JPH07282800A - Negative electrode, manufacture thereof, and lithium secondary battery - Google Patents

Negative electrode, manufacture thereof, and lithium secondary battery

Info

Publication number
JPH07282800A
JPH07282800A JP6090643A JP9064394A JPH07282800A JP H07282800 A JPH07282800 A JP H07282800A JP 6090643 A JP6090643 A JP 6090643A JP 9064394 A JP9064394 A JP 9064394A JP H07282800 A JPH07282800 A JP H07282800A
Authority
JP
Japan
Prior art keywords
layer
negative electrode
alloy
lithium alloy
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6090643A
Other languages
Japanese (ja)
Inventor
Yoshinori Takada
善典 高田
Mitsuhiro Marumoto
光弘 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP6090643A priority Critical patent/JPH07282800A/en
Publication of JPH07282800A publication Critical patent/JPH07282800A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain an Li battery negative electrode excellent in performance by providing a diffusion barrier layer of a conductor hard to react to a liquid Li alloy onto a collector tape, thereon the wet promoting material layer to the liquid Li alloy and an affinity conductor, and thereon a melting plating quick cooling layer having thinner than specified and composed of the Li alloy. CONSTITUTION:The diffusion barrier layer 2 of a conductor hard to react to liquid Li alloy is provided on a collector tape 1. A wet promoting material layer 3 composed of the liquid Li alloy and an affinity conductor is provided on this layer 2 to promote the wet of the liquid Li alloy at the time of melting plating. A melting plating quick cooling layer 4, composed of the Li alloy and thinner than 59mum, is provided on the layer 3. That is, the quick cooling layer 4 can be formed and a negative electrode can be manufactured by a method, wherein the collector tape 1 thereon the diffusion barrier layer 2 and the wet promoting material layer 3 are provided is introduced into the melting plating bath of the Li alloy to quickly treat the coating layer of the plating, and the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充放電容量やエネルギ
ー密度、充放電のサイクル寿命等に優れるLi二次電
池、及びそのリチウム合金系の負極と製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Li secondary battery excellent in charge / discharge capacity, energy density, charge / discharge cycle life, and the like, and a lithium alloy-based negative electrode and a manufacturing method thereof.

【0002】[0002]

【従来の技術】非水電解液を用いたLi二次電池におい
て大面積の電極が充放電容量やエネルギー密度等の点よ
り有利であることからテープ状の電極が提案されてい
る。かかるテープ状の電極は、例えばセパレータを介し
た正・負極の捲回物などとして電池形成に用いられる。
2. Description of the Related Art Tape-like electrodes have been proposed in Li secondary batteries using non-aqueous electrolytes because large-area electrodes are advantageous in terms of charge / discharge capacity and energy density. Such a tape-shaped electrode is used for forming a battery, for example, as a positive and negative electrode wound product via a separator.

【0003】従来、前記におけるテープ状の負極として
は、集電体テープ上にLi−Al等のリチウム合金の粉末
をバインダー樹脂に分散させて塗布したもの、Li−Ag
やLi−Mg等の固溶体型リチウム合金の板を圧延してテ
ープ状としたもの、リチウムテープをSn-Cd合金メッ
キのNiエキスパンドメタルの圧延テープと圧着したも
のが知られていた。
Conventionally, as the above-mentioned tape-shaped negative electrode, a current collector tape in which a powder of a lithium alloy such as Li-Al is dispersed in a binder resin and applied, Li-Ag
It has been known that a solid solution type lithium alloy plate such as Li-Mg or the like is rolled into a tape shape, and a lithium tape is pressure-bonded with a Sn-Cd alloy plated Ni expanded metal rolling tape.

【0004】しかしながら、長さ方向における品質のバ
ラツキや凹凸化等の変形及び捲回時の活物質等の脱落等
に起因する不具合により、いずれの場合にも得られるL
i二次電池が充放電容量、エネルギー密度、及び充放電
のサイクル寿命に乏しく負極の大面積化による利点が充
分に発揮されない問題点があった。
However, L can be obtained in any case due to defects due to variations in quality in the length direction, deformation such as unevenness, and dropping of the active material and the like during winding.
There is a problem in that the secondary battery has poor charge / discharge capacity, energy density, and charge / discharge cycle life, and the advantages of increasing the area of the negative electrode cannot be fully exerted.

【0005】[0005]

【発明が解決しようとする課題】本発明は、テープ状物
などの大面積体として用いた場合にも充放電容量、エネ
ルギー密度、及び充放電のサイクル寿命に優れるLi二
次電池を形成でき、従って電極の大面積化による利点を
充分に活かしうるリチウム合金系の負極の開発を課題と
する。
The present invention can form a Li secondary battery having excellent charge / discharge capacity, energy density, and charge / discharge cycle life even when used as a large-area body such as a tape-like material. Therefore, it is an object to develop a lithium alloy-based negative electrode that can take full advantage of the large area of the electrode.

【0006】[0006]

【課題を解決するための手段】本発明は、集電体テープ
の上に、液体リチウム合金と反応しにくい導体からなる
拡散バリア層を有し、その拡散バリア層の上に液体リチ
ウム合金と親和性の導体からなる濡れ促進材層を有する
と共に、その濡れ促進材層の上にリチウム合金からなる
50μm厚以下の溶融メッキ急冷層を有することを特徴
とするLi二次電池用の負極、及び液体リチウム合金と
反応しにくい導体からなる拡散バリア層が表面を覆う集
電体テープを、その拡散バリア層の片面又は両面に液体
リチウム合金と親和性の導体からなる濡れ促進材層を設
けた状態で、リチウム合金の溶融メッキ浴に導入して前
記濡れ促進材層の上にリチウム合金のコーティング層を
50μm以下の厚さで形成後、そのコーティング層を急
冷処理することを特徴とするLi二次電池用の負極の製
造方法、並びに前記の負極を有することを特徴とするL
i二次電池を提供するものである。
According to the present invention, a diffusion barrier layer made of a conductor that does not easily react with a liquid lithium alloy is provided on a current collector tape, and the diffusion barrier layer is compatible with the liquid lithium alloy. Negative electrode for a Li secondary battery, which has a wetting promoting material layer made of a conductive conductor, and a hot-dip quenching layer made of a lithium alloy and having a thickness of 50 μm or less formed on the wetting promoting material layer, and a liquid. With a current collector tape covering the surface of a diffusion barrier layer made of a conductor that does not easily react with a lithium alloy, and a wetting promoting material layer made of a conductor having an affinity for the liquid lithium alloy provided on one or both sides of the diffusion barrier layer. A lithium alloy coating layer is introduced into a lithium alloy hot-dip bath to form a lithium alloy coating layer having a thickness of 50 μm or less on the wetting promoter layer, and then the coating layer is rapidly cooled. A method for producing a negative electrode for a Li secondary battery, and L comprising the above negative electrode
It provides a secondary battery.

【0007】[0007]

【実施態様の例示】集電体テープが銅、アルミニウム又
は銀のテープからなり、拡散バリア層がニッケル、コバ
ルト又は鉄からなり、濡れ促進材層が銀、銅、亜鉛、マ
グネシウム、アルミニウム、カルシウム、バリウム、ビ
スマス、インジウム、鉛、白金、パラジウム又はスズか
らなり、溶融メッキ急冷層が300℃/秒以上の冷却速
度で急冷処理されたものであり、拡散バリア層及び濡れ
促進材層の各厚さが0.01〜5μmであると共に、集
電体テープ及び溶融メッキ急冷層の各厚さが10〜30
μm及び10〜50μmであり、溶融メッキ急冷層を形成
するリチウム合金のリチウム含有量が原子比率に基づい
て80%以上であるLi二次電池用の負極。
Examples of Embodiments The current collector tape is made of copper, aluminum or silver, the diffusion barrier layer is made of nickel, cobalt or iron, and the wetting promoter layer is made of silver, copper, zinc, magnesium, aluminum or calcium. It is made of barium, bismuth, indium, lead, platinum, palladium or tin, and the hot-dip quenching layer is quenched at a cooling rate of 300 ° C./sec or more. Each thickness of the diffusion barrier layer and the wetting promoter layer Is 0.01 to 5 μm, and the thickness of the current collector tape and the hot-dip quenching layer is 10 to 30
and a lithium content of 10 to 50 μm, and the lithium content of the lithium alloy forming the hot-dip quenching layer is 80% or more based on the atomic ratio.

【0008】[0008]

【作用】本発明者らは、上記の課題を克服するために鋭
意研究を進めてきたが、高エネルギー密度、高充放電容
量、充放電の長サイクル寿命の同時実現には電極の大面
積化をさらに進めることが最も有効な方策であることを
究明し、負極活物質層の薄層化を試みることにした。
The present inventors have conducted extensive research to overcome the above-mentioned problems, but in order to simultaneously achieve high energy density, high charge / discharge capacity, and long cycle life of charge / discharge, the area of the electrode must be increased. It was clarified that it is the most effective measure to further proceed with, and decided to try to make the negative electrode active material layer thinner.

【0009】すなわち、負極活物質層の薄層化により電
池内における負極活物質量を増やすことなく電極を大面
積化でき、これにより電極面積の増加に伴いエネルギー
密度や充放電容量を増大でき、電流密度は低く押さえる
ことができて充電時のリチウム析出物が緻密な組織とな
り、充放電の長サイクル寿命が達成できる。さらに薄層
化により捲回工程にて負極活物質層に負荷される曲げ歪
を軽減でき、活物質層の剥離、変形等を解消できる、と
いう理由による。
That is, by thinning the negative electrode active material layer, the area of the electrode can be increased without increasing the amount of the negative electrode active material in the battery, and thus the energy density and the charge / discharge capacity can be increased with the increase of the electrode area. The current density can be suppressed to a low level, the lithium precipitate during charging has a dense structure, and a long cycle life of charge / discharge can be achieved. The reason is that the thinner layer can reduce bending strain applied to the negative electrode active material layer in the winding step, and can eliminate peeling and deformation of the active material layer.

【0010】しかし、上記した従来技術による負極の活
物質層の薄層化については、バインダー分散液ペースト
の塗布層の場合にはドクターブレード法にても目的の薄
層を均一性よく形成しにくく、固溶体型リチウム合金や
リチウムの場合には機械強度が低く、薄いテープへの圧
延が困難であった。
However, regarding the thinning of the active material layer of the negative electrode according to the above-mentioned conventional technique, in the case of the coating layer of the binder dispersion paste, it is difficult to form the target thin layer with good uniformity even by the doctor blade method. In the case of solid solution type lithium alloy and lithium, the mechanical strength was low and it was difficult to roll to a thin tape.

【0011】そのため本発明者らは更に鋭意研究を重ね
て、リチウムがリッチな条件下では活物質層の厚さを薄
くしても、ちなみに10〜50μm程度としても目的を
達成しうることを見出した。すなわち上記した本発明の
如く、活物質層をリチウム合金からなる50μm厚以下
の溶融メッキ層として形成することで、テープ状等の大
面積負極を容易に形成できて、充放電容量の向上をはか
ることができる。また従来技術の欠点である長さ方向に
おける品質のバラツキや凹凸化等の変形及び捲回時の活
物質層の脱落等がなく良好な導電性を発揮して充放電容
量、エネルギー密度に優れるLi二次電池を形成でき、
これにより電極の大面積化による利点を充分に活かしう
る負極を得ることができる。
Therefore, the inventors of the present invention have further conducted intensive studies and found that under a lithium-rich condition, the object can be achieved even if the thickness of the active material layer is thin, or even about 10 to 50 μm. It was That is, as in the present invention described above, by forming the active material layer as a hot-dip layer made of a lithium alloy and having a thickness of 50 μm or less, it is possible to easily form a large area negative electrode such as a tape and improve the charge / discharge capacity. be able to. In addition, Li, which is excellent in charge / discharge capacity and energy density, exhibits good conductivity without variations in quality in the length direction, deformation such as unevenness, and detachment of the active material layer during winding, which are drawbacks of the prior art. Can form a secondary battery,
This makes it possible to obtain a negative electrode that can take full advantage of the large area of the electrode.

【0012】さらに前記の溶融メッキ層を急冷処理して
急冷層とすることにより、結晶粒を微細化できて粒界の
占積率が多くなり、また格子欠陥濃度を増加できて原子
空孔が多くなる。リチウムの充放電を伴う吸放出は合金
内のリチウムの拡散で進行し、その拡散は結晶粒界にお
いて速く、結晶粒内では原子空孔が多いほど速く進行す
ることから、前記急冷処理による粒界占積率及び原子空
孔の増加でリチウムの拡散を促進でき、それによりリチ
ウムの吸放出が助長されてLi二次電池の充放電のサイ
クル寿命を向上させることができる。なおかかる特性の
長期持続は、結晶粒については充電時に析出するリチウ
ムが析出ベースとなる先の結晶構造と同じ構造をとる性
質があること、原子空孔については放電時のリチウムの
イオン化溶出により新たに原子空孔が形成されるため充
電時のリチウム析出で減量(空孔へのリチウムの入込
み)したとしても全体としては長期に存続し、かつ原子
空孔の濃度勾配に基づいて拡散平準化され溶融メッキ急
冷層内に均等に分散する性質があることによるものと考
えられる。
Further, by quenching the hot-dip plated layer to form a quenched layer, the crystal grains can be made finer and the space factor of the grain boundaries can be increased, and the lattice defect concentration can be increased so that the atomic vacancies can be formed. Will increase. The absorption / desorption associated with charge / discharge of lithium proceeds due to the diffusion of lithium in the alloy, and the diffusion is fast at the crystal grain boundaries, and the faster the number of atomic vacancies in the crystal grains, the faster the grain boundary by the quenching treatment. The increase of the space factor and the number of atomic vacancies can promote the diffusion of lithium, thereby facilitating the absorption and release of lithium and improving the cycle life of charge and discharge of the Li secondary battery. The long-term sustainability of such characteristics is that the crystal grains have the same structure as the previous crystal structure that becomes the deposition base for lithium that is deposited during charging, and the atomic vacancies are new due to ionization and elution of lithium during discharging. Since atomic vacancies are formed in the cell, even if the amount of lithium is reduced by lithium deposition during charging (lithium intrusion into the vacancies), it will continue to exist for a long time as a whole, and will be diffusion-leveled based on the concentration gradient of atomic vacancies. It is considered that this is due to the property of being evenly dispersed in the hot-dip quenching layer.

【0013】[0013]

【実施例】本発明の負極は、集電体テープの上に、液体
リチウム合金と反応しにくい導体からなる拡散バリア層
を有し、その拡散バリア層の上に液体リチウム合金と親
和性の導体からなる濡れ促進材層を有すると共に、その
濡れ促進材層の上にリチウム合金からなる50μm厚以
下の溶融メッキ急冷層を有するものであり、Li二次電
池の形成に用いるものである。
EXAMPLES A negative electrode of the present invention has a diffusion barrier layer made of a conductor that does not easily react with a liquid lithium alloy on a current collector tape, and a conductor having an affinity for the liquid lithium alloy on the diffusion barrier layer. And a hot-dip quenching layer having a thickness of 50 μm or less made of a lithium alloy on the wetting promoting material layer, which is used for forming a Li secondary battery.

【0014】本発明の負極を図1、図2に例示した。1
が集電体テープ、2が拡散バリア層、3が濡れ促進材
層、4がリチウム合金からなる溶融メッキ急冷層であ
る。図1、図2から明らかな如く、前記の溶融メッキ急
冷層等は集電体テープの両面に設けられていてもよい
し、片面に設けられていてもよい。
The negative electrode of the present invention is illustrated in FIGS. 1 and 2. 1
Is a current collector tape, 2 is a diffusion barrier layer, 3 is a wetting accelerator layer, and 4 is a hot-dip quenching layer made of a lithium alloy. As is clear from FIGS. 1 and 2, the hot-dip quenching layer and the like may be provided on both sides of the current collector tape or may be provided on one side.

【0015】本発明において集電体テープとしては、例
えば銅、アルミニウム、銀などの導電性に優れるものが
用いられる。集電体テープの厚さは、電極の使用目的等
に応じて適宜に決定され、一般には100μm以下、就
中、薄型化の点より5〜50μm、特に10〜30μmと
される。
In the present invention, as the current collector tape, one having excellent conductivity such as copper, aluminum or silver is used. The thickness of the current collector tape is appropriately determined according to the purpose of use of the electrode and the like, and is generally 100 μm or less, and in particular, 5 to 50 μm, particularly 10 to 30 μm from the viewpoint of thinning.

【0016】集電体テープの上に設ける拡散バリア層
は、集電体テープが溶融メッキ時にリチウム等の液体リ
チウム合金ないしその成分に侵食されるのを防止する機
能を果たす。拡散バリア層がない場合、前記の集電体材
料は液体リチウム合金と急速に反応して半溶融状態とな
り、集電体テープは短時間のうちに破断しやすくなる。
また溶融メッキ急冷層中のリチウム等のリチウム合金成
分が徐々に浸透して集電体テープの電気抵抗を増大さ
せ、電池の内部抵抗を高くする。
The diffusion barrier layer provided on the current collector tape functions to prevent the current collector tape from being eroded by the liquid lithium alloy such as lithium or its components during hot dipping. In the absence of the diffusion barrier layer, the current collector material described above reacts rapidly with the liquid lithium alloy into a semi-molten state, and the current collector tape easily breaks in a short time.
Further, the lithium alloy component such as lithium in the hot-dip quenching layer gradually penetrates to increase the electric resistance of the current collector tape and increase the internal resistance of the battery.

【0017】従って拡散バリア層の形成には、例えばニ
ッケルやコバルト、鉄などの液体リチウム合金ないしそ
の成分と反応しにくい適宜な導体を用いることができ
る。その形成は、例えば電気メッキ方式、無電解メッキ
方式、物理的ないし化学的蒸着方式などの適宜な方式で
行うことができる。拡散バリア層の厚さは、0.01〜
5μm、就中0.05〜1μmが好ましい。その厚さが
0.01μm未満ではボイドやピンホール等の欠陥が発
生しやすくなり、5μmを超えると集電体テープの電気
抵抗が高くなりやすい。
Therefore, for the formation of the diffusion barrier layer, for example, a liquid lithium alloy such as nickel, cobalt, or iron, or an appropriate conductor which does not easily react with its components can be used. The formation can be performed by an appropriate method such as an electroplating method, an electroless plating method, and a physical or chemical vapor deposition method. The thickness of the diffusion barrier layer is 0.01 to
5 μm, preferably 0.05 to 1 μm. If the thickness is less than 0.01 μm, defects such as voids and pinholes are likely to occur, and if it exceeds 5 μm, the electrical resistance of the current collector tape tends to increase.

【0018】拡散バリア層の上に設ける濡れ促進材層
は、溶融メッキ時における液体リチウム合金の濡れを促
進し、平坦かつ均一な膜厚の負極活物質層が形成されや
すくすることを目的とする。従って濡れ促進材層の形成
には、液体リチウム合金ないしその成分と親和性の適宜
な導体、好ましくは液体リチウム合金ないしその成分と
反応しやすくてその化学親和性に優れるものを用いう
る。その例としては銀、銅、亜鉛、マグネシウム、アル
ミニウム、カルシウム、バリウム、ビスマス、インジウ
ム、鉛、白金、パラジウム、スズなどがあげられる。
The wetting promoting material layer provided on the diffusion barrier layer aims to promote wetting of the liquid lithium alloy during hot dipping and facilitate formation of a flat negative electrode active material layer having a uniform thickness. . Therefore, for the formation of the wetting promoting material layer, a conductor having an appropriate affinity with the liquid lithium alloy or its component, preferably a liquid lithium alloy or its component that easily reacts and has an excellent chemical affinity can be used. Examples thereof include silver, copper, zinc, magnesium, aluminum, calcium, barium, bismuth, indium, lead, platinum, palladium and tin.

【0019】濡れ促進材層を設けない場合には、溶融メ
ッキによるコーティングが不能となるか、均一厚のリチ
ウム合金コーティング層が形成されにくく、凹凸化など
電極の表面性状が悪化しやすく、また50μm厚以下の
薄層を形成しにくくなる。濡れ促進材層の形成は、例え
ば電気メッキ方式や物理的ないし化学的蒸着方式などの
適宜な方式で行うことができ、その厚さは、0.01〜
5μm、就中0.1〜1μmが好ましい。濡れ促進材層の
厚さが0.01μm未満では液体リチウム合金の濡れ促
進効果に乏しく、5μmを超えると負極活物質層の不純
物として作用して充放電容量や起電力等を低下させる場
合がある。
When the wetting promoting material layer is not provided, the coating by hot dipping becomes impossible, or the lithium alloy coating layer having a uniform thickness is difficult to be formed, and the surface property of the electrode is easily deteriorated due to unevenness, and the thickness is 50 μm. It becomes difficult to form a thin layer having a thickness equal to or less than that. The wetting promoting material layer can be formed by an appropriate method such as an electroplating method or a physical or chemical vapor deposition method, and has a thickness of 0.01 to
5 μm, preferably 0.1 to 1 μm. When the thickness of the wetting promoter layer is less than 0.01 μm, the wetting promoting effect of the liquid lithium alloy is poor, and when it exceeds 5 μm, it may act as an impurity of the negative electrode active material layer to reduce charge / discharge capacity and electromotive force. .

【0020】濡れ促進材層の上に設ける溶融メッキ急冷
層は、リチウム合金で形成されて負極の活物質層となる
ものである。本発明においては50μm厚以下、就中5
〜25μm、特に10〜20μm厚とされる。
The hot-dip quenching layer provided on the wetting promoting material layer is formed of a lithium alloy and serves as the active material layer of the negative electrode. In the present invention, the thickness is 50 μm or less, especially 5
.About.25 .mu.m, especially 10 to 20 .mu.m.

【0021】溶融メッキ急冷層の形成、ひいては本発明
の負極の製造は、例えば拡散バリア層と濡れ促進材層を
設けた集電体テープをリチウム合金の溶融メッキ浴に導
入してそのコーティング層を形成したのち、そのコーテ
ィング層を急冷処理する方法などにより行うことができ
る。その際、図3、図4に例示の如く、拡散バリア層と
濡れ促進材層を有する長尺の集電体テープ5を溶融メッ
キ浴6に連続的に導入し通過させる連続方式や、所定長
さの集電体テープ10を溶融メッキ浴6に浸漬して取出
すバッチ方式などの適宜な製造方式を採用することがで
きる。なお、図3又は図4中の7は方向転換ロール、8
はコーティング厚調節手段、9は冷却ガスノズル、11
は錘である。
The formation of the quenching layer for hot dip plating, and thus the production of the negative electrode of the present invention, is carried out by, for example, introducing a current collector tape provided with a diffusion barrier layer and a wetting promoter layer into a hot dip bath of a lithium alloy to form the coating layer. After forming, the coating layer can be subjected to a quenching treatment or the like. At that time, as shown in FIGS. 3 and 4, a continuous method in which a long current collector tape 5 having a diffusion barrier layer and a wetting promoting material layer is continuously introduced into the hot dip plating bath 6 and passed through, or a predetermined length is used. Appropriate manufacturing methods such as a batch method in which the current collector tape 10 is soaked in the hot dip plating bath 6 and taken out can be adopted. In addition, 7 in FIG. 3 or FIG.
Is a coating thickness adjusting means, 9 is a cooling gas nozzle, 11
Is a weight.

【0022】溶融メッキ層の急冷は、所定厚としたコー
ティング層に対して行われる。急冷処理には、例えば所
定厚のコーティング層にアルゴンガスやヘリウムガス等
の冷却不活性ガスを吹き付ける方式などの適宜な方式を
とることができる。その場合、結晶粒の微細化等による
負極特性の向上などの点より300℃/秒以上の速度で
急冷させることが好ましい。かかる急冷は、冷却ガス等
の温度や供給量などの制御で容易に達成することができ
る。また室温での溶融メッキ層の凝固時間は通例2,3
秒程度であることから、300℃/秒以上の急冷処理を
達成する点よりは、必要に応じ厚さ調節手段を介して所
定のコーティング厚とした後、1秒以内に急冷処理する
ことが好ましい。
Quenching of the hot dip layer is performed on the coating layer having a predetermined thickness. For the rapid cooling treatment, an appropriate method such as a method of spraying a cooling inert gas such as argon gas or helium gas onto the coating layer having a predetermined thickness can be used. In that case, it is preferable to perform rapid cooling at a rate of 300 ° C./sec or more from the viewpoint of improving the negative electrode characteristics by making the crystal grains finer. Such rapid cooling can be easily achieved by controlling the temperature and supply amount of the cooling gas or the like. Also, the solidification time of the hot-dip layer at room temperature is usually 2 or 3
From the viewpoint of achieving a quenching treatment of 300 ° C./sec or more, it is preferable to perform a quenching treatment within 1 second after setting a predetermined coating thickness through the thickness adjusting means, if necessary. .

【0023】なお前記において冷却ガス等の急冷処理雰
囲気が、コーティング厚調節手段に及ぶと当該手段に集
電体テープが固着して断線したり、また所定厚とする前
にコーティング層が冷却すると厚さのバラツキ等の原因
となることなどから、図3や図4に例示の如く、急冷処
理雰囲気が所定厚とする前のコーティング層に及ばない
ようにすることが望ましい。冷却ガス等ではその供給方
向を制御し、役割を終えたものを吸引除去する方式など
によりかかる目的を容易に達成することができる。
In the above, when the quenching treatment atmosphere such as cooling gas reaches the coating thickness adjusting means, the current collector tape is fixed to the means to cause wire breakage, or the coating layer is cooled before the thickness becomes a predetermined thickness. It is desirable to prevent the quenching treatment atmosphere from reaching the coating layer before the predetermined thickness, as illustrated in FIGS. Such a purpose can be easily achieved by a method of controlling the supply direction of the cooling gas or the like and sucking and removing the gas that has finished its role.

【0024】溶融メッキ急冷層(コーティング層)の形
成に用いるリチウム合金としては、Liと、例えばAl、
Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、P
t、Sr、Teなどの金属との2元又は3元以上の合金
に、必要に応じてSi、Cd、Zn、La等を添加したもの
などがあげられ、公知物のいずれも用いうる。ちなみ
に、前記リチウム合金の具体例としては、例えばAl、
Bi、Sn又はIn等とLiとの金属間化合物などから
なるLi合金、LiとPbの合金にLa等を添加して機械
的特性を改善したもの、あるいはAg、Al、Mg、Z
n又はCaの少なくとも1種からなるX成分を含むLi
−X−Te系合金などがあげられる。
As the lithium alloy used for forming the hot-dip quenching layer (coating layer), Li and, for example, Al,
Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, P
Examples thereof include alloys of binary or ternary or more with metals such as t, Sr and Te, to which Si, Cd, Zn, La and the like are added, if necessary, and any known material can be used. Incidentally, as specific examples of the lithium alloy, for example, Al,
Li alloy composed of an intermetallic compound such as Bi, Sn or In and Li and Li, an alloy of Li and Pb with La added to improve mechanical properties, or Ag, Al, Mg, Z
Li containing an X component consisting of at least one of n and Ca
Examples include -X-Te based alloys.

【0025】リチウム合金におけるリチウム以外の成分
の含有量は、原子比に基づいて40%以下、就中5〜3
0%、特に10〜20%が好ましい。その含有量が40
%を超えると負極活物質としてのエネルギー密度の低下
が著しい場合があり、20%を超えると起電力が低下す
る場合がある。また5%未満では合金化による特性の改
善効果に乏しい場合がある。充放電のサイクル寿命、高
起電力性、高放電容量性、高エネルギー密度性などの点
より特に好ましく用いうるリチウム合金は、Li−Ag
−Te系合金からなるLi:Ag:Teの原子比が80
〜150:1〜20:0.001〜30のものなどであ
り、Liを80原子%以上含有するものである。
The content of the components other than lithium in the lithium alloy is 40% or less based on the atomic ratio, especially 5 to 3
0%, especially 10 to 20% is preferable. Its content is 40
If it exceeds 20%, the energy density of the negative electrode active material may significantly decrease, and if it exceeds 20%, the electromotive force may decrease. If it is less than 5%, the effect of improving the properties due to alloying may be poor. Li-Ag is a lithium alloy that can be particularly preferably used in terms of charge / discharge cycle life, high electromotive force, high discharge capacity, high energy density, and the like.
-The atomic ratio of Li: Ag: Te composed of a Te-based alloy is 80.
.About.150: 1 to 20: 0.001 to 30 and the like, and contains 80 atomic% or more of Li.

【0026】本発明の負極は、Li二次電池を形成する
ためのものであるが、形成するLi二次電池について
は、かかる負極を用いる点を除いて特に限定はなく、電
解質と正極を用いて従来に準じて行うことができる。従
ってLi二次電池の形態なども使用目的等に応じて適宜
に決定することができ、例えばコイン型やボタン型、あ
るいは捲回体型などのように、電解質含有の多孔質絶縁
膜を介して正極と負極を配置した形態等の適宜な形態と
することができる。ちなみに、図5にコイン型のものを
例示した。12,18は電池缶、13,17は集電用の
ニッケル板、14は負極、15は電解質層(多孔質絶縁
膜からなるセパレータ)、16は正極、19は絶縁封止
材である。
The negative electrode of the present invention is for forming a Li secondary battery, but the Li secondary battery to be formed is not particularly limited except that such a negative electrode is used, and an electrolyte and a positive electrode are used. Can be performed according to conventional methods. Therefore, the form of the Li secondary battery can be appropriately determined according to the purpose of use and the like. For example, like a coin type, a button type, or a wound type, a positive electrode is provided through a porous insulating film containing an electrolyte. A suitable form such as a form in which the negative electrode and the negative electrode are arranged can be adopted. Incidentally, the coin type is illustrated in FIG. Reference numerals 12 and 18 are battery cans, 13 and 17 are current collecting nickel plates, 14 is a negative electrode, 15 is an electrolyte layer (a separator made of a porous insulating film), 16 is a positive electrode, and 19 is an insulating sealing material.

【0027】電解質としては、Liイオンの移動を可能
とした適宜なものを用いることができる。その例として
は、塩類電解性ポリマーにリチウム塩を混合してなるも
のの如きポリマー電解質、無機Li固体電解質、ないし
それを樹脂中に分散させてなるものの如き固体電解質、
エステルやエーテル等の有機溶媒にリチウム塩を溶解さ
せてなる非水電解液系のものなどがあげられる。前記の
塩類電解性ポリマーの代表例としては、ポリエチレンオ
キシド、ポリホスファゼン、ポリアジリジン、ポリエチ
レンスルフィド、それらの誘導体や混合物、複合体など
があげられる。なお固体電解質の場合には、それが正・
負極間のセパレータを兼ねうる利点を有している。
As the electrolyte, it is possible to use an appropriate electrolyte capable of moving Li ions. Examples thereof include polymer electrolytes such as those obtained by mixing a lithium salt with a salt-electrolytic polymer, inorganic Li solid electrolytes, or solid electrolytes such as those obtained by dispersing it in a resin,
Examples include non-aqueous electrolyte-based electrolytes prepared by dissolving a lithium salt in an organic solvent such as ester or ether. Typical examples of the above salt-electrolytic polymers include polyethylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, their derivatives, mixtures and complexes. In the case of a solid electrolyte, it is
It has the advantage that it can also serve as a separator between the negative electrodes.

【0028】また前記有機溶媒の代表例としては、プロ
ピレンカーボネート、エチレンカーボネート、ジメチル
カーボネート、ジエチルカーボネート、テトラヒドロフ
ラン、2−メチルテトラヒドロフラン、ジメトキシエタ
ン、ジメチルスルホキシド、スルホラン、γ−ブチロラ
クトン、1,2−ジメトキシエタン、ジエチルエーテ
ル、1,3−ジオキソラン、蟻酸メチル、酢酸メチル、
N,N−ジメチルホルムアミド、アセトニトリル、それ
らの混合物などがあげられる。
Typical examples of the organic solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dimethylsulfoxide, sulfolane, γ-butyrolactone and 1,2-dimethoxyethane. , Diethyl ether, 1,3-dioxolane, methyl formate, methyl acetate,
Examples thereof include N, N-dimethylformamide, acetonitrile, a mixture thereof and the like.

【0029】リチウム塩の代表例としては、LiI、Li
CF3SO3、Li(CF2SO22、LiBF4、LiClO
4、LiAlCl4、LiPF4、LiPF6、LiAsF3、Li
AsF6などがあげられる。電解液におけるリチウム塩濃
度は0.1〜3モル/リットルが一般的であるが、これ
に限定されない。なお前記した非水電解液等の形成に際
しては、寿命や放電容量、起電力等の電池特性の向上な
どを目的として、必要に応じて2−メチルフラン、チオ
フェン、ピロール、クラウンエーテル、Li錯イオン形
成剤(大環状化合物等)などの有機添加物を添加するこ
ともできる。
Typical examples of lithium salts include LiI and Li
CF 3 SO 3 , Li (CF 2 SO 2 ) 2 , LiBF 4 , LiClO
4 , LiAlCl 4 , LiPF 4 , LiPF 6 , LiAsF 3 , Li
AsF 6 and the like. The concentration of lithium salt in the electrolytic solution is generally 0.1 to 3 mol / liter, but is not limited to this. In the formation of the above-mentioned non-aqueous electrolyte solution, 2-methylfuran, thiophene, pyrrole, crown ether, Li complex ions are added as necessary for the purpose of improving battery characteristics such as life, discharge capacity and electromotive force. It is also possible to add organic additives such as forming agents (such as macrocyclic compounds).

【0030】正極については、カーボンや金属系のも
の、共役系ポリマー等の有機導電性物質系のものなどの
適宜なものを用いることができる。前記金属系正極の例
としては、Liを含有する、Ti、Mo、Cu、Nb、
V、Mn、Cr、Ni、Co、P等の金属の複合酸化
物、硫化物、セレン化物などがあげられ、その代表的具
体例としては、MnO2、LiCoO2、LiwCo1-x-y
xy2+z(ただし、Mは1種又は2種以上の遷移金
属、wは0<w≦2、xは0≦x<1、yは0<y<
1、zは−1≦z≦4である。)、あるいはLiないし
Li・Coのリン酸塩及び/又はCoないしLi・Coの酸
化物を成分として1モルのLiあたり0.1モル以上の
Coと0.2モル以上のPを含有するものなどを活物質
とするものがあげられる。
As the positive electrode, an appropriate one such as carbon or metal type, or organic conductive substance type such as conjugated polymer can be used. Examples of the metal-based positive electrode include Li, Ti, Mo, Cu, Nb,
Examples thereof include complex oxides of metals such as V, Mn, Cr, Ni, Co and P, sulfides and selenides, and typical examples thereof include MnO 2 , LiCoO 2 , Li w Co 1-xy M.
x P y O 2 + z (where M is one or more transition metals, w is 0 <w ≦ 2, x is 0 ≦ x <1, y is 0 <y <
1 and z are −1 ≦ z ≦ 4. ), Or a phosphate containing Li to Li · Co and / or an oxide of Co to Li · Co and containing 0.1 mol or more of Co and 0.2 mol or more of P per 1 mol of Li. The active material is, for example.

【0031】なおシート状等の正極の形成は、例えば活
物質を必要に応じてアセチレンブラックやケッチェンブ
ラック等の導電材料、及びポリテトラフルオロエチレン
やポリエチレン、ポリフッ化ビニリデンやエチレン・プ
ロピレン・ジエン共重合体等の結着剤と共にキャスティ
ング方式や圧縮成形方式、ロール成形方式、ドクターブ
レード方式、各種の蒸着方式や圧延方式、熱間押出方式
などの適宜な方式で成形する方法などにより行うことが
できる。また正極シートは、集電体シートに正極材をバ
インダ樹脂による塗布付着等の適宜な方式で接着してな
る補強形態物として得ることもできる。
The sheet-shaped positive electrode is formed, for example, by using an active material, if necessary, a conductive material such as acetylene black or Ketjen black, and polytetrafluoroethylene, polyethylene, polyvinylidene fluoride, ethylene / propylene / diene. It can be performed by a method such as casting with a binder such as a polymer, a compression molding method, a roll molding method, a doctor blade method, various vapor deposition methods, rolling methods, hot extrusion methods and the like. . The positive electrode sheet can also be obtained as a reinforced form obtained by adhering the positive electrode material to the current collector sheet by an appropriate method such as coating and adhering with a binder resin.

【0032】一方、上記した正・負極間に介在させる多
孔質絶縁膜(セパレータ)としては、例えばポリプロピ
レン等からなる多孔性ポリマーフィルムやガラスフィル
ター、不織布などの適宜な多孔性素材を用いることがで
きる。電解質含有の多孔質絶縁膜の形成は、多孔質絶縁
膜に電解質ないし電解液を含浸させたり、充填する方
式、あるいは電池缶内に電解液等を充填する方式などの
適宜な方式で行うことができる。
On the other hand, as the porous insulating film (separator) interposed between the positive electrode and the negative electrode, an appropriate porous material such as a porous polymer film made of polypropylene or the like, a glass filter, a non-woven fabric or the like can be used. . The electrolyte-containing porous insulating film may be formed by an appropriate method such as a method of impregnating or filling the porous insulating film with an electrolyte or an electrolytic solution, or a method of filling the battery can with the electrolytic solution or the like. it can.

【0033】Li二次電池に対する充電は、一定電流を
連続して通電する方式のほか、適宜なパルス電源を用い
てパルス電流を供給する方式などによっても行うことが
できる。パルス電流による充電方式では、通電・停止が
繰り返されるため電解質の濃度変化が抑制されてデンド
ライトがより成長しにくい利点がある。
The Li secondary battery can be charged by a method of continuously supplying a constant current, or a method of supplying a pulse current by using an appropriate pulse power source. The charging method using a pulse current has the advantage that dendrites are less likely to grow because the concentration change of the electrolyte is suppressed because energization / stopping is repeated.

【0034】実施例1 幅41mm、厚さ10μmの長尺銅テープの両面に、ニッ
ケルを厚さ1μmで電気メッキした後、その上に銀を厚
さ0.8μmで電気メッキしてなる集電体テープを高純
度アルゴン雰囲気中にて、Li:Ag:Teの原子比が9
5:10:0.1のLi−Ag−Te系合金の溶融メッキ
浴(350℃)に2m/分の速度で連続的に導入し通過
させ、絞り治具にて両面におけるコーティング厚をそれ
ぞれ15μmに調節したのち、液体ボンベを介してアル
ゴンガスを吹き付けて300℃/秒以上の速度で急冷し
(図3)、負極テープを連続的に得た。
Example 1 A current collector formed by electroplating nickel with a thickness of 1 μm on both surfaces of a long copper tape having a width of 41 mm and a thickness of 10 μm, and then electroplating silver with a thickness of 0.8 μm thereon. Body tape in a high-purity argon atmosphere with a Li: Ag: Te atomic ratio of 9
It was continuously introduced into a 5-10: 0.1 Li-Ag-Te alloy hot-dip bath (350 ° C) at a speed of 2 m / min and passed through, and the coating thickness on both sides was 15 μm with a drawing jig. Then, argon gas was blown through the liquid cylinder to rapidly cool it at a rate of 300 ° C./sec or more (FIG. 3) to continuously obtain a negative electrode tape.

【0035】一方、炭酸リチウムと塩基性炭酸コバルト
とリン酸含有率85%のリン酸水溶液をLi:Co:P=
2:1.5:0.5の原子比で混合し、それをアルミナ
製坩堝に入れて900℃で24時間加熱処理し、リチウ
ムのリン酸塩とリチウム・コバルトのリン酸塩とコバル
ト酸化物の混合物(活物質)を形成し、それをボールミ
ルで粉砕して粒径20μm以下の粉末とした。次に、そ
の粉末46重量部、アセチレンブラック4重量部、ポリ
フッ化ビニリデン2重量部、及びN−メチルピロリドン
50重量部を混合し、それを幅38mm、長さ400mm、
厚さ20μmのアルミニウムテープの上に塗布し、真空
乾燥させて厚さ200μmの塗布層(正極層)を形成し
て正極テープを得た。
On the other hand, lithium carbonate, basic cobalt carbonate and an aqueous phosphoric acid solution having a phosphoric acid content of 85% are used as Li: Co: P =
It was mixed in an atomic ratio of 2: 1.5: 0.5, put in an alumina crucible and heat-treated at 900 ° C. for 24 hours to obtain lithium phosphate, lithium cobalt phosphate and cobalt oxide. Was formed into a mixture (active material) and was pulverized with a ball mill to obtain a powder having a particle size of 20 μm or less. Next, 46 parts by weight of the powder, 4 parts by weight of acetylene black, 2 parts by weight of polyvinylidene fluoride, and 50 parts by weight of N-methylpyrrolidone are mixed, and the mixture is 38 mm wide, 400 mm long,
It was coated on an aluminum tape having a thickness of 20 μm and vacuum dried to form a coating layer (positive electrode layer) having a thickness of 200 μm to obtain a positive electrode tape.

【0036】次に、前記した長さが400mmの負極テー
プと正極テープを、厚さ25μmの多孔質ポリプロピレ
ンフィルム(セパレータ)を介在させた状態で捲回して
電池缶に収納し3mlの電解液を注入して単3型の二次電
池を形成した。なお捲回物の断面積は電池缶内側の断面
積の約90%とし、電解液には1リットルのプロピレン
カーボネートに1モルのLiClO4を溶解させたものを
用いた。
Next, the negative electrode tape and the positive electrode tape having a length of 400 mm described above are wound with a porous polypropylene film (separator) having a thickness of 25 μm interposed therebetween, and the resulting product is housed in a battery can and 3 ml of an electrolytic solution is put therein. It was injected to form an AA type secondary battery. The cross-sectional area of the wound material was about 90% of the cross-sectional area inside the battery can, and the electrolyte used was 1 liter of propylene carbonate in which 1 mol of LiClO 4 was dissolved.

【0037】前記の二次電池について、100mAの充
電電流及び放電電流にて4.2V(充電)〜2.75V
(放電:充電後1時間放置)の間で充放電サイクルを3
00回繰返したのちの放電容量維持率(以下同じ)を調
べたところ、94%であった。なお1サイクル目の放電
容量は410mAhであった。
With respect to the above secondary battery, 4.2 V (charge) to 2.75 V at a charging current and a discharging current of 100 mA.
3 charge / discharge cycles between (Discharge: 1 hour after charging)
When the discharge capacity retention rate (hereinafter the same) after repeating 00 times was examined, it was 94%. The discharge capacity in the first cycle was 410 mAh.

【0038】実施例2 溶融メッキ速度、従って製造速度を20m/分としたほ
かは実施例1に準じて負極テープを得、それを用いてL
i二次電池を得た。その1サイクル目の放電容量は46
0mAhで、充放電サイクル300回後の放電容量維持
率は97%であった。
Example 2 A negative electrode tape was obtained in the same manner as in Example 1 except that the hot-dip plating rate, that is, the production rate was 20 m / min.
i got a secondary battery. The discharge capacity of the first cycle is 46
At 0 mAh, the discharge capacity retention rate after charging / discharging cycle 300 times was 97%.

【0039】比較例 溶融メッキ層を急冷処理せずに室温で凝固させて(2〜
3秒)負極テープを得、それを用いて実施例1に準じL
i二次電池を得た。その1サイクル目の放電容量は35
0mAhで、充放電サイクル300回後の放電容量維持
率は82%であった。
Comparative Example The hot dip plated layer was solidified at room temperature without quenching treatment (2 to
3 seconds) A negative electrode tape was obtained, and L was used according to Example 1
i got a secondary battery. The discharge capacity of the first cycle is 35
At 0 mAh, the discharge capacity retention rate after 300 charge / discharge cycles was 82%.

【0040】[0040]

【発明の効果】本発明によれば、厚さの均一性や表面の
平坦性、性状の均質性に優れ、活物質が脱落しにくくて
品質が安定し、強度に優れて捲回処理に有利な集電体テ
ープ付のテープ状等の大面積の負極を容易に得ることが
でき、充放電容量やエネルギー密度が大きく、充放電の
サイクル寿命に優れる高信頼性のLi二次電池を得るこ
とができる。
EFFECTS OF THE INVENTION According to the present invention, the thickness is uniform, the surface is flat, and the properties are uniform, the active material does not easily fall off, the quality is stable, and the strength is excellent, which is advantageous for winding treatment. To obtain a highly reliable Li secondary battery that can easily obtain a large area negative electrode such as a tape with a current collector tape, has a large charge / discharge capacity and energy density, and has an excellent charge / discharge cycle life. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の断面図。FIG. 1 is a sectional view of an example.

【図2】他の実施例の断面図。FIG. 2 is a sectional view of another embodiment.

【図3】製造例の説明図。FIG. 3 is an explanatory diagram of a manufacturing example.

【図4】他の製造例の説明図。FIG. 4 is an explanatory view of another manufacturing example.

【図5】電池例の説明図。FIG. 5 is an explanatory diagram of a battery example.

【符号の説明】[Explanation of symbols]

1,5,10:集電体テープ 2:拡散バリア層
3:濡れ促進材層 4:溶融メッキ急冷層 6:溶融メッキ浴
9:冷却ガスノズル 14:負極 15:電解質層(多孔質絶縁膜からなる
セパレータ) 16:正極
1, 5, 10: Current collector tape 2: Diffusion barrier layer
3: Wetting promoter layer 4: Hot-dip quenching layer 6: Hot-dip bath
9: Cooling gas nozzle 14: Negative electrode 15: Electrolyte layer (separator made of porous insulating film) 16: Positive electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 集電体テープの上に、液体リチウム合金
と反応しにくい導体からなる拡散バリア層を有し、その
拡散バリア層の上に液体リチウム合金と親和性の導体か
らなる濡れ促進材層を有すると共に、その濡れ促進材層
の上にリチウム合金からなる50μm厚以下の溶融メッ
キ急冷層を有することを特徴とするLi二次電池用の負
極。
1. A wetting promoting material comprising, on a current collector tape, a diffusion barrier layer made of a conductor which does not easily react with a liquid lithium alloy, and on the diffusion barrier layer being made of a conductor having an affinity with the liquid lithium alloy. A negative electrode for a Li secondary battery, which has a layer and a hot-dip quenching layer made of a lithium alloy and having a thickness of 50 μm or less on the wetting promoter layer.
【請求項2】 液体リチウム合金と反応しにくい導体か
らなる拡散バリア層が表面を覆う集電体テープを、その
拡散バリア層の片面又は両面に液体リチウム合金と親和
性の導体からなる濡れ促進材層を設けた状態で、リチウ
ム合金の溶融メッキ浴に導入して前記濡れ促進材層の上
にリチウム合金のコーティング層を50μm以下の厚さ
で形成後、そのコーティング層を急冷処理することを特
徴とするLi二次電池用の負極の製造方法。
2. A current collector tape, the surface of which is covered with a diffusion barrier layer made of a conductor that does not easily react with a liquid lithium alloy, and a wetting promoting material made of a conductor having affinity with the liquid lithium alloy on one or both sides of the diffusion barrier layer. In a state where the layer is provided, it is introduced into a lithium alloy hot-dip plating bath to form a lithium alloy coating layer with a thickness of 50 μm or less on the wetting promoter layer, and then the coating layer is rapidly cooled. And a method for producing a negative electrode for a Li secondary battery.
【請求項3】 請求項1に記載の負極を有することを特
徴とするLi二次電池。
3. A Li secondary battery comprising the negative electrode according to claim 1.
JP6090643A 1994-04-04 1994-04-04 Negative electrode, manufacture thereof, and lithium secondary battery Pending JPH07282800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6090643A JPH07282800A (en) 1994-04-04 1994-04-04 Negative electrode, manufacture thereof, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6090643A JPH07282800A (en) 1994-04-04 1994-04-04 Negative electrode, manufacture thereof, and lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH07282800A true JPH07282800A (en) 1995-10-27

Family

ID=14004195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6090643A Pending JPH07282800A (en) 1994-04-04 1994-04-04 Negative electrode, manufacture thereof, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH07282800A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269362A (en) * 2005-03-25 2006-10-05 Hitachi Cable Ltd Negative electrode for lithium ion secondary battery
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
CN112968174A (en) * 2021-02-23 2021-06-15 电子科技大学 Lithium-philic alloy modification layer, composite lithium negative electrode material, and preparation methods and applications of lithium-philic alloy modification layer and composite lithium negative electrode material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2006269362A (en) * 2005-03-25 2006-10-05 Hitachi Cable Ltd Negative electrode for lithium ion secondary battery
CN112968174A (en) * 2021-02-23 2021-06-15 电子科技大学 Lithium-philic alloy modification layer, composite lithium negative electrode material, and preparation methods and applications of lithium-philic alloy modification layer and composite lithium negative electrode material
CN112968174B (en) * 2021-02-23 2022-09-13 电子科技大学 Lithium-philic alloy modification layer, composite lithium negative electrode material, and preparation methods and applications of lithium-philic alloy modification layer and composite lithium negative electrode material

Similar Documents

Publication Publication Date Title
EP1711971B1 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
US6794087B2 (en) Lithium battery having evenly coated negative electrode and method of manufacture thereof
EP2606523B1 (en) Method for preparing negative active material, negative electrode material and lithium ion battery
JPH08171938A (en) Li secondary battery and its positive electrode
EP4228047A1 (en) All-solid-state secondary battery and manufacturing method therefor
EP1406325B1 (en) Non-aqueous electrolyte secondary cell
KR101109285B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
EP4002517B1 (en) All-solid battery and method of preparing the same
JPH08153541A (en) Lithium secondary battery
JP3895932B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JPH07240201A (en) Negative electrode and lithium secondary battery
KR20200134126A (en) All solid lithium secondary battery and charging method for the same
EP4053938A1 (en) Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery using same
JP4352719B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY USING THE SAME
JPH07326342A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
US5498495A (en) Alloy for negative electrode of lithium secondary battery and lithium secondary battery
JPH07296812A (en) Negative electrode and li secondary battery
JPH0896792A (en) Lithium battery
JPH08180853A (en) Separator and lithium secondary battery
JPH08130006A (en) Negative electrode, its manufacture and lithium secondary battery
JPH07245099A (en) Negative electrode for nonaqueous electrolyte type lithium secondary battery
JPH0837000A (en) Negative electrode, its manufacturing method, and lithium secondary battery
JP2968447B2 (en) Anode alloy for lithium secondary battery and lithium secondary battery
JPH07282800A (en) Negative electrode, manufacture thereof, and lithium secondary battery
JPH0896788A (en) Separator and lithium secondary battery