JPH0729222Y2 - Intake device for multi-cylinder internal combustion engine - Google Patents
Intake device for multi-cylinder internal combustion engineInfo
- Publication number
- JPH0729222Y2 JPH0729222Y2 JP1989071421U JP7142189U JPH0729222Y2 JP H0729222 Y2 JPH0729222 Y2 JP H0729222Y2 JP 1989071421 U JP1989071421 U JP 1989071421U JP 7142189 U JP7142189 U JP 7142189U JP H0729222 Y2 JPH0729222 Y2 JP H0729222Y2
- Authority
- JP
- Japan
- Prior art keywords
- resonance
- chamber
- valve
- intake
- chambers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Characterised By The Charging Evacuation (AREA)
Description
【考案の詳細な説明】 A.考案の目的 (1) 産業上の利用分野 本考案は、多気筒内燃機関において、吸気系内の吸気圧
力変動を制御することにより、前記機関の体積効率の向
上を図るようにした吸気装置の改良に関するものであ
る。[Detailed Description of the Invention] A. Purpose of the Invention (1) Industrial Field of Application The present invention improves the volumetric efficiency of a multi-cylinder internal combustion engine by controlling the intake pressure fluctuation in the intake system. The present invention relates to the improvement of the intake device designed to achieve the above.
(2) 従来の技術 多気筒内燃機関の吸気装置において、機関の運転状態に
応じて吸気系の長さ、容積を可変制御することにより、
吸気干渉を生じない気筒間の吸気圧力変動が共振する共
鳴効果、あるいは各気筒毎において吸気開始時に生じる
負の圧力波が吸気系に設けられる容積拡大部で反射され
て吸気ポート側に戻されることを利用した慣性効果を発
揮させ、機関の低速から高速域まで体積効率を高めるよ
うにしたものは既に種々提案されている。(2) Prior Art In an intake system for a multi-cylinder internal combustion engine, by variably controlling the length and volume of the intake system according to the operating state of the engine,
Resonance effect in which intake pressure fluctuations between cylinders that do not cause intake interference resonate, or negative pressure waves that occur at the start of intake in each cylinder are reflected by the volume expansion part provided in the intake system and returned to the intake port side. Various proposals have already been made to exhibit the inertial effect by utilizing the so as to enhance the volumetric efficiency from low speed to high speed range of the engine.
かかる吸気装置において、吸気系に設けられる容積拡大
部に吸気行程が連続しない気筒群にそれぞれ連通される
一対の共鳴チャンバを形成し、これら両チャンバの境界
壁に、該両チャンバを連通し、あるいは遮断する開閉弁
を設け、この開閉弁の開閉制御により吸気系を共鳴過給
系または慣性過給系に切換えるとともに、前記共鳴チャ
ンバと気筒群を接続する分配管の中間部を管長切換弁を
介して前記共鳴チャンバの連通し、以て前記分配管の長
さを可変として更に広い運転域で高い体積効率を得るよ
うにしたものが既に提案されている(例えば特開昭63−
215822号公報参照)。In such an intake device, a pair of resonance chambers that are respectively communicated with cylinder groups whose intake strokes are not continuous are formed in a volume expansion portion provided in the intake system, and both chambers are communicated with a boundary wall between these chambers, or An on-off valve for shutting off is provided, and the intake system is switched to the resonance supercharging system or the inertia supercharging system by opening / closing control of this on-off valve, and the intermediate portion of the distribution pipe connecting the resonance chamber and the cylinder group is connected via a pipe length switching valve. In order to obtain high volumetric efficiency in a wider operating range by connecting the resonance chamber with each other and changing the length of the distribution pipe, it has already been proposed (for example, Japanese Patent Laid-Open No. 63-
215822).
(3) 考案が解決しようとする課題 しかしながら上記従来の吸気装置は、一対の共鳴チャン
バの連通を遮断して2系統の共鳴過給系を構成したとき
に高い共鳴過給効果が得られるように前記共鳴チャンバ
の容積を決定すると、この一対の共鳴チャンバを互いに
連通して1系統の慣性過給系を構成したときに、形成さ
れる慣性過給分配チャンバの容積が前記一対の共鳴チャ
ンバの容積の和として一義的に決定されてしまうため、
その容積が不足して充分な慣性過給効果を得ることがで
きないという問題がある。一方、前記慣性過給分配チャ
ンバの容積を充分に確保すると、共鳴過給系を形成した
場合に共鳴チャンバの容積が過大になって適切な共鳴過
給効果や良好なアイドル回転が得られないという問題が
生じてしまう。(3) Problems to be Solved by the Invention However, in the above-mentioned conventional intake device, a high resonance supercharging effect can be obtained when the two resonance chambers are constituted by blocking the communication between the pair of resonance chambers. When the volume of the resonance chamber is determined, when the pair of resonance chambers are communicated with each other to form one system of inertia supercharging system, the volume of the inertia supercharging distribution chamber formed is the volume of the pair of resonance chambers. Because it is uniquely determined as the sum of
There is a problem that the volume is insufficient and a sufficient inertia supercharging effect cannot be obtained. On the other hand, if the volume of the inertial supercharging distribution chamber is sufficiently secured, the volume of the resonance chamber becomes excessive when the resonance supercharging system is formed, and an appropriate resonance supercharging effect and good idle rotation cannot be obtained. There will be problems.
本考案は、前述の事情に鑑みてなされたもので、共鳴過
給系を構成するための共鳴チャンバの容積と、慣性過給
系を構成するための慣性過給分配チャンバの容積を共に
最適な値に設定することが可能な多気筒内燃機関の吸気
装置を提供することを目的とする。The present invention has been made in view of the above circumstances, and the volume of the resonance chamber for forming the resonance supercharging system and the volume of the inertia supercharging distribution chamber for forming the inertia supercharging system are both optimal. An object is to provide an intake system for a multi-cylinder internal combustion engine that can be set to a value.
B.考案の構成 (1) 課題を解決するための手段 本考案によれば、前記目的達成のため、共鳴チャンバ集
合ボックス内を一対の共鳴チャンバに区画し、各共鳴チ
ャンバは、その上流側を外気に通じる共鳴通路に、その
下流側を吸気行程が連続しない気筒群に管長切換可能な
分配管を介してそれぞれ各別に連通する多気筒内燃機関
の吸気装置において、前記共鳴チャンバ集合ボックス
を、前記一対の共鳴チャンバと、該一対の共鳴チャンバ
のそれぞれに隣接、連通する連通チャンバとから構成す
ると共に、この連通チャンバと前記各共鳴チャンバ間の
隔壁に形成した連通部に開閉弁を設けて、それら開閉弁
の開弁状態では前記一対の共鳴チャンバ及び連通チャン
バの三者により1つの慣性過給分配チャンバを形成し、
前記分配管の中間部を前記連通チャンバに接続し、その
接続部に前記分配管の実質的長さを可変とする管長切換
弁を装着し、機関の低速運転状態では前記開閉弁及び管
長切換弁を共に閉弁状態に制御し、また機関の中速運転
状態では前記開閉弁を開弁状態に、前記管長切換弁を閉
弁状態にそれぞれ制御し、更に機関の高速運転状態では
前記開閉弁及び管長切換弁を共に開弁状態に制御するこ
とを特徴としており、多気筒内燃機関、吸気系への燃料
供給手段はその形式を問わない。B. Configuration of the Invention (1) Means for Solving the Problems According to the present invention, in order to achieve the above object, the inside of the resonance chamber collecting box is divided into a pair of resonance chambers, and each resonance chamber has an upstream side thereof. In the intake passage of a multi-cylinder internal combustion engine, the resonance passage communicating with the outside air, the downstream side of which communicates with a cylinder group whose intake stroke is not continuous via distribution pipes capable of switching the pipe length, respectively, in the resonance chamber collecting box, It is composed of a pair of resonance chambers and a communication chamber adjacent to and in communication with each of the pair of resonance chambers, and an opening / closing valve is provided in a communication section formed in a partition wall between the communication chamber and each of the resonance chambers. In the open state of the on-off valve, one inertia supercharging distribution chamber is formed by the three of the pair of resonance chambers and the communication chamber.
An intermediate portion of the distribution pipe is connected to the communication chamber, and a pipe length switching valve that makes the substantial length of the distribution pipe variable is attached to the connection portion, and the opening / closing valve and the pipe length switching valve are installed in a low speed operation state of the engine. Are both controlled to be in a closed state, the open / close valve is controlled to be in an open state and the pipe length switching valve is controlled to be in a closed state in a medium speed operation state of the engine. Both of the pipe length switching valves are controlled to be in an open state, and the fuel supply means to the multi-cylinder internal combustion engine and the intake system may be of any type.
(2) 作用 前記構成によれば、機関の低速運転域では開閉弁の閉弁
制御により各共鳴チャンバと連通チャンバ間の連通が遮
断されるとともに、管長切換弁の閉弁制御により各共鳴
チャンバと左,右気筒群は分配管の全長を介して接続さ
れ、以て吸気干渉の生じない2系統の共鳴過給系が構成
される。また機関の中速運転域では、開閉弁の開弁制御
により一対の共鳴チャンバと連通チャンバの3者が一体
に連通されて大容積の慣性過給分配チャンバが形成さ
れ、前記2系統の共鳴過給系がキャンセルされて慣性過
給系が構成される。更に機関の高速運転域では管長切換
弁が開弁制御されて分配管の中間部が前記慣性過給分配
チャンバに短絡され、固有振動数の更に小さい慣性過給
系が構成される。(2) Operation According to the above configuration, in the low speed operation region of the engine, the communication between the resonance chambers and the communication chambers is blocked by the valve closing control of the opening / closing valve, and the resonance chambers are connected by the valve closing control of the pipe length switching valve. The left and right cylinder groups are connected through the entire length of the distribution pipe, thus forming two resonance supercharging systems in which intake interference does not occur. Further, in the medium speed operation range of the engine, the pair of resonance chambers and the communication chamber are integrally connected by the valve opening control of the opening / closing valve to form a large volume inertial supercharging distribution chamber, and the resonance excess of the two systems is set. The feeding system is canceled and the inertia supercharging system is constructed. Further, in the high speed operation region of the engine, the pipe length switching valve is controlled to be opened so that the intermediate portion of the distribution pipe is short-circuited to the inertia supercharging distribution chamber, thereby forming an inertia supercharging system having a smaller natural frequency.
そして、個々の共鳴チャンバの容積を機関の低速運転域
において最適の共鳴過給効果が得られる容積に設定して
も、開閉弁の開弁制御によって形成される慣性過給分配
チャンバの容積は、連通チャンバの容積を適宜選択する
ことにより各共鳴チャンバの容積とは別異の、しかも各
共鳴チャンバの容積をも包含した任意の大容積に設定す
ることができるため、この慣性過給分配チャンバの容積
を機関の中,高速運転域において最適の慣性過給効果が
得られる値に設定することができると共に、斯かる慣性
過給系の固有振動数を中速運転域と高速運転域とで的確
に切換制御することができ、これにより機関の広い運転
域おいて高い慣性過給効果が発揮される。Then, even if the volume of each resonance chamber is set to a volume at which the optimum resonance supercharging effect is obtained in the low speed operation range of the engine, the volume of the inertia supercharging distribution chamber formed by the valve opening control of the opening / closing valve is By appropriately selecting the volume of the communication chamber, it is possible to set an arbitrary large volume different from the volume of each resonance chamber and also including the volume of each resonance chamber. The volume can be set to a value that provides the optimum inertia supercharging effect in the engine in the high speed operating range, and the natural frequency of such an inertia supercharging system can be accurately set in the medium speed operating range and the high speed operating range. It is possible to control the changeover to, and thereby a high inertia supercharging effect is exhibited in a wide operating range of the engine.
そして上記一対の共鳴チャンバと連通チャンバとを共通
の共鳴チャンバ集合ボックスに形成して、各共鳴チャン
バの容積を慣性過給分配チャンバの一部容積として有効
に利用できるようにした上、その共鳴チャンバ集合ボッ
クス内に開閉弁を配設したことで、全体として吸気系の
寸法がコンパクトになる。The pair of resonance chambers and the communication chamber are formed in a common resonance chamber assembly box so that the volume of each resonance chamber can be effectively used as a partial volume of the inertial supercharging distribution chamber. By disposing the on-off valve in the collecting box, the size of the intake system becomes compact as a whole.
(3) 実施例 以下、図面により本考案をV型6気筒内燃機関に実施し
た場合の実施例について説明する。(3) Embodiment An embodiment in which the present invention is applied to a V-type 6-cylinder internal combustion engine will be described below with reference to the drawings.
第1〜5図は本考案の一実施例を示すもので、第1図は
本考案装置を備えたV型6気筒内燃機関の要部縦断面
図、第2図はそのシリンダブロックの平面図、第3図
は、第1図III−III線に沿う拡大部分平面図、第4図
は、第3図IV−IV線に沿う断面図、第5図は、第4図V
−V線に沿う断面図である。1 to 5 show an embodiment of the present invention. FIG. 1 is a longitudinal sectional view of a V type 6 cylinder internal combustion engine equipped with the device of the present invention, and FIG. 2 is a plan view of the cylinder block. FIG. 3 is an enlarged partial plan view taken along the line III-III in FIG. 1, FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 3, and FIG.
It is sectional drawing which follows the -V line.
第1,2図において、前記6気筒内燃機関の機関本体E
は、互いにV字型に配設される一対の左,右機関ブロッ
クBl,Brを備えており、左,右機関ブロックBl,Brは、そ
れぞれシリンダブロック1,1rと、そのデッキ面に接
合されるシリンダヘッド2l、2rとを備えており、左側シ
リンダブロック1には3つの左側気筒3lが直列に形成
され、また右側シリンダブロック1rにも、3つの気筒3r
が直列に形成されている。左側の3つの気筒3lは吸気行
程の連続しない、すなわち後述の吸気弁10がオーバラッ
プしない左側気筒群Clを構成し、また右側の3つの気筒
3rも吸気行程の連続しない、すなわち後述の吸気弁10が
オーバラップしない右側気筒群Crを構成している。In FIGS. 1 and 2, the engine body E of the 6-cylinder internal combustion engine is shown.
Is equipped with a pair of left and right engine blocks Bl, Br which are arranged in a V shape with each other. The left and right engine blocks Bl, Br are respectively joined to the cylinder blocks 1, 1r and their deck surfaces. The left cylinder block 1 has three left cylinders 3l formed in series, and the right cylinder block 1r also has three cylinders 3r.
Are formed in series. The three cylinders 3l on the left side constitute a left cylinder group Cl in which the intake stroke is not continuous, that is, the intake valve 10 described later does not overlap, and the three cylinders on the right side.
3r also constitutes a right-side cylinder group Cr in which the intake stroke is not continuous, that is, the intake valve 10 described later does not overlap.
前記左,右気筒3l,3rには、それぞれ通常のようにピス
トン4が摺動自在に嵌合され、これらのピストン4はコ
ンロッド5を介してクランク軸6に連動される。また前
記左,右シリンダヘッド2l,2rには、それぞれピストン
4に対面する燃焼室7および該燃焼室7に連通する吸,
排気ポート8,9が形成され、各吸気ポート8には、該ポ
ート8が開閉する吸気弁10がそれぞれ設けられ、また各
排気ポート9には、該ポート9を開閉する排気弁11がそ
れぞれ設けられる。そして吸,排気弁10,11は従来公知
の動弁機構12により所定のタイミングを以て開閉作動さ
れる。Pistons 4 are slidably fitted in the left and right cylinders 3l and 3r as usual, and these pistons 4 are interlocked with a crankshaft 6 via a connecting rod 5. Further, the left and right cylinder heads 2l, 2r are respectively provided with a combustion chamber 7 facing the piston 4 and a suction chamber communicating with the combustion chamber 7.
Exhaust ports 8 and 9 are formed, each intake port 8 is provided with an intake valve 10 that opens and closes the port 8, and each exhaust port 9 is provided with an exhaust valve 11 that opens and closes the port 9. To be The intake / exhaust valves 10 and 11 are opened / closed at a predetermined timing by a conventionally known valve operating mechanism 12.
前記左,右シリンダヘッド2l,2rの複数の吸気ポート8
には、後に詳述する吸気系Inが接続され、また左,右シ
リンダヘッド2l,2rの複数の排気ポート9には従来公知
の排気系(図示せず)が接続される。Intake ports 8 of the left and right cylinder heads 2l, 2r
Is connected to an intake system In which will be described in detail later, and a conventionally known exhaust system (not shown) is connected to the plurality of exhaust ports 9 of the left and right cylinder heads 2l and 2r.
次に第2〜5図を参照して前記吸気系Inの構成を詳細に
説明すると、この吸気系Inは前記左,右シリンダブロッ
ク1,1r間のV空間C内に配設され、エアクリーナAc
と、このエアクリーナAcの出口に接続される吸気通路Pi
と、該吸気通路Piの下流端に接続される、左,右一対の
共鳴チャンバCr−l,Cr−rおよび連通チャンバCsを有す
る共鳴チャンバ集合ボックスBgと、前記左,右シリンダ
ブロック1,1rの、吸気ポート8が開口される端面に
接合されて前記左,右共鳴チャンバCr−l,Cr−rと、
右,左気筒群Cr,Clとをそれぞれ連通する後述の吸気マ
ニホールドMiとよりなる。Next, the structure of the intake system In will be described in detail with reference to FIGS. 2 to 5. The intake system In is arranged in the V space C between the left and right cylinder blocks 1 and 1r, and the air cleaner Ac
And the intake passage Pi connected to the outlet of this air cleaner Ac.
And a resonance chamber assembly box Bg connected to the downstream end of the intake passage Pi and having a pair of left and right resonance chambers Cr-l, Cr-r and a communication chamber Cs, and the left and right cylinder blocks 1, 1r. Of the left and right resonance chambers Cr-l, Cr-r, which are joined to the end surface where the intake port 8 is opened,
It consists of an intake manifold Mi, which will be described later, that communicates with the right and left cylinder groups Cr and Cl, respectively.
前記吸気通路Piは、第3図に示すようにエアクリーナAc
に連なる吸気通路14の下流端にスロットルボディ15をボ
ルト16で一体に接続して構成される。吸気通路14はエア
クリーナAcからの吸気を吸入すべく中空筒状に形成さ
れ、スロットルボディ15の内部には操作部19によって開
閉制御されるスロットル弁20が設けられる。スロットル
ボディ15の下流端には共鳴チャンバ集合ボックスBgがボ
ルト17を以て一体に接続される。The intake passage Pi is provided with an air cleaner Ac as shown in FIG.
A throttle body 15 is integrally connected with a bolt 16 at the downstream end of an intake passage 14 connected to. The intake passage 14 is formed in a hollow cylindrical shape so as to suck the intake air from the air cleaner Ac, and inside the throttle body 15, a throttle valve 20 controlled to be opened and closed by an operating portion 19 is provided. A resonance chamber collecting box Bg is integrally connected to the downstream end of the throttle body 15 with a bolt 17.
前記共鳴チャンバ集合ボックスBgは、前記スロットルボ
ディ15に接続する概略直方体状の上面開放の集合ボック
ス本体21と、その開放上面にボルト23を以て気密に被着
される蓋体22とより構成され、前記集合ボックス本体21
は後述する吸気マニホールドMiと一体に形成されてい
る。The resonance chamber collecting box Bg is composed of a collecting box body 21 having a substantially rectangular parallelepiped upper surface that is connected to the throttle body 15, and a lid 22 that is hermetically attached to the opening upper surface with a bolt 23. Assembly box body 21
Is integrally formed with an intake manifold Mi described later.
第3〜5図に明瞭に示すように前記共鳴チャンバ集合ボ
ックスBgは機関のクランク軸6方向、すなわち該ボック
スBg内を流れる吸気の流れ方向に沿って延びる2枚の隔
壁24l,24rによって互いに並列する左,右共鳴チャンバC
r−l,Cr−rと該共鳴チャンバCr−l,Cr−rの間に位置
する連通チャンバCsに仕切られている。そして、この
左,右共鳴チャンバCr−l,Cr−rの上流端には前記スロ
ットルボディ15との接続部から左右に分岐する一対の共
鳴通路18l,18rの下流端がそれぞれ連通している。As clearly shown in FIGS. 3 to 5, the resonance chamber collecting box Bg is arranged in parallel with each other by two partition walls 24l, 24r extending along the direction of the crankshaft 6 of the engine, that is, the flow direction of intake air flowing in the box Bg. Left and right resonance chamber C
It is partitioned into a communication chamber Cs located between r-1 and Cr-r and the resonance chambers Cr-1 and Cr-r. The left and right resonance chambers Cr-l, Cr-r are connected at their upstream ends to the downstream ends of a pair of resonance passages 18l, 18r branching left and right from the connecting portion with the throttle body 15, respectively.
前記2枚の隔壁24l,24rには左,右共鳴チャンバCr−l,C
r−rと連通チャンバCsを連通し、あるいはその連通を
遮断する開閉弁25l,25rが設けられる。すなわち両隔壁2
4l,24rには四角形状の弁口26l,26rが開口されるととも
に、前記隔壁24l,24rに沿って挿着された回転自在な弁
軸27l,27rが前記弁口26l,26rの中央部を貫通している。
そしてこの弁軸27l,27rには、前記弁口26l,26rに設けら
れる矩形板状の弁体28l,28rがビス30を以て固着され
る。弁軸27l,27rの一端は集合ボックス本体21の後端壁
を貫通してその外部に突出しており、その突出端には、
従来公知のアクチュエータ29が連結されている。このア
クチュエータ29は機関の運転状態に応じて作動制御さ
れ、前記開閉弁25l,25rを開閉制御するようになってお
り、機関の低速運転時には開閉弁25l,25rを閉成し、ま
たその中速および高速運転時には開閉弁25l,25rを開放
制御する。The two partition walls 24l and 24r have left and right resonance chambers Cr-l and C, respectively.
On-off valves 25l, 25r are provided for connecting or disconnecting r-r and the communication chamber Cs or for blocking the communication. Ie both partitions 2
Square valve openings 26l, 26r are opened in 4l, 24r, and rotatable valve shafts 27l, 27r inserted along the partition walls 24l, 24r connect the central portions of the valve openings 26l, 26r. Penetrates.
Then, rectangular plate-shaped valve bodies 28l, 28r provided in the valve openings 26l, 26r are fixed to the valve shafts 27l, 27r with screws 30. One ends of the valve shafts 27l, 27r penetrate the rear end wall of the collecting box body 21 and project to the outside, and the projecting ends thereof are
A conventionally known actuator 29 is connected. This actuator 29 is operated and controlled according to the operating state of the engine to open / close the on-off valves 25l, 25r, and closes the on-off valves 25l, 25r during low-speed operation of the engine, and at the medium speed. The open / close valves 25l and 25r are controlled to open during high-speed operation.
そして、前記開閉弁25l,25rが閉成したときの左,右共
鳴チャンバCr−l,Cr−rの容積は、機関の低速運転域に
おいて最適な共鳴過給効果が得られる容積に設定され
る。また、前記連通チャンバCsの容積は、開閉弁25l,25
rが開放制御されて左,右共鳴チャンバCr−l,Cr−rと
連通チャンバCsの3者が一体に連通して第4図二点鎖線
で示される大なる容積の慣性過給分配チャンバChが形成
されたとき、この慣性過給分配チャンバChの容積が機関
の中,高速運転域において最適な慣性過給効果が得られ
る容積となるように設定される。Then, the volumes of the left and right resonance chambers Cr-l, Cr-r when the on-off valves 25l, 25r are closed are set to volumes that can obtain an optimum resonance supercharging effect in the low speed operation range of the engine. . Further, the volume of the communication chamber Cs is equal to the open / close valves 25l, 25
When r is controlled to be opened, the left and right resonance chambers Cr-l, Cr-r and the communication chamber Cs are integrally connected to each other, and the inertial supercharging distribution chamber Ch having a large volume shown by the two-dot chain line in FIG. Is formed, the volume of the inertial supercharging distribution chamber Ch is set so that an optimum inertial supercharging effect can be obtained in the high speed operation region in the engine.
前記左,右共鳴チャンバCr−l,Cr−rの隔壁24l,24rに
は、その長手方向に沿ってそれぞれ3つの左,右排出ポ
ート34l,34rが開口される。そして左側共鳴チャンバCr
−lの3つの排出ポート34lは、後述する吸気マニホー
ルドMiを介して左側共鳴チャンバCr−lとは反対側に位
置する右側シリンダブロック1rの3つの気筒3r(吸気順
序が連続しない)にそれぞれ連通され、同じく右側共鳴
チャンバCr−rの3つの排出ポート34rは、後述する吸
気マニホールドMiを介して右側共鳴チャンバCr−rとは
反対側に位置する左側シリンダブロック1の3つの気
筒3l(吸気順序が連続しない)にそれぞれ連通される。The left and right resonance chambers Cr-1 and Cr-r have three left and right exhaust ports 34l and 34r, respectively, formed in the partition walls 24l and 24r along the longitudinal direction thereof. And the left resonance chamber Cr
The three -l exhaust ports 34l communicate with the three cylinders 3r (the intake order is not continuous) of the right cylinder block 1r located on the opposite side of the left resonance chamber Cr-l via an intake manifold Mi described later. Similarly, the three exhaust ports 34r of the right side resonance chamber Cr-r are connected to three cylinders 3l of the left side cylinder block 1 (intake sequence Are not continuous).
前記吸気マニホールドMiは第1,4図に示すように中央に
おいてX字状に交差する6本の第1〜第6分配管351〜3
66が左,右共鳴チャンバCr−l,Cr−rの長手方向と略直
交する方向に一体に並設されて交互に逆方向に交差して
左右にのびており、これらのうち一つ置きの3つの第2,
第4および第6分配管352,354および356の上流端は左側
共鳴チャンバCr−lの3つの排出ポート34lにそれぞれ
連通されたのち前記共鳴チャンバCr−lと反対側にのび
てそれらの下流端が右側シリンダブロック1rの3つの気
筒3rにそれぞれ連通され、また残りの、一つ置きの3つ
の第1,第3および第5分配管351,353および355の上流端
は右側共鳴チャンバCr−rの3つの排出ポート34rにそ
れぞれ連通されたのち前記共鳴チャンバCr−rと反対側
にのび、それらの下流端が左側シリンダブロック1の
3つの気筒3lにそれぞれ連通される。The intake manifold Mi has six first to sixth distribution pipes 35 1 to 3 intersecting in an X shape in the center as shown in FIGS.
6 6 are integrally juxtaposed in a direction substantially orthogonal to the longitudinal direction of the left and right resonance chambers Cr-l, Cr-r and alternately intersect in opposite directions and extend left and right. Three second,
The fourth and the upstream end of the sixth minute pipe 35 2, 35 4 and 35 6 they extend on the opposite side of the resonance chamber Cr-l after passed through respectively with the three exhaust ports 34l of the left resonance chamber Cr-l The downstream ends of the three are connected to the three cylinders 3r of the right cylinder block 1r, respectively, and the remaining upstream ends of every other three first, third and fifth distribution pipes 35 1 , 35 3 and 35 5 are After being connected to the three exhaust ports 34r of the right resonance chamber Cr-r, they extend to the opposite side of the resonance chamber Cr-r, and their downstream ends are connected to the three cylinders 3l of the left cylinder block 1, respectively.
第4,5図から明らかなように、共鳴チャンバ集合ボック
スBgの中央に位置する連通チャンバCsの下面は並設され
た6本の分配管351〜356によって閉鎖されており、左側
の共鳴チャンバCr−lからのびる3本の分配管352,354,
356の中間部は連通チャンバCsの右側下面と3本の分岐
通路362,364,366によって接続されるとともに、右側の
共鳴チャンバCr−rからのびる3本の分配管351,353,35
5の中間部は連通チャンバCsの左側下面と3本の分岐通
路361,363,365によって接続されている。そして前記分
岐通路361,363,365には左側の管長切換弁37lが、分岐通
路362,364,366には右側の管長切換弁37rが装着される。
すなわち吸気マニホールドMiの両側を貫通して回転自在
に支持された左右一対の弁軸38l,38rは、それぞれ分岐
通路361,363,365と分岐通路362,364,366の中央部を横切
り、その位置において各分岐通路361〜366を開閉する楕
円形形状の板体よりなる弁体391〜396がビス40を以て固
着されている。第3図から明らかなように、前記両弁軸
38l,38rの吸気マニホールドMiから突出する端部はアク
チュエータ41に接続されて管長切換弁37l,37rを開閉制
御するようになっており、機関の中速運転域以下では管
長切換弁37l,37rが閉弁制御され、高速運転域では開弁
制御されるようになっている。As is clear from FIGS. 4 and 5, the lower surface of the communication chamber Cs located in the center of the resonance chamber collecting box Bg is closed by the six distribution pipes 35 1 to 356 arranged in parallel, and the resonance on the left side Three distribution pipes extending from chamber Cr-1 35 2 , 35 4 ,
35 middle part of 6 is connected by a right lower surface and three branch passages 36 2, 36 4, 36 6 communicating chamber Cs, 3 distributing pipes 35 1, 35 extending from the right side of the resonance chamber Cr-r 3, 35
The middle part of 5 is connected to the lower left side of the communication chamber Cs by three branch passages 36 1 , 36 3 , 36 5 . A left pipe length switching valve 37l is installed in the branch passages 36 1 , 36 3 , 36 5 and a right pipe length switching valve 37r is installed in the branch passages 36 2 , 36 4 , 36 6 .
That is, the pair of left and right valve shafts 38l, 38r rotatably supported by penetrating both sides of the intake manifold Mi are the central portions of the branch passages 36 1 , 36 3 , 36 5 and the branch passages 36 2 , 36 4 , 36 6 , respectively. Valve bodies 39 1 to 39 6 formed of an elliptical plate body that crosses the portion and opens and closes the branch passages 36 1 to 36 6 at that position are fixed with screws 40. As is clear from FIG. 3, the both valve shafts
The ends of the 38l and 38r protruding from the intake manifold Mi are connected to the actuator 41 to control the opening and closing of the pipe length switching valves 37l and 37r.The pipe length switching valves 37l and 37r are The valve is controlled to be closed, and the valve is controlled to be opened in the high speed operation range.
なお第1図における符号42は第1〜第6分配管351〜356
の下流端の上壁にそれぞれ設けられる燃料噴射ノズル、
第4図における符号43、44はそれぞれEGRガス室および
ブローバイガス室を示している。The reference numeral 42 in FIG. 1 indicates the first to sixth distribution pipes 35 1 to 35 6
Fuel injection nozzles provided on the upper wall of the downstream end of the
Reference numerals 43 and 44 in FIG. 4 indicate an EGR gas chamber and a blow-by gas chamber, respectively.
次に本考案の実施例の作用について説明する。Next, the operation of the embodiment of the present invention will be described.
機関の運転状態に応じてアクチュエータ29が作動制御さ
れ、たとえばその低速運転状態では開閉弁25l,25rが閉
弁制御されてその弁口26l,26rを閉じ、左,右共鳴チャ
ンバCr−l,Cr−rの連通が遮断される。また管長切換弁
37l,37rも閉弁制御されて分岐通路361〜366を閉じ、分
配管351〜356と前記連通チャンバCsの連通が遮断され
る。この状態では気筒群別の共鳴通路18l,18rと、気筒
群別の左,右共鳴チャンバCr−l,Cr−rと、気筒群別の
左,右分配管351,352,353,354,355,356とからなる2系
統の吸気系、すなわち各3つの気筒3l,3rからスロット
ルボディ15の出口に至る吸気干渉の生じない2系統の共
鳴過給系が構成され、しかもその共鳴チャンバCr−l,Cr
−rの容積は、前記共鳴過給系の固有振動数が機関の低
速回転域での各吸気弁10の開閉周期と略一致するように
設定されているため、共鳴過給効果が有効に発揮されて
機関の低速回転域での体積効率が高められる。またスロ
ットル弁20下流の容積が小さくなるために圧力制御時の
応答性がよくなり、アイドル回転の制御が容易になる。The actuator 29 is actuated and controlled in accordance with the operating state of the engine. For example, in the low speed operating state, the on-off valves 25l and 25r are controlled to be closed to close the valve ports 26l and 26r, and the left and right resonance chambers Cr-l, Cr -R communication is cut off. Pipe length switching valve
37l, 37r be closed controlled closing the branch passage 36 1 to 36 6, communicating distributing pipes 35 1 to 35 6 and the communication chamber Cs is cut off. In this state, the resonance passages 18l, 18r for each cylinder group, the left and right resonance chambers Cr-l, Cr-r for each cylinder group, and the left and right distribution pipes 35 1 , 35 2 , 35 3 , for each cylinder group There are two intake systems consisting of 35 4 , 35 5 , and 35 6 , that is, two resonance supercharging systems that do not cause intake interference from each of the three cylinders 3l and 3r to the outlet of the throttle body 15, and The resonance chamber Cr-l, Cr
Since the volume of −r is set so that the natural frequency of the resonance supercharging system substantially coincides with the opening / closing cycle of each intake valve 10 in the low speed rotation range of the engine, the resonance supercharging effect is effectively exhibited. As a result, the volumetric efficiency in the low speed rotation range of the engine is improved. Further, since the volume downstream of the throttle valve 20 is reduced, the response during pressure control is improved, and the idle rotation control is facilitated.
一方、機関が中速運転状態に至れば、開閉弁25l,25rが
開弁制御されて、左,右共鳴チャンバCr−l,Cr−rと連
通チャンバCsは弁口26l,26rを介して一体に連通され、
大なる容積の慣性過給分配チャンバCh(第4図参照)を
形成し、該チャンバChは分配管351〜356の全長を介して
左,右の気筒3l,3rに共通に連通される。そしてこの状
態では、前記2系統の共鳴過給系がキャンセルされ、機
関吸気行程で生じる負圧波が前記大容積の慣性過給分配
チャンバChで反射、反転され、正圧波が各気筒3l,3rの
吸気ポート8に伝播されて慣性過給系が構成され、しか
も前記負圧波、および正圧波の伝播する通路長さが分配
管351〜356の長さのみとなり、吸気圧力周期を機関の中
速回転時の吸気弁10の開閉周期に一致させることができ
る。On the other hand, when the engine reaches the medium speed operation state, the on-off valves 25l, 25r are controlled to open, and the left and right resonance chambers Cr-l, Cr-r and the communication chamber Cs are integrated via the valve ports 26l, 26r. Connected to
Forming a large consisting volume of inertia supercharging distribution chamber Ch (see FIG. 4), the chamber Ch is communicated with the common left and right cylinder 3l, the 3r through the entire length of the distributor pipe 35 1-35 6 . Then, in this state, the two resonance supercharging systems are canceled, the negative pressure wave generated in the engine intake stroke is reflected and inverted by the large-capacity inertial supercharging distribution chamber Ch, and the positive pressure wave of each cylinder 3l, 3r. is propagated to the intake port 8 is configured inertial supercharging system, yet the negative pressure wave, and positive pressure wave propagated to passage length of is only the length of the distributor pipe 35 1-35 6, in the intake pressure cycle of the engine It is possible to match the opening / closing cycle of the intake valve 10 during high speed rotation.
機関が高速運転状態に到ると更に管長切換弁37l,37rが
開弁制御され、分配管351〜356の中間部が短い分岐通路
361〜366を介して連通チャンバCsに連通する。これによ
り分配管351〜356の実質的長さが分岐通路361〜366との
接続部の下流部分に短縮されて慣性過給系の固有振動数
が更に増加するとともに、分配管351〜356の上流部分も
慣性過給分配チャンバChの一部となってその容積が拡大
し、高速運転域における慣性過給効果が一層効果的に発
揮される。When the engine reaches the high-speed operation state, the pipe length switching valves 37l and 37r are further controlled to open, and the middle portion of the distribution pipes 35 1 to 35 6 has a short branch passage.
It communicates with the communication chamber Cs via 36 1 to 36 6 . Simultaneously the substantial length of the distributor pipe 35 1-35 6 increases branch passage 36 1 to 36 natural frequency of the is reduced inertia supercharging system downstream portion of the connection portion 6 is further distribution pipes 35 upstream portion of the 1-35 6 has expanded its volume becomes part of the inertia supercharging distribution chamber Ch, inertia supercharging effect in the high-speed operating range can be more effectively exhibited.
そして前記連通チャンバCsの容積を適宜設定することに
より機関の中速および高速回転域での慣性過給効果を高
めるに必要な慣性過給分配チャンバChの大なる容積を任
意に確保することができ、該運転域での慣性過給効果を
有効に発揮させ体積効率を高めることができる。By appropriately setting the volume of the communication chamber Cs, it is possible to arbitrarily secure a large volume of the inertia supercharging distribution chamber Ch necessary to enhance the effect of inertia supercharging in the medium speed and high speed rotation regions of the engine. The volumetric efficiency can be enhanced by effectively exerting the inertia supercharging effect in the operating range.
また共鳴チャンバ集合ボックスBgの内部には一対の共鳴
チャンバCr−l,Cr−rと連通チャンバCsが一体に形成さ
れ、しかもその隔壁24l,24rに開閉弁25l,25rが設けられ
るので、吸気系の構造が簡略化され、しかもその形状を
コンパクトに形成することができる。Further, a pair of resonance chambers Cr-l, Cr-r and a communication chamber Cs are integrally formed in the resonance chamber collecting box Bg, and the partition walls 24l, 24r are provided with open / close valves 25l, 25r. The structure can be simplified and the shape can be made compact.
C.考案の効果 以上のように本考案によれば、機関の低速運転域では、
開閉弁の閉弁制御により各共鳴チャンバと連通チャンバ
間の連通を遮断すると共に、管長切換弁の閉弁制御によ
り各共鳴チャンバと左,右気筒群間を分配管の全長を介
してそれぞれ接続して、吸気干渉の生じない2系統の共
鳴過給系が構成されるようにし、また機関の中速運転域
では、開閉弁の開弁制御により一対の共鳴チャンバと連
通チャンバの3者を一体に連通させて1個の大容積の慣
性過給分配チャンバが形成することにより、前記2系統
の共鳴過給系がキャンセルされて慣性過給系が構成され
るようにし、更に機関の高速運転域では、管長切換弁が
開弁制御されて分配管の中間部を前記慣性過給分配チャ
ンバに短絡させることにより、固有振動数の更に小さい
慣性過給系が構成されるようにしたので、個々の共鳴チ
ャンバの容積を機関の低速運転域において最適の共鳴過
給効果が得られる容積に設定しても、開閉弁の開弁制御
によって形成される慣性過給分配チャンバの容積は、連
通チャンバの容積を適宜選択することにより各共鳴チャ
ンバの容積とは別異の、しかも各共鳴チャンバの容積を
も包含した任意の大容積に設定することができ、従って
この慣性過給分配チャンバの容積を機関の中,高速運転
域において最適の慣性過給効果が得られる値に設定する
ことができると共に、斯かる慣性過給系の固有振動数を
中速運転域と高速運転域とで的確に切換制御することが
でき、これにより機関の広い運転域おいて高い慣性過給
効果が得られて体積効率を高めることができる。C. Effect of the Invention As described above, according to the present invention, in the low speed operation range of the engine,
The on-off valve closing control cuts off the communication between each resonance chamber and the communication chamber, and the pipe length switching valve closing control connects each resonance chamber to the left and right cylinder groups through the entire length of the distribution pipe. In this way, two resonance supercharging systems that do not cause intake interference are configured, and in the medium speed operation range of the engine, a pair of resonance chambers and communication chambers are integrated by controlling the opening and closing of the open / close valves. By forming one large-volume inertial supercharging distribution chamber in communication with each other, the resonance supercharging systems of the two systems are canceled to form the inertial supercharging system, and further, in the high-speed operating range of the engine. Since the pipe length switching valve is controlled to open and the intermediate portion of the distribution pipe is short-circuited to the inertia supercharging distribution chamber, an inertia supercharging system having a smaller natural frequency is configured, so that individual resonance Change the chamber volume Even if the volume is set to the optimum resonance supercharging effect in the low speed operation range, the volume of the inertial supercharging distribution chamber formed by the valve opening / closing control of the opening / closing valve is determined by appropriately selecting the volume of the communication chamber. The volume of the inertial supercharging distribution chamber can be set to an arbitrary large volume different from the volume of each resonance chamber and including the volume of each resonance chamber. It can be set to a value that provides the optimum inertia supercharging effect, and the natural frequency of such an inertia supercharging system can be appropriately switched and controlled between the medium speed operating range and the high speed operating range. In a wide operating range of the engine, a high inertia supercharging effect can be obtained and the volumetric efficiency can be improved.
そして、上記一対の共鳴チャンバと連通チャンバとを共
通の共鳴チャンバ集合ボックスに形成して、各共鳴チャ
ンバの容積を慣性過給分配チャンバの一部容積として有
効に利用できるようにした上、その共鳴チャンバ集合ボ
ックス内に開閉弁を配設したことで、全体として吸気系
の寸法がコンパクトになり、その構造の簡素化、延いて
はコスト節減に寄与することができる。The pair of resonance chambers and the communication chamber are formed in a common resonance chamber assembly box so that the volume of each resonance chamber can be effectively used as a partial volume of the inertial supercharging distribution chamber, and the resonance By disposing the on-off valve in the chamber collection box, the size of the intake system becomes compact as a whole, which can contribute to simplification of the structure and cost reduction.
第1〜5図は本考案の一実施例を示すもので、第1図は
本考案装置を備えたV型6気筒内燃機関の要部縦断面
図、第2図はそのシリンダブロックの平面図、第3図
は、第1図III-III線に沿う拡大部分平面図、第4図
は、第3図IV-IV線に沿う断面図、第5図は、第4図V
−V線に沿う断面図である。 Bg……共鳴チャンバ集合ボックス、Cl,Cr……気筒群、C
r−l,Cr−r……左,右共鳴チャンバ、Cs……連通チャ
ンバ、Ch……慣性過給分配チャンバ 18l,18r……共鳴通路、25l,25r……開閉弁、351〜356…
…分配管、37l,37r……管長切換弁1 to 5 show an embodiment of the present invention. FIG. 1 is a longitudinal sectional view of a V type 6 cylinder internal combustion engine equipped with the device of the present invention, and FIG. 2 is a plan view of the cylinder block. 3 is an enlarged partial plan view taken along line III-III in FIG. 1, FIG. 4 is a sectional view taken along line IV-IV in FIG. 3, and FIG.
It is sectional drawing which follows the -V line. Bg …… Resonance chamber assembly box, Cl, Cr …… Cylinder group, C
r-l, Cr-r ... left and right resonance chambers, Cs ... communication chamber, Ch ... inertia supercharging distribution chamber 18l, 18r ... resonance passage, 25l, 25r ... open / close valve, 35 1 to 35 6 …
… Distribution pipe, 37l, 37r …… Pipe length switching valve
Claims (1)
の共鳴チャンバ(Cr−l,Cr−r)に区画し、各共鳴チャ
ンバ(Cr−l,Cr−r)は、その上流側を外気に通じる共
鳴通路(18l,18r)に、その下流側を吸気行程が連続し
ない気筒群(Cl,Cr)に管長切換可能な分配管(351〜35
6)を介してそれぞれ各別に連通する多気筒内燃機関の
吸気装置において、 前記共鳴チャンバ集合ボックス(Bg)を、前記一対の共
鳴チャンバ(Cr−l,Cr−r)と、該一対の共鳴チャンバ
(Cr−l,Cr−r)のそれぞれに隣接、連通する連通チャ
ンバ(Cs)とから構成すると共に、この連通チャンバ
(Cs)と前記各共鳴チャンバ(Cr−l,Cr−r)間の隔壁
(24l,24r)に形成した連通部に開閉弁(25l,25r)を設
けて、それら開閉弁(25l,25r)の開弁状態では前記一
対の共鳴チャンバ(Cr−l,Cr−r)及び連通チャンバ
(Cs)の三者により1つの慣性過給分配チャンバ(Ch)
を形成し、前記分配管(351〜356)の中間部を前記連通
チャンバ(Cs)に接続し、その接続部に前記分配管(35
1〜356)の実質的長さを可変とする管長切換弁(37l,37
r)を装着し、機関の低速運転状態では前記開閉弁(25
l,25r)及び管長切換弁(37l,37r)を共に閉弁状態に制
御し、また機関の中速運転状態では前記開閉弁(25l,25
r)を開弁状態に、前記管長切換弁(37l,37r)を閉弁状
態にそれぞれ制御し、更に機関の高速運転状態では前記
開閉弁(25l,25r)及び管長切換弁(37l,37r)を共に開
弁状態に制御することを特徴とする、多気筒内燃機関の
吸気装置。1. A resonance chamber collecting box (Bg) is divided into a pair of resonance chambers (Cr-1, Cr-r), and each resonance chamber (Cr-1, Cr-r) has its upstream side exposed to the outside air. In the resonance passage (18l, 18r) leading to the pipe, distribution pipes (35 1 to 35) that can switch the pipe length on the downstream side to the cylinder group (Cl, Cr) whose intake stroke is not continuous
6 ) In the intake device of a multi-cylinder internal combustion engine, which communicates with each other separately, the resonance chamber collecting box (Bg) is provided with the pair of resonance chambers (Cr-l, Cr-r) and the pair of resonance chambers. (Cr-l, Cr-r), a communication chamber (Cs) adjacent to and communicating with each other, and a partition wall between the communication chamber (Cs) and the resonance chambers (Cr-l, Cr-r). An on-off valve (25l, 25r) is provided in the communication part formed in (24l, 24r), and when the on-off valve (25l, 25r) is open, the pair of resonance chambers (Cr-l, Cr-r) and One inertial supercharging distribution chamber (Ch) by the three communication chambers (Cs)
Forming a middle portion of the distribution pipe (35 1 to 35 6) connected to said communication chamber (Cs), said distribution pipe (35 to the connecting portion
1-35 6) pipe length switching valve substantial length and variable (37l, 37
r) is installed and the open / close valve (25
l, 25r) and the pipe length switching valve (37l, 37r) are both closed, and the open / close valve (25l, 25r)
r) is opened and the pipe length switching valve (37l, 37r) is controlled to be closed, and the open / close valve (25l, 25r) and pipe length switching valve (37l, 37r) are controlled when the engine is operating at high speed. An intake system for a multi-cylinder internal combustion engine, characterized in that both are controlled to open.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1989071421U JPH0729222Y2 (en) | 1989-06-19 | 1989-06-19 | Intake device for multi-cylinder internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1989071421U JPH0729222Y2 (en) | 1989-06-19 | 1989-06-19 | Intake device for multi-cylinder internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0310035U JPH0310035U (en) | 1991-01-30 |
JPH0729222Y2 true JPH0729222Y2 (en) | 1995-07-05 |
Family
ID=31608437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1989071421U Expired - Lifetime JPH0729222Y2 (en) | 1989-06-19 | 1989-06-19 | Intake device for multi-cylinder internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0729222Y2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59148438U (en) * | 1983-03-25 | 1984-10-04 | トヨタ自動車株式会社 | Intake system for multi-cylinder internal combustion engine |
JPH0322514Y2 (en) * | 1985-04-15 | 1991-05-16 | ||
JP2541964B2 (en) * | 1987-03-05 | 1996-10-09 | マツダ株式会社 | V-type engine intake device |
-
1989
- 1989-06-19 JP JP1989071421U patent/JPH0729222Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0310035U (en) | 1991-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0656104B2 (en) | Intake device for multi-cylinder internal combustion engine | |
JPS59194018A (en) | V-engine | |
JPH03286174A (en) | Intake device for v-type engine | |
JPH03281927A (en) | Air intake device of engine | |
US4989553A (en) | Air intake device of engine | |
JPH0729222Y2 (en) | Intake device for multi-cylinder internal combustion engine | |
EP0551209B1 (en) | Induction systems for internal combustion engines | |
JP2772674B2 (en) | Intake device for V-type multi-cylinder internal combustion engine | |
JP2748150B2 (en) | Intake device for multi-cylinder internal combustion engine | |
JPH0739812B2 (en) | Intake control method for V-type 6-cylinder internal combustion engine | |
JPH0752334Y2 (en) | Intake device for V-type multi-cylinder internal combustion engine | |
JPH02211369A (en) | Exhaust recirculation flow passage structure of multicylinder type internal combustion engine | |
JP2724750B2 (en) | Intake device for multi-cylinder internal combustion engine | |
JPH0649864Y2 (en) | Intake device for V-type multi-cylinder internal combustion engine | |
JP2808312B2 (en) | Valve Noise Prevention Method for Multi-Cylinder Internal Combustion Engine | |
JPH07102979A (en) | Variable intake device for internal combustion engine | |
JP2762112B2 (en) | Intake device for multi-cylinder internal combustion engine | |
JPH03926A (en) | Intake system for multicylinder internal combustion engine | |
JP2748148B2 (en) | Intake device for multi-cylinder internal combustion engine | |
JPH0758048B2 (en) | Intake device for multi-cylinder internal combustion engine | |
JPH06280576A (en) | Intake device of engine | |
JPS63215822A (en) | Intake device for v-type engine | |
JPH0629559B2 (en) | Multi-cylinder engine intake system | |
CA2017414A1 (en) | Air-cooled internal combustion engine having canted combustion chamber and integral crossover intake manifold | |
JPH0720344Y2 (en) | Multi-cylinder engine intake system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |