating whether a load connected between the DC high voltage output terminals is in an ON state or an OFF state, and the load voltage is equal to or higher than a set value. The DC high-voltage power supply device according to claim 1 or 2, wherein the electrical insulation state is determined at a certain time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10476394A JP3240031B2 (en) | 1994-04-19 | 1994-04-19 | DC high voltage power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10476394A JP3240031B2 (en) | 1994-04-19 | 1994-04-19 | DC high voltage power supply |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07298620A true JPH07298620A (en) | 1995-11-10 |
JP3240031B2 JP3240031B2 (en) | 2001-12-17 |
Family
ID=14389527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10476394A Expired - Lifetime JP3240031B2 (en) | 1994-04-19 | 1994-04-19 | DC high voltage power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3240031B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002246197A (en) * | 2001-02-22 | 2002-08-30 | Hitachi Medical Corp | X-ray high-voltage apparatus |
EP2706825A3 (en) * | 2012-09-05 | 2016-01-27 | Poskom Co., ltd. | High voltage driving device for X-ray tube |
-
1994
- 1994-04-19 JP JP10476394A patent/JP3240031B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002246197A (en) * | 2001-02-22 | 2002-08-30 | Hitachi Medical Corp | X-ray high-voltage apparatus |
JP4662518B2 (en) * | 2001-02-22 | 2011-03-30 | 株式会社日立メディコ | X-ray high voltage device |
EP2706825A3 (en) * | 2012-09-05 | 2016-01-27 | Poskom Co., ltd. | High voltage driving device for X-ray tube |
Also Published As
Publication number | Publication date |
---|---|
JP3240031B2 (en) | 2001-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5771163A (en) | AC-DC converter apparatus | |
CN113161995B (en) | Apparatus and method for fault current detection | |
US9692314B2 (en) | Detection circuit and three-phase AC-to-AC power converting apparatus incorporating the same | |
US10784774B2 (en) | Switching power supply device | |
JPH0767328A (en) | Power supply device for switching regulator | |
EP0992104B1 (en) | Low voltage illumination system | |
JPH02133099A (en) | Trouble detectgor for ac generator | |
JP3240031B2 (en) | DC high voltage power supply | |
JP2006115660A (en) | Input/output insulation type dc-dc converter | |
KR102036578B1 (en) | Apparatus for detecting output phase open in inverter | |
JP2001268933A (en) | Overvoltage inhibition circuit of capacitor | |
JP2739814B2 (en) | Open phase detection circuit | |
JP2841531B2 (en) | Arm short detection circuit for power converter | |
JP2006020394A (en) | Auxiliary power supply for vehicle | |
JPH0777486B2 (en) | Multi-voltage inverter device | |
KR20000001444A (en) | SINGLE PHASE ACTIVE RECTIFIER FOR power FACTOR CONTROL | |
US12126278B2 (en) | Apparatus and method for controlling inverter | |
JP2001078443A (en) | Switching power supply including defective power protection circuit | |
KR100581261B1 (en) | Power supply for three phase measuring instrument and method of the supply | |
JP2001275247A (en) | Element failure detecting device | |
JPH06327263A (en) | Control circuit of air conditioner | |
JPH1169795A (en) | Transformer drive circuit | |
JP2004241288A (en) | X-ray high voltage generator | |
JPS6353793B2 (en) | ||
JPH10304662A (en) | Switching power supply equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010926 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081012 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091012 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091012 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101012 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101012 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111012 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111012 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121012 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121012 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121012 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131012 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |