JPH07293621A - Vibration isolation supporting device - Google Patents
Vibration isolation supporting deviceInfo
- Publication number
- JPH07293621A JPH07293621A JP8648994A JP8648994A JPH07293621A JP H07293621 A JPH07293621 A JP H07293621A JP 8648994 A JP8648994 A JP 8648994A JP 8648994 A JP8648994 A JP 8648994A JP H07293621 A JPH07293621 A JP H07293621A
- Authority
- JP
- Japan
- Prior art keywords
- spring
- vibration
- shape memory
- memory alloy
- rigidity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Vibration Dampers (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、悪路走行用機器や空中
から投下する水中機器等のように、大きな衝撃力を受け
る機器の防振支持装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anti-vibration support device for equipment that receives a large impact force, such as equipment for running on rough roads and underwater equipment that is dropped from the air.
【0002】[0002]
【従来の技術】図10は、従来の防振支持装置の一例を
示す概念図である。この例では構造体(1)と同構造体
(1)に内蔵された機器(2)との間に防振ゴム(3)
を挿入し、構造体の振動G1 が機器(2)に伝達されに
くくしている。2. Description of the Related Art FIG. 10 is a conceptual diagram showing an example of a conventional anti-vibration support device. In this example, an anti-vibration rubber (3) is provided between the structure (1) and a device (2) built in the structure (1).
To make it difficult for the vibration G 1 of the structure to be transmitted to the device (2).
【0003】[0003]
【発明が解決しようとする課題】前記従来の防振支持装
置においては、構造体(1)に大きな衝撃加速度が作用
すると(空中から投下され海面に着水した場合など)、
構造体(1)と機器(2)との相対変位が著しく大きく
なるので、この変位が防振ゴム(3)の許容変位を越え
て防振ゴム(3)が破損したり、あるいは構造体(1)
と機器(2)とが衝突して機器(2)が損傷したりする
恐れがある。また、構造体(1)の振動加速度G1 の周
波数ωが機器(2)と防振ゴム(3)で決定される固有
振動数ωnに近い場合には、共振が生じて機器(2)の
振動加速度G2 が図11に示されるように非常に大きく
なり、機器(2)の機能が損なわれることもある。In the conventional anti-vibration supporting device, when a large impact acceleration acts on the structure (1) (when dropped from the air and landing on the sea surface).
Since the relative displacement between the structure (1) and the device (2) becomes significantly large, this displacement exceeds the allowable displacement of the vibration isolator (3) and the vibration isolator (3) is damaged, or the structure ( 1)
And the device (2) may collide with each other and the device (2) may be damaged. Further, when the frequency ω of the vibration acceleration G 1 of the structure (1) is close to the natural frequency ω n determined by the device (2) and the antivibration rubber (3), resonance occurs and the device (2) As shown in FIG. 11, the vibration acceleration G 2 becomes extremely large, and the function of the device (2) may be impaired.
【0004】本発明は、構造体に内蔵された機器を上記
構造体により支持する装置において、構造体に大きな加
速度が作用した場合でも、防振ゴムの過大変形による損
傷や、構造体と機器の衝突による機器の損傷を防止する
とともに、構造体の振動加速度による機器の共振を回避
することを目的とする。According to the present invention, in a device for supporting a device built in a structure by the structure, even if a large acceleration is applied to the structure, damage due to excessive deformation of the anti-vibration rubber or damage to the structure and the device is prevented. The object of the present invention is to prevent the damage of the device due to the collision and to avoid the resonance of the device due to the vibration acceleration of the structure.
【0005】[0005]
【課題を解決するための手段】本発明者は、前記目的を
達成するために、下記〔1〕,〔2〕,〔3〕の防振支
持装置を提案するものである。In order to achieve the above-mentioned object, the present inventor proposes the following vibration-damping support devices [1], [2] and [3].
【0006】〔1〕 構造体に内蔵された機器を上記構
造体により防振支持する装置であって、上記機器および
上記構造体のうちいずれか一方に取付けられバネ高さの
変化に伴い剛性が変化する非線形バネと、他方と上記非
線形バネとの間に引渡され加熱により長さが縮んで上記
非線形バネの高さを調節するアクチュエータとなる形状
記憶合金線材と、上記形状記憶合金線材に電流を流す手
段と、上記電流をオン・オフするスイッチとを備えたこ
とを特徴とする防振支持装置。[1] A device for supporting a device built in a structure by means of a vibration-proof structure, wherein the device is attached to either one of the device and the structure and has a rigidity that changes with a change in spring height. A non-linear spring that changes, a shape memory alloy wire rod that is passed between the other and the non-linear spring and serves as an actuator that adjusts the height of the non-linear spring by contracting the length by heating, and a current is applied to the shape memory alloy wire rod. An anti-vibration support device comprising: a flow means and a switch for turning on / off the current.
【0007】〔2〕 構造体に内蔵された機器を上記構
造体により防振支持する装置であって、上記機器および
上記構造体のうちいずれか一方に取付けられバネ高さの
変化に伴い剛性が変化する非線形バネと、他方と上記非
線形バネとの間に設けられたバネおよび加熱により長さ
が縮む形状記憶合金線材と、上記形状記憶合金線材に電
流を流す手段と、上記機器および上記構造体の振動加速
度および振動周波数を検出する振動計と、上記振動計で
検出された振動加速度レベルおよび振動周波数に基づい
て上記電流の通電時間を調節する制御装置とを備えたこ
とを特徴とする防振支持装置。[2] A device for supporting a device built in a structure by means of a vibration-proof structure, wherein the device is attached to either one of the device and the structure and has a rigidity that varies with a change in spring height. A changing non-linear spring, a spring provided between the other and the non-linear spring, a shape memory alloy wire rod whose length is reduced by heating, a means for passing an electric current through the shape memory alloy wire rod, the device and the structure. And a control device that adjusts the energization time of the current based on the vibration acceleration level and the vibration frequency detected by the vibration meter. Support device.
【0008】〔3〕 構造体に内蔵された機器を上記構
造体により防振支持する装置であって、上記機器および
上記構造体のうちいずれか一方に取付けられバネ高さの
変化に伴い剛性が変化する非線形バネと、他方と上記非
線形バネとの間に設けられ上記非線形バネのバネ高さを
調節する直動装置と、上記直動装置を駆動するモータ
と、上記機器および上記構造体の振動加速度および振動
周波数を検出する振動計と、上記振動計で検出された振
動加速度レベルおよび振動周波数に基づいて上記モータ
の回転を調節する制御装置とを備えたことを特徴とする
防振支持装置。[3] A device for supporting a device built in a structure by means of the structure as described above, wherein the device is attached to any one of the device and the structure and has a rigidity that changes with a change in spring height. A changing nonlinear spring, a linear motion device provided between the other and the nonlinear spring to adjust the spring height of the nonlinear spring, a motor for driving the linear motion device, vibration of the device and the structure. An anti-vibration support device comprising: a vibrometer that detects acceleration and vibration frequency; and a control device that adjusts the rotation of the motor based on the vibration acceleration level and vibration frequency detected by the vibrometer.
【0009】[0009]
【作用】本発明においては、構造体とそれに内蔵・支持
された機器との間に、バネ高さの変化に伴い剛性が変化
する非線形バネが配されているので、その非線形バネの
高さを変えることにより、機器の支持剛性を変えること
ができる。そこで、通常時には非線形バネによる機器の
支持剛性を小さくして構造体の振動が機器に伝達されに
くいようにし、振動による機器の損傷を防止する。そし
て構造体に大きな衝撃加速度が作用するときには、非線
形バネの剛性を大きく、すなわち機器の支持剛性を高く
することにより、構造体と機器との衝突を防止する。ま
た、構造体の振動加速度の周波数が、機器と非線形バネ
等で決定される固有振動数に近くなった場合には、非線
形バネの剛性を変更することにより、系の固有振動数を
変えて共振を回避する。In the present invention, since the non-linear spring whose rigidity changes according to the change of the spring height is arranged between the structure and the device built in / supported by the structure, the height of the non-linear spring is reduced. By changing it, the supporting rigidity of the device can be changed. Therefore, in normal times, the supporting rigidity of the device by the non-linear spring is made small so that the vibration of the structure is difficult to be transmitted to the device, and the device is prevented from being damaged by the vibration. When a large impact acceleration acts on the structure, the rigidity of the non-linear spring is increased, that is, the supporting rigidity of the device is increased to prevent the structure from colliding with the device. When the frequency of vibration acceleration of the structure becomes close to the natural frequency determined by the equipment and the non-linear spring, the rigidity of the non-linear spring is changed to change the natural frequency of the system and cause resonance. To avoid.
【0010】上記非線形バネの高さを変える手段とし
て、前記解決手段〔1〕および〔2〕においては、非線
形バネと構造体または機器との間に形状記憶合金線材を
配するとともに、この形状記憶合金線材に電流を流す手
段を設け、この電流をオン・オフすることにより形状記
憶合金線材を加熱または冷却してその長さを変え、その
張力を非線形バネに与える。更に解決手段〔2〕におい
ては、非線形バネと構造体または機器との間に形状記憶
合金線材だけでなくバネをも設け、かつ機器および構造
体の振動加速度および振動周波数を振動計で検出し、そ
の検出値に基づいて制御装置により上記電流の通電時間
を調節するので、非線形バネが適当な剛性を持つような
バネ高さが得られるように、形状記憶合金線材の張力と
バネの復元力とのバランスを自動的にとることができ
る。As means for changing the height of the non-linear spring, in the solving means [1] and [2], a shape memory alloy wire is arranged between the non-linear spring and the structure or equipment, and the shape memory is A means for passing an electric current is provided in the alloy wire, and by turning this electric current on and off, the shape memory alloy wire is heated or cooled to change its length, and its tension is applied to the nonlinear spring. Further, in the solving means [2], not only the shape memory alloy wire rod is provided between the nonlinear spring and the structure or the device, but also the spring is provided, and the vibration acceleration and vibration frequency of the device and the structure are detected by the vibrometer. Since the control device adjusts the energization time of the current based on the detected value, the tension of the shape memory alloy wire and the restoring force of the spring are adjusted so that the spring height is obtained so that the nonlinear spring has appropriate rigidity. Can be automatically balanced.
【0011】また前記解決手段〔3〕においては、モー
タで駆動される直動装置によって直接上記非線形バネの
バネ高さを調節する。そして上記解決手段〔2〕と同
様、機器および構造体の振動加速度および振動周波数を
振動計で検出し、その検出値に基づいて制御装置により
上記モータの回転を調節するので、共振および過大変位
を防止し得る適正な支持剛性が自動的に得られる。In the solving means [3], the spring height of the non-linear spring is directly adjusted by a linear motion device driven by a motor. Then, similarly to the above-mentioned solving means [2], the vibration acceleration and the vibration frequency of the equipment and the structure are detected by the vibrometer, and the rotation of the motor is adjusted by the control device based on the detected values, so that the resonance and the excessive displacement are caused. Appropriate support rigidity capable of preventing the above is automatically obtained.
【0012】[0012]
〔第1実施例〕図1および図2は本発明の第1実施例を
示す概念図であって、図1は電流オフの状態、図2は電
流オンの状態をそれぞれ示す。構造体(1)に内蔵され
た機器(2)と上記構造体(1)とを防振ゴム(3)を
介して結合する。本実施例では、機器(2)と構造体
(1)のうちいずれか一方(図示例では機器(2))
に、バネ高さの変化に伴い剛性が変化する非線形バネ
(4)を、鉛直方向に剛性を有する向きに取付ける。ま
た、他方(図示例では構造体(1))と上記非線形バネ
(4)との間に形状記憶合金線材(5)を配置し、その
形状記憶合金線材(5)の両端を非線形バネ(4)と構
造体(1)に固着する。形状記憶合金線材(5)にはそ
れに電流を流すための電線(6)と電源(7)、電流を
オン・オフさせるためのスイッチ(8)を取付ける。形
状記憶合金線材(5)の形状記憶時の長さは、電源オン
時の非線形バネ(4)のバネ高さhが適当な値(非線形
バネ(4)が適当な鉛直方向の剛性を有するような値)
になるように調整する。[First Embodiment] FIGS. 1 and 2 are conceptual views showing a first embodiment of the present invention. FIG. 1 shows a current off state and FIG. 2 shows a current on state. The device (2) built in the structure (1) and the structure (1) are coupled to each other via the anti-vibration rubber (3). In this embodiment, one of the device (2) and the structure (1) (device (2) in the illustrated example)
In addition, the non-linear spring (4) whose rigidity changes with the change in spring height is attached in a direction having rigidity in the vertical direction. Further, a shape memory alloy wire (5) is arranged between the other (the structure (1) in the illustrated example) and the nonlinear spring (4), and both ends of the shape memory alloy wire (5) are connected to the nonlinear spring (4). ) And the structure (1). The shape memory alloy wire (5) is provided with an electric wire (6) for supplying a current, a power supply (7), and a switch (8) for turning the current on and off. The length of the shape memory alloy wire rod (5) during shape memory is such that the spring height h of the non-linear spring (4) when the power is on is an appropriate value (the non-linear spring (4) has an appropriate vertical rigidity). Value)
Adjust so that
【0013】図3は形状記憶合金線材の復元応力を示す
図である。形状記憶合金線材に引張力を作用させると、
温度が低い状態では容易に歪(伸び)を与えることがで
きるが、歪を与えた状態で線材の温度が上昇すると線材
は元の形に戻ろうとして縮む。形状記憶合金線材には電
気抵抗があるので、電流を流すことにより温度を上昇さ
せることができる。FIG. 3 is a diagram showing the restoring stress of the shape memory alloy wire rod. When tensile force is applied to the shape memory alloy wire,
When the temperature is low, strain (elongation) can be easily given, but when the temperature of the wire rod rises in the strained state, the wire rod shrinks in an attempt to return to its original shape. Since the shape memory alloy wire has an electric resistance, the temperature can be raised by passing an electric current.
【0014】また、非線形バネはバネ高さを大きくする
ことにより、図4に示されるように、長手方向のバネ定
数を大きくすることができる。図5は非線形バネの形状
の一例を示す図である。この図の「高さ」を変えると
「長さ」方向の剛性が変化する。したがって、図6に示
されるように、非線形バネ(4)の「長さ」方向が鉛直
になるように機器(2)に取付け、形状記憶合金(5)
の復元力により「高さ」を変化させれば、構造体(1)
に対する機器(2)の鉛直方向の支持剛性を変化させる
ことができる。すなわち、図1に示す構造で、形状記憶
合金線材(5)に電流を流せば、図2に示すように形状
記憶合金線材(5)が縮み、非線形バネ(4)のバネ高
さhが大きくなるので、機器(2)の鉛直方向の支持は
剛になる。電流をオフにすれば、形状記憶合金線材
(5)の温度が下がるので線材の張力が消失し、非線形
バネ(4)のバネ高さhが再び図1の状態に戻って、機
器(2)の鉛直方向の支持剛性も図1の状態の値に戻
る。Further, by increasing the spring height of the non-linear spring, the spring constant in the longitudinal direction can be increased as shown in FIG. FIG. 5 is a diagram showing an example of the shape of the non-linear spring. When the "height" in this figure is changed, the rigidity in the "length" direction changes. Therefore, as shown in FIG. 6, the non-linear spring (4) is attached to the device (2) so that the “length” direction is vertical, and the shape memory alloy (5) is attached.
If the "height" is changed by the restoring force of the structure,
The vertical support rigidity of the device (2) can be changed. That is, in the structure shown in FIG. 1, when a current is applied to the shape memory alloy wire (5), the shape memory alloy wire (5) contracts as shown in FIG. 2 and the spring height h of the nonlinear spring (4) increases. Therefore, the vertical support of the device (2) becomes rigid. When the electric current is turned off, the temperature of the shape memory alloy wire rod (5) decreases, the tension of the wire rod disappears, and the spring height h of the nonlinear spring (4) returns to the state shown in FIG. The support rigidity in the vertical direction also returns to the value in the state of FIG.
【0015】そこで、構造体(1)が海面に衝突すると
きには、電流をオンにして非線形バネ(4)の垂直方向
の剛性を大きく、すなわち機器(2)の支持剛性を高く
することにより、防振ゴム(3)の過大変形や構造体
(1)と機器(2)との衝突を防止する。通常運転時に
は、電流をオフにして非線形バネ(4)による機器
(2)の支持効果を小さくし、防振ゴム(3)によって
構造体(1)の振動G1 が機器(2)に伝達されにくく
し、振動による機器(2)の損傷を防止する。また、構
造体(1)の振動加速度G1 の周波数ωが、機器(2)
と防振ゴム(3)で決定される固有振動数ωn と近くな
り共振が発生する場合には、電流をオンにすることによ
り非線形バネ(4)の剛性が作用するので、機器(2)
と防振ゴム(3)で決定される固有振動数が変化し、共
振を回避することができる。Therefore, when the structure (1) collides with the sea surface, the current is turned on to increase the rigidity of the nonlinear spring (4) in the vertical direction, that is, to increase the support rigidity of the device (2) to prevent the damage. The excessive deformation of the vibrating rubber (3) and the collision between the structure (1) and the device (2) are prevented. During normal operation, the current is turned off to reduce the support effect of the device (2) by the non-linear spring (4), and the vibration G 1 of the structure (1) is transmitted to the device (2) by the antivibration rubber (3). To prevent damage to the device (2) due to vibration. Further, the frequency ω of the vibration acceleration G 1 of the structure (1) is equal to that of the device (2).
When the resonance frequency is close to the natural frequency ω n determined by the anti-vibration rubber (3) and the resonance occurs, the rigidity of the nonlinear spring (4) acts by turning on the current, so that the device (2)
The natural frequency determined by the vibration isolating rubber (3) changes, and resonance can be avoided.
【0016】〔第2実施例〕図7は本発明の第2実施例
を示す概念図である。本実施例では、機器(2)を構造
体(1)に防振ゴム(3)および鉛直方向以外の変位を
拘束するリニアガイド(9)を介して結合する。機器
(2)には、バネ高さの変化に伴い剛性が変化する非線
形バネ(4)を鉛直方向に剛性を有する向きに取付け
る。また非線形バネ(4)と構造体(1)の間に形状記
憶合金線材(5)およびバネ(10)を配置し、形状記
憶合金線材(5)の両端は非線形バネ(4)と構造体
(1)に固着する。形状記憶合金線材(5)には、それ
に電流を流すための電線(6)と電源(7)を取付け
る。非線形バネ(4)のバネ高さh(すなわち機器の支
持剛性)は非接触変位計(11)によりモニタする。ま
た、構造体(1)および機器(2)の振動加速度と周波
数をモニタするため、振動計(12a),(12b) を設置する。[Second Embodiment] FIG. 7 is a conceptual diagram showing a second embodiment of the present invention. In the present embodiment, the device (2) is coupled to the structure (1) via the anti-vibration rubber (3) and the linear guide (9) for restraining the displacement other than the vertical direction. The device (2) is equipped with a non-linear spring (4) whose rigidity changes in accordance with the change in spring height in a direction having rigidity in the vertical direction. Further, a shape memory alloy wire (5) and a spring (10) are arranged between the nonlinear spring (4) and the structure (1), and both ends of the shape memory alloy wire (5) are connected to the nonlinear spring (4) and the structure ( Stick to 1). An electric wire (6) and a power supply (7) for passing an electric current are attached to the shape memory alloy wire (5). The spring height h of the nonlinear spring (4) (that is, the supporting rigidity of the device) is monitored by the non-contact displacement gauge (11). Further, vibrometers (12a) and (12b) are installed to monitor the vibration acceleration and frequency of the structure (1) and the device (2).
【0017】前記のとおり、形状記憶合金線材に引張力
を作用させると、温度が低い状態では容易に歪(伸び)
を与えることができるが、伸ばした状態で線材の温度が
上昇すると線材は元の形に戻ろうとして縮む。また、非
線形バネはバネ高さを大きくすることにより、長手方向
のバネ定数を大きくすることができる。本実施例は、構
造体(1)と非線形バネ(4)の間にバネ(10)およ
び形状記憶合金線材(5)を設置し、バネ力に対する形
状記憶合金線材(5)の復元力を調節することにより、
支持剛性を変化させるものである。As described above, when a tensile force is applied to the shape-memory alloy wire, it easily distorts (elongates) at a low temperature.
However, when the temperature of the wire rod rises in the stretched state, the wire rod shrinks in an attempt to return to its original shape. Also, the nonlinear spring can increase the spring constant in the longitudinal direction by increasing the spring height. In this embodiment, the spring (10) and the shape memory alloy wire (5) are installed between the structure (1) and the non-linear spring (4), and the restoring force of the shape memory alloy wire (5) against the spring force is adjusted. By doing
It changes the support rigidity.
【0018】すなわち、図7に示す構造で、形状記憶合
金線材(5)に電流を流し、形状記憶合金線材の張力が
バネ(10)の復元力を上回るようにすれば、非線形バ
ネ(4)のバネ高さhが大きくなるので、機器(2)の
鉛直方向の支持は剛になる。電流をオフにすれば、形状
記憶合金線材(5)の温度が下がるので線材の張力が消
失し、バネ(10)の作用により、非線形バネ(4)の
バネ高さhが元に戻って、機器(2)の鉛直方向の支持
剛性が小さくなる。また、形状記憶合金線材(5)に図
8に示すようなパルス状の電流を流し、電流オン時と電
流オフ時の時間の比(デューティ比)を調節することに
より、形状記憶合金線材(5)が形状記憶効果を持つ時
間と容易に歪を与え得る時間との比を変化させることが
できる。本実施例では、制御装置(14)により電源
(7)のデューティ比を調節することにより、非線形バ
ネ(4)が鉛直方向に適当な剛性を持つようなバネ高さ
hが得られるように、形状記憶線材(5)の張力とバネ
(10)の復元力とのバランスをとることができる。That is, in the structure shown in FIG. 7, if a current is applied to the shape memory alloy wire (5) so that the tension of the shape memory alloy wire exceeds the restoring force of the spring (10), the nonlinear spring (4) is obtained. Since the spring height h of the device (2) increases, the vertical support of the device (2) becomes rigid. When the electric current is turned off, the temperature of the shape memory alloy wire rod (5) decreases, the tension of the wire rod disappears, and the spring height (10) of the nonlinear spring (4) returns to its original value due to the action of the spring (10). The vertical support rigidity of the device (2) is reduced. Further, by applying a pulsed current as shown in FIG. 8 to the shape memory alloy wire (5) and adjusting the ratio (duty ratio) of the time when the current is on and the time when the current is off, the shape memory alloy wire (5) It is possible to change the ratio between the time when () has a shape memory effect and the time when it can easily give strain. In this embodiment, by adjusting the duty ratio of the power source (7) by the control device (14), the spring height h such that the nonlinear spring (4) has appropriate rigidity in the vertical direction can be obtained. The tension of the shape memory wire (5) and the restoring force of the spring (10) can be balanced.
【0019】ここで、構造体(1)に設置された振動計
(12a) で振動加速度をモニタすることにより、構造体
(1)の振動加速度G1 の周波数ωに応じた支持剛性の
決定が可能になる。また、機器(2)に設置された振動
計(12b) で振動加速度をモニタすることにより、応答加
速度の変化を支持剛性決定ルーチンにフィードバックさ
せることができる。すなわち、演算装置(13)におい
て、非接触変位計(11)の出力から、非線形バネ
(4)のバネ高さh、非線形バネ(4)の剛性,機器
(2)と支持装置(防振ゴム(3)および非線形バネ
(4))からなる系の固有振動数を算出する。また振動
計(12a),(12b) の出力から、構造体(1)および機器
(2)の振動加速度レベルおよび出力周波数を算出す
る。そして共振および過大変位を防止し得る支持剛性を
計算、デューティ比を決定し、電源(7)を駆動する制
御装置(14)に適正な信号を出力するのである。Here, the vibrometer installed in the structure (1)
By monitoring the vibration acceleration at (12a), it becomes possible to determine the support rigidity according to the frequency ω of the vibration acceleration G 1 of the structure (1). Further, by monitoring the vibration acceleration with the vibrometer (12b) installed in the device (2), the change in response acceleration can be fed back to the support rigidity determination routine. That is, in the arithmetic unit (13), from the output of the non-contact displacement gauge (11), the spring height h of the nonlinear spring (4), the rigidity of the nonlinear spring (4), the device (2) and the supporting device (anti-vibration rubber). The natural frequency of the system composed of (3) and the non-linear spring (4) is calculated. Further, the vibration acceleration level and the output frequency of the structure (1) and the device (2) are calculated from the outputs of the vibrometers (12a) and (12b). Then, the supporting rigidity capable of preventing resonance and excessive displacement is calculated, the duty ratio is determined, and an appropriate signal is output to the control device (14) that drives the power supply (7).
【0020】上述のように本実施例では、構造体(1)
の振動加速度G1 の周波数ωが機器(2)と防振ゴム
(3)、非線形バネ(4)で決定される固有振動数ωn
に近くなって共振が発生する場合には、非線形バネ
(4)の剛性を変更することにより、系の固有振動数を
変えて共振を回避することができる。また、通常運転時
には、非線形バネ(4)のバネ高さhを小さくして、非
線形バネ(4)による機器(2)の支持効果を小さく
し、防振ゴム(3)によって構造体(1)の振動G1 が
機器(2)に伝達されにくくして振動による機器(2)
の損傷を防止することができる。更に、構造体(1)に
大きな衝撃加速度が作用するとき(海面に衝突するとき
など)には、非線形バネ(4)のバネ高さhを大きくし
て、非線形バネ(4)の鉛直方向の剛性を大きく、すな
わち機器(2)の支持剛性を高くすることにより、防振
ゴム(3)の過大変形や構造体(1)と機器(2)との
衝突を防止することができる。As described above, in this embodiment, the structure (1)
Vibration damping rubbers acceleration G 1 in the frequency omega is a device (2) (3), the natural frequency omega n determined by non-linear spring (4)
When a resonance occurs near to, resonance can be avoided by changing the natural frequency of the system by changing the rigidity of the nonlinear spring (4). Further, during normal operation, the spring height h of the non-linear spring (4) is reduced to reduce the supporting effect of the device (2) by the non-linear spring (4), and the structure (1) is provided by the anti-vibration rubber (3). Vibration G 1 is difficult to be transmitted to the device (2) and the vibration causes the device (2)
It is possible to prevent damage. Further, when a large impact acceleration acts on the structure (1) (when it collides with the sea surface, etc.), the spring height h of the nonlinear spring (4) is increased to increase the vertical direction of the nonlinear spring (4). By increasing the rigidity, that is, by increasing the supporting rigidity of the device (2), it is possible to prevent excessive deformation of the vibration-proof rubber (3) and collision between the structure (1) and the device (2).
【0021】〔第3実施例〕図9は本発明の第3実施例
を示す概念図である。この図に示されるように、構造体
(1)に機器(2)を防振ゴム(3)および鉛直方向以
外の変位を拘束するリニアガイド(9)を介して結合す
る。また機器(2)には、バネ高さの変化に伴い剛性が
変化する非線形バネ(4)を鉛直方向に剛性を有する向
きに取付ける。ここまでは前記第2実施例と同様である
が、本実施例では非線形バネ(4)と構造体(1)の間
にボールネジ(15)を用いた直動装置を設置し、これ
をモータ(16)で駆動することにより、非線形バネ
(4)のバネ高さhを調整できるようにする。そしてボ
ールネジ(15)の回転角度を検出するため、ポテンシ
ョメータ(17)を設置する。また第2実施例と同様
に、構造体(1)および機器(2)の振動加速度と周波
数をモニタするため、振動計(12a),(12b) を設置する。[Third Embodiment] FIG. 9 is a conceptual diagram showing a third embodiment of the present invention. As shown in this figure, the device (2) is coupled to the structure (1) through the vibration-proof rubber (3) and the linear guide (9) for restraining displacement other than the vertical direction. Further, a non-linear spring (4) whose rigidity changes with a change in spring height is attached to the device (2) in a direction having rigidity in the vertical direction. The process up to this point is the same as in the second embodiment, but in this embodiment, a linear motion device using a ball screw (15) is installed between the nonlinear spring (4) and the structure (1), and this is used as a motor ( By being driven by 16), the spring height h of the non-linear spring (4) can be adjusted. Then, a potentiometer (17) is installed to detect the rotation angle of the ball screw (15). Further, similarly to the second embodiment, vibrometers (12a) and (12b) are installed to monitor the vibration acceleration and frequency of the structure (1) and the device (2).
【0022】前記のとおり、非線形バネはバネ高さを大
きくすることにより、長手方向のバネ定数を大きくする
ことができる。したがって、図9に示される構造の装置
において、モータ(16)によりボールネジ(15)を
駆動して非線形バネ(4)のバネ高さhを大きくすれ
ば、機器(2)の鉛直方向の支持は剛になる。逆に、非
線形バネ(4)のバネ高さhを小さくする方向にボール
ネジ(15)を駆動すれば、機器(2)の鉛直方向の支
持剛性も小さくなる。そして、構造体(1)に振動計(1
2a) を設置して振動加速度をモニタすることにより、構
造体(1)の振動加速度G1 の周波数ωに応じた支持剛
性の決定が可能になる。また、機器(2)に設置された
振動計(12b) で振動加速度をモニタすることにより、応
答加速度の変化を、支持剛性決定ルーチンにフィードバ
ックさせることができる。すなわち、演算装置(18)
において、ポテンショメータ(17)の出力から非線形
バネ(4)のバネ高さh、非線形バネ(4)の剛性、機
器(2)と支持装置(防振ゴム(3)および非線形バネ
(4))からなる系の固有振動数を算出する。また振動
計(12a),(12b) の出力から、構造体(1)および機器
(2)の振動加速度レベルと振動周波数を算出する。そ
して共振および過大変位を防止し得る支持剛性を計算
し、モータ(16)を駆動するための適正な信号を出力
するのである。As described above, the nonlinear spring can increase the spring constant in the longitudinal direction by increasing the spring height. Therefore, in the apparatus having the structure shown in FIG. 9, if the ball screw (15) is driven by the motor (16) to increase the spring height h of the non-linear spring (4), the vertical support of the device (2) will be achieved. Become rigid. On the contrary, if the ball screw (15) is driven in the direction of decreasing the spring height h of the non-linear spring (4), the vertical support rigidity of the device (2) also decreases. Then, the vibrometer (1
By installing 2a) and monitoring the vibration acceleration, it becomes possible to determine the support rigidity according to the frequency ω of the vibration acceleration G 1 of the structure (1). Further, by monitoring the vibration acceleration with the vibrometer (12b) installed in the device (2), the change in response acceleration can be fed back to the support rigidity determination routine. That is, arithmetic unit (18)
From the output of the potentiometer (17), the spring height h of the non-linear spring (4), the rigidity of the non-linear spring (4), the device (2) and the supporting device (the anti-vibration rubber (3) and the non-linear spring (4)) The natural frequency of the system is calculated. Further, the vibration acceleration level and the vibration frequency of the structure (1) and the device (2) are calculated from the outputs of the vibrometers (12a) and (12b). Then, the supporting rigidity capable of preventing resonance and excessive displacement is calculated, and an appropriate signal for driving the motor (16) is output.
【0023】上記のようにして本実施例でも、構造体
(1)の振動加速度G1 の周波数ωが機器(2)と防振
ゴム(3)、非線形バネ(4)で決定される固有振動数
ωn に近くなって共振が発生する場合には、非線形バネ
(4)の剛性を変更することにより、系の固有振動数を
変えて共振を回避することができる。また通常運転時に
は、非線形バネ(4)のバネ高さhを小さくして、非線
形バネ(4)による機器(2)の支持効果を小さくし、
防振ゴム(3)によって構造体(1)の振動G1が機器
(2)に伝達されにくくして振動による機器(2)の損
傷を防止することができる。更に、構造体(1)に大き
な衝撃加速度が作用するとき(海面に衝突するときな
ど)には、非線形バネ(4)のバネ高さhを大きくし
て、非線形バネ(4)の鉛直方向の剛性を大きく、すな
わち機器(2)の支持剛性を高くすることにより、防振
ゴム(3)の過大変形や構造体(1)と機器(2)との
衝突を防止することができる。As described above, also in this embodiment, the natural vibration in which the frequency ω of the vibration acceleration G 1 of the structure (1) is determined by the device (2), the vibration-proof rubber (3) and the non-linear spring (4). When resonance occurs near the number ω n , the rigidity can be changed to change the natural frequency of the system to avoid resonance. Further, during normal operation, the spring height h of the non-linear spring (4) is reduced to reduce the effect of supporting the device (2) by the non-linear spring (4).
The vibration isolating rubber (3) makes it difficult for the vibration G 1 of the structure (1) to be transmitted to the device (2) and prevents the device (2) from being damaged by the vibration. Further, when a large impact acceleration acts on the structure (1) (when it collides with the sea surface, etc.), the spring height h of the nonlinear spring (4) is increased to increase the vertical direction of the nonlinear spring (4). By increasing the rigidity, that is, by increasing the supporting rigidity of the device (2), it is possible to prevent excessive deformation of the vibration-proof rubber (3) and collision between the structure (1) and the device (2).
【0024】[0024]
【発明の効果】本発明においては、構造体の振動加速度
の周波数が、機器と非線形バネ等で決定される固有振動
数に近くなって共振が発生する場合には、非線形バネの
剛性を変更することにより、系の固有振動数を変えて共
振を回避することができる。また通常運転時には、非線
形バネのバネ高さを小さくして、非線形バネによる機器
の支持効果を小さくし、構造体の振動を機器に伝達され
にくくして振動による機器の損傷を防止することができ
る。更に、構造体に大きな衝撃加速度が作用するときに
は、非線形バネのバネ高さを大きくして、非線形バネの
鉛直方向の剛性を大きく、すなわち機器の支持剛性を高
くすることにより、防振ゴムの過大変形や構造体と機器
との衝突を防止することができる。According to the present invention, the rigidity of the nonlinear spring is changed when the frequency of the vibration acceleration of the structure is close to the natural frequency determined by the equipment and the nonlinear spring and resonance occurs. As a result, resonance can be avoided by changing the natural frequency of the system. Also, during normal operation, the spring height of the non-linear spring can be reduced to reduce the device support effect of the non-linear spring, and it is possible to prevent the vibration of the structure from being transmitted to the device and prevent the device from being damaged by the vibration. . Further, when a large impact acceleration is applied to the structure, the spring height of the non-linear spring is increased to increase the vertical rigidity of the non-linear spring, that is, to increase the supporting rigidity of the device, thereby increasing the vibration damping rubber excessively. It is possible to prevent deformation and collision between the structure and the device.
【図1】図1は本発明の第1実施例の電流オフの状態を
示す概念図である。FIG. 1 is a conceptual diagram showing a current off state according to a first embodiment of the present invention.
【図2】図2は上記第1実施例の電流オンの状態を示す
概念図である。FIG. 2 is a conceptual diagram showing a current-on state of the first embodiment.
【図3】図3は形状記憶合金線材の復元応力を示す図で
ある。FIG. 3 is a diagram showing a restoring stress of a shape memory alloy wire rod.
【図4】図4は非線形バネのバネ高さとバネ定数の関係
を示す図である。FIG. 4 is a diagram showing a relationship between a spring height and a spring constant of a nonlinear spring.
【図5】図5は非線形バネの形状の一例を示す図であ
る。FIG. 5 is a diagram showing an example of the shape of a non-linear spring.
【図6】図6は上記第1実施例における非線形バネの取
付け状況を示す側面図である。FIG. 6 is a side view showing a mounting state of the non-linear spring in the first embodiment.
【図7】図7は本発明の第2実施例を示す概念図であ
る。FIG. 7 is a conceptual diagram showing a second embodiment of the present invention.
【図8】図8はデューティ比を説明する図である。FIG. 8 is a diagram illustrating a duty ratio.
【図9】図9は本発明の第3実施例を示す概念図であ
る。FIG. 9 is a conceptual diagram showing a third embodiment of the present invention.
【図10】図10は従来の防振支持装置の一例を示す概
念図である。FIG. 10 is a conceptual diagram showing an example of a conventional anti-vibration support device.
【図11】図11は構造体から機器への振動伝達率を示
す図である。FIG. 11 is a diagram showing a vibration transmissibility from a structure to a device.
(1) 構造体 (2) 機器 (3) 防振ゴム (4) 非線形バネ (5) 形状記憶合金線材 (6) 電線 (7) 電源 (8) スイッチ (9) リニアガイド (10) バネ (11) 非接触変位計 (12a),(12b) 振動計 (13) 演算装置 (14) 制御装置 (15) ボールネジ (16) モータ (17) ポテンショメータ (18) 演算装置 (h) バネ高さ (G1 ),(G2 ) 振動加速度(1) Structure (2) Equipment (3) Anti-vibration rubber (4) Non-linear spring (5) Shape memory alloy wire (6) Electric wire (7) Power supply (8) Switch (9) Linear guide (10) Spring (11) ) Non-contact displacement gauges (12a), (12b) Vibration meter (13) Computing device (14) Controller (15) Ball screw (16) Motor (17) Potentiometer (18) Computing device (h) Spring height (G 1 ), (G 2 ) Vibration acceleration
Claims (3)
より防振支持する装置であって、上記機器および上記構
造体のうちいずれか一方に取付けられバネ高さの変化に
伴い剛性が変化する非線形バネと、他方と上記非線形バ
ネとの間に引渡され加熱により長さが縮んで上記非線形
バネの高さを調節するアクチュエータとなる形状記憶合
金線材と、上記形状記憶合金線材に電流を流す手段と、
上記電流をオン・オフするスイッチとを備えたことを特
徴とする防振支持装置。1. A device for supporting a device built in a structure by a vibration-proof structure according to the structure, wherein the device is attached to any one of the device and the structure, and its rigidity changes as the spring height changes. A non-linear spring, a shape memory alloy wire rod which is passed between the other and the non-linear spring and serves as an actuator for adjusting the height of the non-linear spring by contracting the length by heating, and a current is passed through the shape memory alloy wire rod. Means and
An anti-vibration support device comprising: a switch for turning on / off the current.
より防振支持する装置であって、上記機器および上記構
造体のうちいずれか一方に取付けられバネ高さの変化に
伴い剛性が変化する非線形バネと、他方と上記非線形バ
ネとの間に設けられたバネおよび加熱により長さが縮む
形状記憶合金線材と、上記形状記憶合金線材に電流を流
す手段と、上記機器および上記構造体の振動加速度およ
び振動周波数を検出する振動計と、上記振動計で検出さ
れた振動加速度レベルおよび振動周波数に基づいて上記
電流の通電時間を調節する制御装置とを備えたことを特
徴とする防振支持装置。2. A device for supporting a device built in a structure by means of the structure as described above, wherein the device is attached to one of the device and the structure, and its rigidity changes as the spring height changes. A non-linear spring, a spring provided between the other and the non-linear spring, and a shape memory alloy wire rod whose length is shortened by heating, a means for passing an electric current through the shape memory alloy wire rod, and the device and the structure. An anti-vibration support provided with a vibrometer for detecting vibration acceleration and vibration frequency, and a control device for adjusting the energization time of the current based on the vibration acceleration level and vibration frequency detected by the vibrometer. apparatus.
より防振支持する装置であって、上記機器および上記構
造体のうちいずれか一方に取付けられバネ高さの変化に
伴い剛性が変化する非線形バネと、他方と上記非線形バ
ネとの間に設けられ上記非線形バネのバネ高さを調節す
る直動装置と、上記直動装置を駆動するモータと、上記
機器および上記構造体の振動加速度および振動周波数を
検出する振動計と、上記振動計で検出された振動加速度
レベルおよび振動周波数に基づいて上記モータの回転を
調節する制御装置とを備えたことを特徴とする防振支持
装置。3. A device for supporting a device built in a structure with a vibration-proof structure by the structure, wherein the device is attached to any one of the device and the structure, and its rigidity changes as the spring height changes. And a linear motion device that is provided between the other and the nonlinear spring to adjust the spring height of the nonlinear spring, a motor that drives the linear motion device, and a vibration acceleration of the device and the structure. An anti-vibration support device comprising: a vibration meter for detecting a vibration frequency; and a control device for adjusting the rotation of the motor based on the vibration acceleration level and the vibration frequency detected by the vibration meter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08648994A JP3207668B2 (en) | 1994-04-25 | 1994-04-25 | Anti-vibration support device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08648994A JP3207668B2 (en) | 1994-04-25 | 1994-04-25 | Anti-vibration support device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07293621A true JPH07293621A (en) | 1995-11-07 |
JP3207668B2 JP3207668B2 (en) | 2001-09-10 |
Family
ID=13888404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08648994A Expired - Fee Related JP3207668B2 (en) | 1994-04-25 | 1994-04-25 | Anti-vibration support device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3207668B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009128847A (en) * | 2007-11-28 | 2009-06-11 | Kyocera Mita Corp | Optical scanner |
JP2010112404A (en) * | 2008-11-04 | 2010-05-20 | Wel Research Co Ltd | Buffer and landing device |
JP2011152919A (en) * | 2011-05-02 | 2011-08-11 | Wel Research Co Ltd | Landing gear |
KR20130022908A (en) * | 2011-08-26 | 2013-03-07 | 현대자동차주식회사 | Mount apparatus for transmission of vehicle |
DE102012204059B3 (en) * | 2012-03-15 | 2013-06-20 | Thyssenkrupp Marine Systems Gmbh | Shock absorber for storing an object in or on a vehicle |
JP2020133413A (en) * | 2019-02-13 | 2020-08-31 | 株式会社テージーケー | Controller and tactile sensation imparting device |
CN112833273A (en) * | 2021-01-19 | 2021-05-25 | 西南石油大学 | Resonance control device for buffer tank of compressor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115424888B (en) * | 2022-10-12 | 2023-09-08 | 山东达驰高压开关有限公司 | Safety protection shell of high-voltage switch |
-
1994
- 1994-04-25 JP JP08648994A patent/JP3207668B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009128847A (en) * | 2007-11-28 | 2009-06-11 | Kyocera Mita Corp | Optical scanner |
JP2010112404A (en) * | 2008-11-04 | 2010-05-20 | Wel Research Co Ltd | Buffer and landing device |
JP2011152919A (en) * | 2011-05-02 | 2011-08-11 | Wel Research Co Ltd | Landing gear |
KR20130022908A (en) * | 2011-08-26 | 2013-03-07 | 현대자동차주식회사 | Mount apparatus for transmission of vehicle |
DE102012204059B3 (en) * | 2012-03-15 | 2013-06-20 | Thyssenkrupp Marine Systems Gmbh | Shock absorber for storing an object in or on a vehicle |
JP2020133413A (en) * | 2019-02-13 | 2020-08-31 | 株式会社テージーケー | Controller and tactile sensation imparting device |
CN112833273A (en) * | 2021-01-19 | 2021-05-25 | 西南石油大学 | Resonance control device for buffer tank of compressor |
Also Published As
Publication number | Publication date |
---|---|
JP3207668B2 (en) | 2001-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6666108B1 (en) | Vibration control by confinement of vibration energy | |
JP2758374B2 (en) | Helicopter rotor harmonic controller | |
JPH04231750A (en) | Vibration-proof supporting device | |
JPH07293621A (en) | Vibration isolation supporting device | |
KR970063402A (en) | Dustproof device | |
JPS63293342A (en) | Vibration absorber | |
US5366198A (en) | Vibration isolation mount with locking means | |
KR102444620B1 (en) | Dynamic Characteristics Measurement Device | |
GB2234318A (en) | Motor vehicle engine mounting | |
US4901573A (en) | Integral structural component vibratory behavior control | |
CA2407398C (en) | Arrangement for damping of structural resonance | |
GB2228551A (en) | Motor vehicle engine mounting | |
US6454303B2 (en) | Method and apparatus for vibration control | |
US20100090380A1 (en) | Vibration Isolation | |
US20060106500A1 (en) | Vibration control by confinement of vibration energy | |
JPH0221044A (en) | Vibration proofing method and device thereof | |
JPH05263868A (en) | Ground motion disturbance control method of vibration resistant board | |
JP4301914B2 (en) | Active control pulse thrust measuring device | |
JPH04302738A (en) | Mount for power unit | |
JP2000314442A (en) | Active damping device | |
GB2165667A (en) | Method of reducing the transmission of vibrations | |
WO2008115589A1 (en) | Vibration isolation | |
US10414435B1 (en) | Apparatus and method for attenuating vibration transmission | |
JP2004150514A (en) | Prime motor supporting device and prime motor supporting structure | |
JPS62155347A (en) | Active vibrationproof supporting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010529 |
|
LAPS | Cancellation because of no payment of annual fees |