JPH072735A - Production of isopropyl acetate - Google Patents

Production of isopropyl acetate

Info

Publication number
JPH072735A
JPH072735A JP5340063A JP34006393A JPH072735A JP H072735 A JPH072735 A JP H072735A JP 5340063 A JP5340063 A JP 5340063A JP 34006393 A JP34006393 A JP 34006393A JP H072735 A JPH072735 A JP H072735A
Authority
JP
Japan
Prior art keywords
distillation column
reaction
acetic acid
liquid
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5340063A
Other languages
Japanese (ja)
Inventor
Kiyuuichi Ooyama
求一 大山
Giichi Shimada
義一 嶋田
Yuichi Tokumoto
祐一 徳本
Kazuo Sakamoto
一夫 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd, Daicel Chemical Industries Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP5340063A priority Critical patent/JPH072735A/en
Publication of JPH072735A publication Critical patent/JPH072735A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain isopropyl acetate from crude propylene and acetic acid by a liquid phase reaction; firstly separating a low-boiling point component from a pressurized crude reaction solution, secondly separating the objective material, thereafter separating the unreacted material and a high-boiling point component and recycling the unreacted material to the reaction. CONSTITUTION:High purity isopropyl acetate is obtained by the following processes. A catalyst consisting of acidic ion exchange resin is placed in a reaction vessel 1 and an impurity-containing propylene and acetic acid are supplied to the reaction vessel 1. The pressurized reactional solution obtained by the reaction in the reaction vessel 1 is depressurized in a flush tank 2 to separate into a vapor phase and a liquid phase. The vapor phase is cooled in a condenser 3 and the condensate is mixed, in a tank 4, with the liquid phase obtained above. The mixed crude reactional solution is introduced into the first distillation tower 5, a low-boiling point component is condensed and removed and the remainder is treated in the third distillation tower 7 to obtain the objective product of isopropyl acetate. The remainder of the third distillation tower 7 is further treated in the fourth distillation tower 8 and a mixture consisting of unreacted acetic acid and sec-butyl acetate is taken out by side cut and returned to the reaction. The bottom of the fourth distillation tower 8 is removed from the reaction system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸性イオン交換樹脂触
媒の存在下に不純物を含有するプロピレンと酢酸を液相
で反応させ、得られた粗酢酸イソプロピルを連続的に精
製することにより高純度の酢酸イソプロピルを製造する
方法に関する。本発明の製造方法によって製造される高
純度の酢酸イソプロピルは溶剤や香料等として有用な物
質である。
BACKGROUND OF THE INVENTION The present invention provides a highly pure compound obtained by reacting propylene containing impurities with acetic acid in the liquid phase in the presence of an acidic ion exchange resin catalyst and continuously purifying the resulting crude isopropyl acetate. To a method for producing isopropyl acetate. High-purity isopropyl acetate produced by the production method of the present invention is a useful substance as a solvent, a fragrance, or the like.

【0002】[0002]

【従来の技術】酢酸にプロピレンを酸性イオン交換樹脂
触媒の存在下に反応させ酢酸イソプロピルを合成する方
法は公知(特開平4−169552号公報)であり、ま
た酢酸イソプロピルを工業的な方法で得るプロセスにお
いて、オ−バ−オ−ルの収率を向上させるため、未反応
の酢酸をリサイクル使用することも公知(ハイドロカ−
ボンプロセッシング、1975年4月号;HYDOCA
RBON PROCESSING APRIL 197
5)である。酢酸イソプロピルの製造方法として、液相
で酢酸とプロピレンを酸性触媒下で反応させることによ
って合成することができることが知られている。また、
プロピレンとして粗プロピレンを使用することも知られ
ている。
2. Description of the Related Art A method for synthesizing isopropyl acetate by reacting acetic acid with propylene in the presence of an acidic ion exchange resin catalyst is known (JP-A-4-169552), and isopropyl acetate can be obtained by an industrial method. In the process, it is known that unreacted acetic acid is recycled to improve the yield of over-all (hydrocarbon).
Bon Processing, April 1975; HYDOCA
RBON PROCESSING APRIL 197
5). As a method for producing isopropyl acetate, it is known that it can be synthesized by reacting acetic acid and propylene in a liquid phase under an acidic catalyst. Also,
It is also known to use crude propylene as propylene.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記の
ような粗プロピレンを使用する場合には、原料の粗プロ
ピレン及び酢酸中に含まれている微量の水および酢酸が
無水酢酸になる反応で生じる微量な水分とプロピレンが
反応して副生成物としてイソプロピルアルコ−ル(IP
A;沸点82℃)等を生成する。また、不純物として飽
和炭化水素および炭素数4のオレフィン類等を含んでい
る。これら不純物中の炭素数4のオレフィン類とプロピ
レン及び酢酸が反応して、炭素数7のオレフィン類や炭
素数6以上の酢酸エステル類等を副生する。これらの副
生成物は酢酸イソプロピルや酢酸と沸点が近いため分離
しにくい。したがって、単純な連続蒸留塔の組み合わせ
では蒸留塔の段数が大きくなり、設備費の増大を引き起
こすか、酢酸イソプロピルのロス率が大きくなる。この
ような事実は、工業プロセスとしては、はなはだ問題で
あり現実的ではない。このため、粗プロピレンを使用し
て高純度の酢酸イソプロピルを製造する方法が望まれて
いた。
However, when the crude propylene as described above is used, a trace amount of water contained in the raw propylene and acetic acid as raw materials and a trace amount generated by the reaction of acetic anhydride to form acetic anhydride. Water reacts with propylene to produce isopropyl alcohol (IP
A; boiling point 82 ° C.) and the like. Further, it contains saturated hydrocarbons and olefins having 4 carbon atoms as impurities. The olefins having 4 carbon atoms in these impurities react with propylene and acetic acid to produce olefins having 7 carbon atoms and acetic acid esters having 6 or more carbon atoms as by-products. These by-products have a boiling point close to that of isopropyl acetate or acetic acid, and thus are difficult to separate. Therefore, in the case of a simple continuous distillation column combination, the number of stages of the distillation column becomes large, which causes an increase in equipment cost or a large loss rate of isopropyl acetate. Such facts are very problematic and unrealistic for industrial processes. Therefore, a method for producing high-purity isopropyl acetate using crude propylene has been desired.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記問題を
解決するため、粗プロピレンと酢酸から液相反応により
酢酸イソプロピルを工業的に製造するプロセスにおい
て、加圧状態にある反応粗液から、第一蒸留塔で低沸点
成分を濃縮分離し、次いで第三蒸留塔にて製品酢酸イソ
プロピルを得、第四蒸留塔で未反応酢酸と高沸点成分を
分離し、未反応酢酸を反応工程にリサイクルする一連の
精製プロセスを経る製造方法を提供するものである。
In order to solve the above-mentioned problems, the inventors of the present invention have proposed a process for industrially producing isopropyl acetate from crude propylene and acetic acid by a liquid phase reaction. , The low boiling point component is concentrated and separated in the first distillation column, then the product isopropyl acetate is obtained in the third distillation column, the unreacted acetic acid and the high boiling point component are separated in the fourth distillation column, and the unreacted acetic acid is used in the reaction step. It is intended to provide a manufacturing method that goes through a series of refining processes for recycling.

【0005】すなわち、本発明は、「不純物を含有する
プロピレンと酢酸とから酢酸イソプロピルを製造する方
法において、(a)反応系で得られた加圧反応液を気相
と液相に分離し、(b)分離した気相を冷却して非凝縮
物と凝縮物に分離し、(c)凝縮物は前記の液相と混合
して反応粗液とし、この反応粗液を第一蒸留塔に導き、
塔頂液と塔底液とに分離し、(d)第一蒸留塔の塔頂液
を第二蒸留塔に導き、第二蒸留塔の塔頂液を系外に排出
し、(e)第二蒸留塔の塔底液を第一蒸留塔の適当な段
に戻し、(f)第一蒸留塔の塔底液を第三蒸留塔に導
き、第三蒸留塔の塔頂液として純度の高い酢酸イソプロ
ピルを留出し、(g)第三蒸留塔の塔底液を第四蒸留塔
に導き、第四蒸留塔の塔頂から共沸組成の塔頂液を留出
させ、主として酢酸およびsec−ブチルアセテ−トか
らなる混合物をサイドカットして反応系へ戻して、
(h)第四蒸留塔の塔底液を系外に排出することを特徴
とする高純度の酢酸イソプロピルの製造方法」である。
That is, according to the present invention, "In a method for producing isopropyl acetate from propylene containing impurities and acetic acid, (a) the pressurized reaction liquid obtained in the reaction system is separated into a gas phase and a liquid phase, (B) The separated gas phase is cooled to be separated into a non-condensate and a condensate, and (c) the condensate is mixed with the above liquid phase to give a reaction crude liquid, and the reaction crude liquid is fed to the first distillation column. Guide,
The top liquid and the bottom liquid are separated, (d) the top liquid of the first distillation column is guided to the second distillation column, and the top liquid of the second distillation column is discharged to the outside of the system. The bottom liquid of the second distillation column is returned to an appropriate stage of the first distillation column, (f) the bottom liquid of the first distillation column is introduced into the third distillation column, and the top liquid of the third distillation column is highly pure. Isopropyl acetate was distilled off, (g) the bottom liquid of the third distillation column was introduced into the fourth distillation column, and the top liquid of the azeotropic composition was distilled from the top of the fourth distillation column, mainly acetic acid and sec- The mixture consisting of butyl acetate is side-cut and returned to the reaction system,
(H) A method for producing high-purity isopropyl acetate, characterized in that the bottom liquid of the fourth distillation column is discharged to the outside of the system ”.

【0006】本発明の高純度の酢酸イソプロピル(以
下、IPACと記す)の製造方法を実施する場合の実施
態様を図1に示し、これに基いて説明する。図1におい
て1は反応器、2はフラッシュタンク、3はコンデンサ
−、4はタンク、5は第一蒸留塔、6は第二蒸留塔、7
は第三蒸留塔、8は第四蒸留塔を示し、矢印は各部を流
れるアルファベットで示された液体または気体の混合物
の流れる方向を示す。
An embodiment for carrying out the method for producing high-purity isopropyl acetate (hereinafter referred to as IPAC) of the present invention is shown in FIG. 1 and will be described based on this. In FIG. 1, 1 is a reactor, 2 is a flash tank, 3 is a condenser, 4 is a tank, 5 is a first distillation column, 6 is a second distillation column, and 7
Indicates a third distillation column, 8 indicates a fourth distillation column, and arrows indicate the flow direction of a mixture of liquids or gases indicated by alphabets flowing in each part.

【0007】本発明の製造方法においては、先ず、触媒
の存在下に、不純物を含有するプロピレンと酢酸を液相
で反応させる。本発明では不純物を含有するプロピレン
として、プロピレンを約20重量%以上含有する炭化水
素混合物を用いることができ、そのような炭化水素混合
物としては、ナフサなどの石油類を接触分解して得られ
るプロピレンを含む炭素数3の留分やイソブタンを脱水
素してイソブテンを製造する際に副生する粗プロピレン
などを使用することができる。
In the production method of the present invention, first, propylene containing impurities and acetic acid are reacted in the liquid phase in the presence of a catalyst. In the present invention, a hydrocarbon mixture containing about 20% by weight or more of propylene can be used as propylene containing impurities. As such a hydrocarbon mixture, propylene obtained by catalytically cracking petroleum such as naphtha is used. It is possible to use a crude propylene which is a by-product when isobutene is produced by dehydrogenating a fraction containing 3 carbon atoms or isobutane.

【0008】酢酸中の水分は0. 1%未満であることが
望ましい。IPACの合成反応において使用される触媒
はこの種の反応に用いられる一般的なものでよく、特別
な触媒である必要はない。一般的には酸性イオン交換樹
脂のような酸性触媒を用い、液相反応、気相反応および
気液混相反応で合成することが可能である。本発明は液
相で反応させ、加圧状態にある反応粗液から連続処理に
よる高純度のIPACを製品化するプロセスに関する。
なお、本発明における精製プロセスにおいては、常圧ま
たは加圧のどちらにでも対応することができる。
The water content in acetic acid is preferably less than 0.1%. The catalyst used in the IPAC synthesis reaction may be a general catalyst used in this type of reaction and does not need to be a special catalyst. Generally, an acidic catalyst such as an acidic ion exchange resin is used, and synthesis can be performed by a liquid phase reaction, a gas phase reaction and a gas-liquid mixed phase reaction. TECHNICAL FIELD The present invention relates to a process for producing a high-purity IPAC by a continuous treatment from a reaction crude liquid under pressure in a reaction in a liquid phase.
In the purification process of the present invention, either normal pressure or increased pressure can be applied.

【0009】本発明においては、原料供給液(P)中の
酢酸とプロピレンのモル比が1. 0〜2. 0の範囲で、
酸性イオン交換樹脂触媒を充填してなる連続流通式固定
床反応器に、酢酸とプロピレンとをいずれも液状かつ並
流で供給して反応させることが好ましい。反応器内の圧
力は、反応系を液相に保つために十分な圧力でよく、例
えば、15〜100kg/cm2 、より好ましくは15
〜50kg/cm2 の囲から適宜選択できる。触媒相の
入り口温度は、70〜120℃に保ち反応させる。この
ようにして反応させた加圧状態のIPAC反応粗液を、
図1に示す流れに従って連続精製法で製造する。
In the present invention, the molar ratio of acetic acid and propylene in the raw material feed liquid (P) is in the range of 1.0 to 2.0,
It is preferable to supply both acetic acid and propylene in a liquid state and in a cocurrent flow to a continuous flow type fixed bed reactor filled with an acidic ion exchange resin catalyst for reaction. The pressure in the reactor may be a pressure sufficient to keep the reaction system in a liquid phase, for example, 15 to 100 kg / cm 2 , and more preferably 15
It can be appropriately selected from the range of up to 50 kg / cm 2 . The temperature at the entrance of the catalyst phase is maintained at 70 to 120 ° C. for reaction. The pressurized IPAC reaction crude liquid reacted in this way is
It is manufactured by a continuous purification method according to the flow shown in FIG.

【0010】例えば、反応器1を出た加圧状態の加圧反
応粗液(A)(温度70〜120℃、圧力15〜100
kg/cm2 )はまずフラッシュタンク2で放圧され常
圧に戻される。このとき、液相(D)と気相(B)とに
分離される。気相(B)中にはIPACが存在するた
め、これをコンデンサ−3を用いて冷却し、フラッシュ
によるIPACのロスを最小限にする。なお、不活性ガ
スを含むプロピレンを使用した場合はイナ−トガスが多
いために放圧ロスが大きくなる。この際、使用する冷媒
の温度は20℃以下が好ましい。コンデンサ−3よっ
て、凝縮されたIPACを含む凝集液(C)は、フラッ
シュタンク2の液相(D)とタンク4で混合され、混合
液(E)は第一蒸留塔5に連続フィ−ドされる。
For example, the pressurized reaction crude liquid (A) in a pressurized state that exits the reactor 1 (temperature 70 to 120 ° C., pressure 15 to 100)
The pressure of kg / cm 2 ) is first released in the flash tank 2 and returned to normal pressure. At this time, it is separated into a liquid phase (D) and a gas phase (B). Since IPAC is present in the gas phase (B), it is cooled using condenser-3 to minimize IPAC loss due to flash. When propylene containing an inert gas is used, the amount of the inert gas is large, so that the pressure loss is large. At this time, the temperature of the refrigerant used is preferably 20 ° C. or lower. The condensed liquid (C) containing IPAC condensed by the condenser-3 is mixed with the liquid phase (D) of the flash tank 2 in the tank 4, and the mixed liquid (E) is fed continuously to the first distillation column 5. To be done.

【0011】第一蒸留塔5は脱低沸点成分を目的として
設置した塔である。低沸点成分としてはイソプロピルア
ルコ−ル(IPA)、イソプロピルエ−テル(IP
E)、炭素数7のオレフィンなどが主成分である。これ
ら低沸点成分の中で炭素数7のオレフィンは、プロピレ
ン中の不純物の一つである炭素数4のオレフィンとプロ
ピレンが、本反応条件下で反応して生成する特有の不純
物であり、この副生成物が製品としてのIPACの純度
を低下させる最も大きな原因である。なお、イソプロピ
ルアルコ−ル(IPA)およびイソプロピルエ−テル
(IPE)はプロピレンと水分(プロピレンや酢酸中の
水分、酢酸が縮合して無水酢酸が生成する際に生成する
水分)との反応により生成する。
The first distillation column 5 is a column installed for the purpose of removing low boiling point components. As the low boiling point component, isopropyl alcohol (IPA), isopropyl ether (IP)
E), an olefin having 7 carbon atoms and the like are main components. Of these low-boiling components, the olefin having 7 carbon atoms is a peculiar impurity produced by the reaction of the olefin having 4 carbon atoms, which is one of the impurities in propylene, with propylene under this reaction condition. The product is the major cause of the decrease in the purity of IPAC as a product. In addition, isopropyl alcohol (IPA) and isopropyl ether (IPE) are produced by the reaction of propylene with water (water in propylene or acetic acid, water generated when acetic acid is condensed by acetic acid condensation). To do.

【0012】そこで、第一蒸留塔5では、純度99. 9
%程度の製品IPACを得ることを目標として、上記の
低沸点成分とIPACの分離を行なう。第一蒸留塔5の
運転条件は、IPAC、未反応酢酸を含む塔低液中の低
沸点成分の濃度を定めたスペック以下になるように運転
するが、IPACと炭素数7のオレフィンの沸点が近い
ために分離がしにくい。このため留出液中に上記の低沸
点成分の他にIPACを多量に留出させる。このまま留
出液を廃棄処分にすると、同伴IPACのロスが多大に
なるため、製品であるIPACの取得率が悪化する。
Therefore, in the first distillation column 5, the purity is 99.9.
The above low boiling point components and IPAC are separated with the goal of obtaining about 10% of product IPAC. The operating conditions of the first distillation column 5 are such that the concentration of the low boiling point component in the column low liquid containing IPAC and unreacted acetic acid is below the specified specifications, but the boiling points of the IPAC and the olefin having 7 carbon atoms are It is difficult to separate because it is close. Therefore, a large amount of IPAC is distilled in the distillate in addition to the above low boiling point components. If the distillate is discarded as it is, the loss of entrained IPAC becomes large and the acquisition rate of the product IPAC deteriorates.

【0013】そこで脱低沸点成分の方法として第一蒸留
塔5のみの使用では同伴IPACのロスが多大になるこ
とから、第一蒸留塔5の塔頂液(F)を第二蒸留塔6に
仕込み、低沸点成分の濃縮を行なう。第二蒸留塔6の塔
底液(H)は、IPACと若干の低沸点成分が残留する
が、これは第一蒸留の適当な段に戻す多重効用方式とす
る。この方法を採用することによってIPACの同伴ロ
スは大幅に減少する。また、第二蒸留塔6では、処理液
量が第一蒸留の約1/20になるので、塔径は1/3以
下でよく、設備費の大きな負担にはならない。なお、第
二蒸留塔の濃縮された塔頂液は系外に取り出される。
Therefore, when only the first distillation column 5 is used as a method of removing low boiling point components, the loss of entrained IPAC becomes large, so the overhead liquid (F) of the first distillation column 5 is fed to the second distillation column 6. Charge and concentrate low-boiling components. In the bottom liquid (H) of the second distillation column 6, IPAC and some low-boiling-point components remain, but this is a multiple-effect system in which it is returned to an appropriate stage of the first distillation. By adopting this method, entrainment loss of IPAC is greatly reduced. Further, in the second distillation column 6, the amount of the treated liquid is about 1/20 of that of the first distillation, so the column diameter may be 1/3 or less, which does not burden the facility cost. The concentrated top liquid of the second distillation column is taken out of the system.

【0014】次に、第一蒸留塔塔底液(I)は、第三蒸
留塔7に仕込まれる。ここで、塔頂より製品としてのI
PAC(J)を得る。塔底液(K)からは、酢酸とsec-
ブチルアセテ−ト(以下、SBACと記す)、高沸点成
分などが得られ、これを第四蒸留塔8に仕込む。第四蒸
留塔8は脱高沸点成分を行ない、未反応酢酸を回収する
ことを目的とする。第四蒸留塔8への仕込み液(K)
は、未反応酢酸と高沸点点物質及びSBACであり、S
BACはプロピレンガス中の不純物である炭素数4のオ
レフィンが酢酸と反応することによって生成する。SB
ACの沸点は酢酸と近く分離が困難であるが、反応系で
分解して炭素数4のオレフィンと酢酸になることが確認
されている。これによりSBACは反応工程で平衡組成
になり増加しないことが判ったので、SBACの分離は
本製造工程において特に考慮しなくてもよい。
Next, the bottom liquid (I) of the first distillation column is charged into the third distillation column 7. Here, I from the top of the tower as a product
Obtain PAC (J). From the bottom liquid (K), acetic acid and sec-
Butyl acetate (hereinafter referred to as SBAC), a high boiling point component, and the like are obtained, and charged into the fourth distillation column 8. The fourth distillation column 8 is intended to remove the high boiling point components and recover unreacted acetic acid. Liquid charged to the fourth distillation column 8 (K)
Is unreacted acetic acid, a high boiling point substance and SBAC, and S
BAC is produced by reacting an olefin having 4 carbon atoms, which is an impurity in propylene gas, with acetic acid. SB
Although AC has a boiling point close to that of acetic acid and is difficult to separate, it has been confirmed that AC decomposes into an olefin having 4 carbon atoms and acetic acid. From this, it was found that SBAC becomes an equilibrium composition in the reaction step and does not increase, and therefore, the separation of SBAC does not have to be particularly considered in the present production step.

【0015】高沸点成分には、プロピレンの3量体であ
る炭素数9のオレフィンが存在する。炭素数9のオレフ
ィンは酢酸と共沸するので、塔頂から酢酸を留出させ塔
底から高沸点成分を缶出させる方法では、炭素数9のオ
レフィンと酢酸の分離ができない。この回収酢酸は反応
系でリサイクル使用するため、炭素数9のオレフィンが
反応系及び精製系内で蓄積する。このような、オレフィ
ンを含んだ酢酸を反応系にリサイクルすることは副生成
物の増加や触媒への悪影響が考えられる。
The high boiling point component is an olefin having 9 carbon atoms, which is a trimer of propylene. Since the olefin having 9 carbon atoms is azeotroped with acetic acid, the olefin having 9 carbon atoms and acetic acid cannot be separated by the method of distilling acetic acid from the top of the tower and removing the high boiling point component from the bottom of the tower. Since this recovered acetic acid is recycled for use in the reaction system, an olefin having 9 carbon atoms accumulates in the reaction system and the purification system. Recycling such acetic acid containing an olefin into the reaction system may increase the amount of by-products and adversely affect the catalyst.

【0016】また、精製系でも高濃度の炭素数9のオレ
フィンを間欠的に分離する処理が必要になり、連続精製
系での運転管理が難しくなる。そこで共沸の性質を利用
し、塔頂から炭素数9のオレフィンと酢酸を共沸組成で
留出させ、塔底からは高沸点成分(N)を缶出させ、酢
酸をサイドカットすると高純度の酢酸を回収できる。ま
た、酢酸のロスは炭素数9のオレフィンとの共沸物分の
みとなり、微量のロスで済むことになる。
Further, even in the refining system, a treatment for intermittently separating a high-concentration olefin having 9 carbon atoms is required, which makes operation control in the continuous refining system difficult. Therefore, by utilizing the azeotropic property, olefin having 9 carbon atoms and acetic acid are distilled out in an azeotropic composition from the top of the column, a high boiling point component (N) is removed from the bottom of the column, and acetic acid is side-cut to obtain high purity. Acetic acid can be recovered. In addition, the loss of acetic acid is only the azeotrope content with the olefin having 9 carbon atoms, and a small amount of loss is sufficient.

【0017】以下に本発明を具体的な実施例により説明
するが、本発明はこれらに限定されるものではない。こ
こで、以下の実施例で使用したプロピレンの組成は、プ
ロピレン76. 1重量%、プロパン22. 0重量%、残
分は主に炭素数4のオレフィである。また、モル比と
は、プロピレンに対する酢酸のモル比を指し、LHSV
は酢酸の供給量を基準とする。
The present invention will be described below with reference to specific examples, but the present invention is not limited thereto. Here, the composition of propylene used in the following examples is such that propylene is 76.1% by weight, propane is 22.0% by weight, and the balance is mainly olefins having 4 carbon atoms. Further, the molar ratio refers to a molar ratio of acetic acid to propylene, which is LHSV.
Is based on the amount of acetic acid supplied.

【0018】(実施例1)図1に示した反応器1(円筒
管型)に触媒として酸性イオン交換樹脂を充填し、不純
物を含有するプロピレンと酢酸を反応器1に供給した。
酢酸と不純物を含有するプロピレンからなる原料供給流
(P)を反応器1に供給し、触媒層において反応させ、
反応混合物は図示しない熱交換器を介して冷却し、その
一部を循環した。
Example 1 The reactor 1 (cylindrical tube type) shown in FIG. 1 was filled with an acidic ion exchange resin as a catalyst, and propylene containing impurities and acetic acid were supplied to the reactor 1.
A raw material feed stream (P) consisting of acetic acid and propylene containing impurities is fed to the reactor 1 and reacted in the catalyst layer,
The reaction mixture was cooled via a heat exchanger (not shown) and part of it was circulated.

【0019】循環流は原料供給流(P)と合流させた。
この反応器1に酢酸をLHSV1.0及びプロピレンの
モル比1. 4の供給流を反応圧力40kg/cm2で流した。
このようにして得られた加圧状態加圧反応粗液をフラッ
シュタンク2にて放圧し、気相(非凝縮成分)と液相
(凝縮成分)とに分離した。非凝縮成分はコンデンサ−
3にて10℃まで冷却し、IPACを凝縮させフラッシ
ュタンクからの凝縮成分とタンク4で混合した。この時
点での反応粗液(E)の組成はIPAC71%、酢酸2
5%、その他4%であった。
The circulating stream was combined with the feed stream (P).
A feed stream of LHSV 1.0 and a propylene molar ratio of 1.4 was passed through this reactor 1 at a reaction pressure of 40 kg / cm 2 .
The pressure-applied pressurized reaction crude liquid thus obtained was depressurized in the flash tank 2 and separated into a gas phase (non-condensed component) and a liquid phase (condensed component). Non-condensed component is condenser
It was cooled to 10 ° C. at 3, IPAC was condensed, and the condensed components from the flash tank were mixed in the tank 4. At this point, the composition of the reaction crude liquid (E) was IPAC 71%, acetic acid 2
It was 5% and other 4%.

【0020】この反応粗液(E)を第一蒸留塔5へ送っ
た。第一蒸留塔5は濃縮部20段、回収部20段からな
り、この塔で還流比30の条件で、IPA、IPE、炭
素数7のオレフィンをボトムスペックの500ppm程
度になるまでカットした。この塔底液を第三蒸留塔7に
送った。また第一蒸留塔5の留出液の組成はIPAC8
3%、IPA,IPE、炭素数7のオレフィンを含む低
沸点成分16%、水1%であった。この留出液をそのま
ま廃棄するとIPACのロスが仕込み液中の7%に相当
するため、留出液を第二蒸留塔6に送り低沸点成分をさ
らに濃縮した。
This reaction crude liquid (E) was sent to the first distillation column 5. The first distillation column 5 was composed of 20 stages of a concentration section and 20 stages of a recovery section, and under this condition of a reflux ratio of 30, IPA, IPE, and an olefin having 7 carbon atoms were cut to a bottom spec of about 500 ppm. This bottom liquid was sent to the third distillation column 7. The composition of the distillate of the first distillation column 5 is IPAC8.
3%, low boiling point components containing IPA, IPE, olefin having 7 carbon atoms 16%, and water 1%. If this distillate is discarded as it is, the loss of IPAC corresponds to 7% of the charged liquid, so the distillate was sent to the second distillation column 6 to further concentrate the low boiling point components.

【0021】第二蒸留塔6は濃縮部20段、回収部20
段からなり、還流比30で低沸点成分を70%程度まで
濃縮した。塔底液は低沸点成分が混合しているので第一
蒸留塔5の仕込みに戻した。このような多重効用方式を
取ることによってIPACのロスは仕込みの0. 7%に
低減できた。第一蒸留塔5の塔底液を第三蒸留塔7に送
った。第三蒸留塔7は濃縮部40段、回収部20段から
なり、還流比1にて塔頂から製品であるIPACを留出
させた。得られたIPACは純度99. 9%であった。
次に第三蒸留塔7の塔底液を第四蒸留塔8に送った。
The second distillation column 6 has 20 stages of concentration section and 20 recovery section.
The low boiling point component was concentrated to about 70% at a reflux ratio of 30. Since the low-boiling point component was mixed in the bottom liquid, it was returned to the first distillation column 5. By adopting such a multiple utility system, the loss of IPAC could be reduced to 0.7% of the amount charged. The bottom liquid of the first distillation column 5 was sent to the third distillation column 7. The third distillation column 7 was composed of 40 stages of concentration section and 20 stages of recovery section, and the product IPAC was distilled from the top of the column at a reflux ratio of 1. The obtained IPAC had a purity of 99.9%.
Next, the bottom liquid of the third distillation column 7 was sent to the fourth distillation column 8.

【0022】第四蒸留塔8での酢酸回収と脱高沸点成分
は、濃縮部20段、回収部20段で行った。ここでは炭
素数9のオレフィンと酢酸が共沸するため、塔頂から酢
酸と炭素数9のオレフィンの共沸物を留出させ、塔底か
ら高沸点成分を缶出させ、酢酸は回収部のサイドカット
で回収し反応系にリサイクルした。この酢酸回収方法に
より、酢酸のロスは仕込み基準で0. 8%であった。
The acetic acid recovery and the high boiling point component removal in the fourth distillation column 8 were carried out in the concentration section 20 stages and the recovery section 20 stages. Here, since the olefin having 9 carbon atoms and the acetic acid are azeotropically distilled, the azeotrope of the acetic acid and the olefin having 9 carbon atoms is distilled from the top of the column, and the high-boiling component is removed from the bottom of the column. It was collected by side cut and recycled to the reaction system. By this acetic acid recovery method, the loss of acetic acid was 0.8% based on the charged amount.

【0023】(実施例2)不純物を含有するプロピレン
としてプロピレン69. 0重量%、プロパン28. 0重
量%、炭素数4のオレフィンを含む残分3重量%からな
る粗プロピレンを使用した以外は、実施例1と同様に行
なった。放圧後の時点での反応粗液の組成はIPACが
71%、酢酸25%およびその他4%であった。実施例
1と同様の条件で精製して得られたIPACの純度は9
9. 9%であった。原料粗プロピレンの純度が低下して
も副生成物には変化がなく、かつ、製品の品質にも影響
がなかった。
Example 2 As crude propylene containing impurities, 60.0% by weight of propylene, 28.0% by weight of propane, and 3% by weight of a residue containing an olefin having 4 carbon atoms were used as crude propylene. The same procedure as in Example 1 was performed. The composition of the reaction crude liquid after the pressure was released was IPAC 71%, acetic acid 25% and other 4%. The purity of IPAC obtained by purifying under the same conditions as in Example 1 was 9
It was 9.9%. Even if the purity of the raw material crude propylene was lowered, the by-products did not change and the product quality was not affected.

【0024】図1におけるアルファベット(A)〜
(P)は各位置を流れる液体又は気体の混合物を示して
いるが、実施例1および実施例2におけるそれぞれの混
合物組成は以下のようになる。 (A)IPAC、酢酸、プロピレン、IPA、IPE、
炭素数7のオレフィン、炭素数9のオレフィン、酢酸エ
ステル、プロパンなど; (B)プロピレン、不活性ガス、IPAC、IPA、I
PE、炭素数7のオレフィンなど; (C)IPAC、IPA、IPE、炭素数7のオレフィ
ンなど; (D)IPAC、酢酸、IPA、IPE、炭素数7のオ
レフィン、炭素数9のオレフィン、酢酸エステルなど; (E)IPAC、酢酸、IPA、IPE、炭素数7のオ
レフィン、炭素数9のオレフィン、酢酸エステルなど; (F)IPAC、IPA、IPE、炭素数7のオレフィ
ンなど; (G)IPAC、IPA、IPE、炭素数7のオレフィ
ンなど; (H)IPAC、炭素数7のオレフィンなど; (I)IPAC、酢酸、炭素数9のオレフィン、酢酸エ
ステルなど; (J)IPAC; (K)IPAC、酢酸、SBAC、炭素数9のオレフィ
ン、酢酸エステルなど; (L)炭素数9のオレフィン、酢酸、IPACなど; (M)酢酸、SBACなど; (N)高沸点成分; (O)プロピレン、不活性ガスなど; (P)は原料である酢酸とプロピレンの供給流である。 なお、実施例1および実施例2において使用した原料粗
プロピレンはナフサを熱分解して得られたものである。
Alphabet (A) in FIG.
(P) shows a mixture of liquid or gas flowing in each position, and the composition of each mixture in Example 1 and Example 2 is as follows. (A) IPAC, acetic acid, propylene, IPA, IPE,
C7 olefin, C9 olefin, acetic ester, propane, etc .; (B) Propylene, inert gas, IPAC, IPA, I
PE, olefins having 7 carbon atoms; (C) IPAC, IPA, IPE, olefins having 7 carbon atoms; (D) IPAC, acetic acid, IPA, IPE, olefin having 7 carbon atoms, olefin having 9 carbon atoms, acetic ester (E) IPAC, acetic acid, IPA, IPE, olefin having 7 carbon atoms, olefin having 9 carbon atoms, acetate ester, etc .; (F) IPAC, IPA, IPE, olefin having 7 carbon atoms, etc .; (G) IPAC, (H) IPAC, olefin having 7 carbon atoms, etc .; (I) IPAC, acetic acid, olefin having 9 carbon atoms, acetic ester, etc .; (J) IPAC; (K) IPAC, Acetic acid, SBAC, C9 olefin, acetic acid ester, etc .; (L) C9 olefin, acetic acid, IPAC, etc .; (M) Acetic acid, BAC such; (N) high-boiling components; (O) propylene, inert gas; (P) is a feed stream of acetic acid and propylene as a raw material. The raw material crude propylene used in Examples 1 and 2 was obtained by thermally decomposing naphtha.

【0025】(実施例3)不純物を含有するプロピレン
としてプロピレン58. 0重量%、プロパン28. 0重
量%、炭酸ガス7重量%、メタン2重量%、イソブタン
3重量%およびその他炭素数4のオレフィン等2重量%
からなる粗プロピレンを使用した以外は、実施例1と同
様に行なった。
Example 3 As propylene containing impurities, propylene 58.0% by weight, propane 28.0% by weight, carbon dioxide gas 7% by weight, methane 2% by weight, isobutane 3% by weight and other olefins having 4 carbon atoms. 2% by weight
Example 1 was repeated except that the crude propylene consisting of was used.

【0026】なお、実施例3において使用した原料粗プ
ロピレンはイソブタンの脱水素によるイソブテンの製造
工程で副生物として得られたものである。放圧後の時点
での反応粗液の組成はIPACが70%、酢酸26%お
よびその他4%であった。実施例1と同様の条件で精製
して得られたIPACの純度は99. 9%であった。不
純物を含有するプロピレンの由来が変わっても副生成物
にはほとんど変化がなく、かつ、製品の品質にも影響が
なかった。
The raw material crude propylene used in Example 3 was obtained as a by-product in the process for producing isobutene by dehydrogenating isobutane. The composition of the reaction crude liquid after the pressure was released was IPAC 70%, acetic acid 26% and other 4%. The purity of IPAC obtained by purifying under the same conditions as in Example 1 was 99.9%. Even if the origin of propylene containing impurities was changed, there was almost no change in the by-products, and the quality of the product was not affected.

【0027】[0027]

【発明の効果】本発明の製造方法によれば、ナフサなど
の石油類を接触分解して得られるプロピレンを含む炭素
数3の留分を粗プロピレンやイソブタンの脱水素による
イソブテンの製造工程で副生物として得られる粗プロピ
レンを不純物を含有するプロピレンとして使用すること
ができるため、設備費を増大させることなく低コスト
で、かつ、連続的に高純度の、例えば99. 9%程度の
IPACを効率よく製造することが可能である。しか
も、未反応物質を精製することなくリサイクルして再使
用することが可能である。
According to the production method of the present invention, a fraction having 3 carbon atoms containing propylene, which is obtained by catalytically cracking petroleum such as naphtha, is used as a by-product in the production step of isobutene by dehydrogenation of crude propylene or isobutane. Since crude propylene obtained as a living organism can be used as propylene containing impurities, IPAC of high purity, for example, about 99.9% can be continuously produced at low cost without increasing equipment cost. It is possible to manufacture well. Moreover, it is possible to recycle and reuse the unreacted substance without purifying it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による酢酸イソプロピルの製造工程の1
例を示す図である。
FIG. 1 is a first process of producing isopropyl acetate according to the present invention.
It is a figure which shows an example.

【符号の説明】[Explanation of symbols]

1 反応器 2 フラッシュタンク 3 コンデンサ− 4 タンク 5 第一蒸留塔 6 第二蒸留塔 7 第三蒸留塔 8 第四蒸留塔 1 Reactor 2 Flash Tank 3 Condenser 4 Tank 5 First Distillation Tower 6 Second Distillation Tower 7 Third Distillation Tower 8 Fourth Distillation Tower

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳本 祐一 神奈川県横浜市港南区大久保3丁目35番1 号 (72)発明者 坂本 一夫 神奈川県座間市栗原中央4丁目8番14号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuichi Tokumoto 3-35-1, Okubo, Konan-ku, Yokohama, Kanagawa Prefecture (72) Inventor Kazuo Sakamoto 4--14, Kurihara Chuo, Zama City, Kanagawa Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】不純物を含有するプロピレンと酢酸とから
酢酸イソプロピルを製造する方法において、(a)反応
系で得られた加圧反応液を気相と液相に分離し、(b)
分離した気相を冷却して非凝縮物と凝縮物に分離し、
(c)凝縮物は前記の液相と混合して反応粗液とし、こ
の反応粗液を第一蒸留塔に導き、塔頂液と塔底液とに分
離し、(d)第一蒸留塔の塔頂液を第二蒸留塔に導き、
第二蒸留塔の塔頂液を系外に排出し、(e)第二蒸留塔
の塔底液を第一蒸留塔の適当な段に戻し、(f)第一蒸
留塔の塔底液を第三蒸留塔に導き、第三蒸留塔の塔頂液
として純度の高い酢酸イソプロピルを留出し、(g)第
三蒸留塔の塔底液を第四蒸留塔に導き、第四蒸留塔の塔
頂から共沸組成の塔頂液を留出させ、主として酢酸およ
びsec−ブチルアセテ−トからなる混合物をサイドカ
ットして反応系へ戻して、(h)第四蒸留塔の塔底液を
系外に排出することを特徴とする高純度の酢酸イソプロ
ピルの製造方法。
1. A method for producing isopropyl acetate from propylene containing impurities and acetic acid, wherein the pressurized reaction solution obtained in (a) the reaction system is separated into a gas phase and a liquid phase, and (b)
The separated gas phase is cooled to separate into non-condensate and condensate,
(C) The condensate is mixed with the above liquid phase to give a reaction crude liquid, and this reaction crude liquid is introduced into a first distillation column and separated into a top liquid and a bottom liquid, and (d) a first distillation column. Leading the top liquid of the to the second distillation column,
The top liquid of the second distillation column is discharged to the outside of the system, (e) the bottom liquid of the second distillation column is returned to an appropriate stage of the first distillation column, and (f) the bottom liquid of the first distillation column is It is led to the third distillation column, high-purity isopropyl acetate is distilled off as the top liquid of the third distillation column, (g) the bottom liquid of the third distillation column is led to the fourth distillation column, and the column of the fourth distillation column is introduced. The azeotropic composition top liquid is distilled from the top, a mixture mainly composed of acetic acid and sec-butyl acetate is side-cut and returned to the reaction system, and (h) the bottom liquid of the fourth distillation column is removed from the system. A method for producing high-purity isopropyl acetate, which comprises discharging into high purity.
JP5340063A 1992-12-08 1993-12-07 Production of isopropyl acetate Pending JPH072735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5340063A JPH072735A (en) 1992-12-08 1993-12-07 Production of isopropyl acetate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35191592 1992-12-08
JP4-351915 1992-12-08
JP5340063A JPH072735A (en) 1992-12-08 1993-12-07 Production of isopropyl acetate

Publications (1)

Publication Number Publication Date
JPH072735A true JPH072735A (en) 1995-01-06

Family

ID=26576615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5340063A Pending JPH072735A (en) 1992-12-08 1993-12-07 Production of isopropyl acetate

Country Status (1)

Country Link
JP (1) JPH072735A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071011A1 (en) * 2008-12-15 2010-06-24 新日本石油株式会社 Method for producing acetic acid ester
JP5838029B2 (en) * 2008-05-21 2015-12-24 昭和電工株式会社 Method for producing n-propyl acetate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838029B2 (en) * 2008-05-21 2015-12-24 昭和電工株式会社 Method for producing n-propyl acetate
WO2010071011A1 (en) * 2008-12-15 2010-06-24 新日本石油株式会社 Method for producing acetic acid ester

Similar Documents

Publication Publication Date Title
KR100760100B1 (en) Process for the simultaneous coproduction and purification of ethyl acetate and isopropyl acetate
US7468456B2 (en) Azeotropic distillation process for separating acetic acid, methylacetate and water in the production of an aromatic carboxylic acid
EP0818434A2 (en) Process for the production of high-purity isophthalic acid
US4118403A (en) Recovery of maleic anhydride
EP3063117B1 (en) Process for preparing methyl methacrylate
US3972955A (en) Process for preparation of isoprene
US5292917A (en) Process for purifying dimethyl carbonate
US4172209A (en) Process for producing dicarboxylic acids by the oxidation of xylene
EP0085328B1 (en) Improved process for forming nitroparaffin
US5384426A (en) Process for the preparation of isopropyl acetate
KR100551461B1 (en) Process for working up crude, liquid vinyl acetate
US5554790A (en) Process for producing acetic anhydride and acetic acid
JP2557099B2 (en) Method for separating dimethyl carbonate
US20040000473A1 (en) Process of separating 1-methoxy-2-propanol and 2-methoxy-1-propanol from aqueous compositions
US4276126A (en) Separation of ethylene glycol from N-methylpyrrolidone
US4788296A (en) Process for the production and recovery of trimellitic anhydride
EP0501374A1 (en) Process for purifying dimethyl carbonate
US2926191A (en) Chemical process
US6264800B1 (en) Purification process
JPH072735A (en) Production of isopropyl acetate
US4623432A (en) Removal of brominated organics from acetic acid obtained by oxidation of liquid butane in presence of Co-Br or Co-Mn-Br system catalysis
US3715408A (en) Separation of diethylbenzene isomers by distillation and dehydrogenation
US4003952A (en) Direct hydration of olefins to alcohols
US3663613A (en) Separation of organic acid products and water from catalysts after synthesis by reduced pressure distillation
JPH10158208A (en) Separation and recovery of cyclohexyl vinyl ether