JPH07272533A - Manufacture of titanium covered conductive powder - Google Patents
Manufacture of titanium covered conductive powderInfo
- Publication number
- JPH07272533A JPH07272533A JP8575394A JP8575394A JPH07272533A JP H07272533 A JPH07272533 A JP H07272533A JP 8575394 A JP8575394 A JP 8575394A JP 8575394 A JP8575394 A JP 8575394A JP H07272533 A JPH07272533 A JP H07272533A
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- powder
- oxide
- mica
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Physical Vapour Deposition (AREA)
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は帯電防止塗料,帯電防止
フィルム,帯電防止樹脂及び帯電防止繊維(以下,これ
らをまとめて「帯電防止組成物」という)に使用される
チタン被覆導電性粉末を製造する方法に関する。FIELD OF THE INVENTION The present invention relates to a titanium-coated conductive powder used for an antistatic paint, an antistatic film, an antistatic resin and an antistatic fiber (hereinafter collectively referred to as "antistatic composition"). It relates to a method of manufacturing.
【0002】[0002]
【従来の技術】樹脂バインダーや溶剤に導電性粉末を混
入させた帯電防止組成物が公知である。一般には,この
ような帯電防止組成物に混入させる導電性粉末として,
Ag,Cu,Al,Ni等の金属粉末が使用される。従来の
帯電防止組成物において,これら金属粉末は,少なくと
も樹脂分とほぼ同じ重量分以上が混合されている。しか
し,Agは高価である。また,CuやAlは酸化されやす
く導電性が経時的に変化するため,不安定である。更
に,Niは樹脂中や塗料中への分散性が悪く,比重が重
いために樹脂バインダーや溶剤中で沈降・分離しやすい
といった欠点がある。2. Description of the Related Art An antistatic composition prepared by mixing a conductive powder with a resin binder or a solvent is known. Generally, as a conductive powder mixed in such an antistatic composition,
Metal powders such as Ag, Cu, Al and Ni are used. In the conventional antistatic composition, these metal powders are mixed in at least approximately the same weight as the resin content. However, Ag is expensive. Further, Cu and Al are unstable because they are easily oxidized and their conductivity changes with time. Further, Ni has a drawback that it has a poor dispersibility in a resin or a paint and has a large specific gravity, so that it easily precipitates and separates in a resin binder or a solvent.
【0003】以上のような欠点を克服するものとして,
マイカやガラスなどにAgやAuを被覆した導電性粉末で
ある,無電解Agめっきマイカ(特開昭64−8767
4号),Auスパッタ被覆ガラス粉(特開昭56−13
0469号)などが公知である。その他,マイカやガラ
スなどに無電解めっき法により金属を被覆した導電性粉
末である,無電解Ni−Pめっきマイカ(特開昭63−
54316号),無電解Ag,CuまたはNi−Pめっき
ガラスビーズ(特開昭63−317541号),ヒドラ
ジンによるAu,Agの還元析出めっき銅粉(特開昭56
−150101号)などが公知である。これらの導電性
粉末は,粉末の比抵抗が10-4〜10-5Ω・cmと小さく
て導電性に優れ,また,金属粉末に比較すると比重が小
さいので塗料中などにおいて沈降・分離しにくく,更
に,フレーク状のマイカやガラスビーズなどは金属粉末
よりも分散性が優れている,などの利点がある。In order to overcome the above drawbacks,
Electroless Ag-plated mica, which is a conductive powder obtained by coating mica or glass with Ag or Au (JP-A-64-8767).
No. 4), Au sputter-coated glass powder (JP-A-56-13).
No. 0469) and the like are known. In addition, electroless Ni-P plated mica, which is a conductive powder obtained by coating metal on mica or glass by an electroless plating method (JP-A-63-
54316), electroless Ag, Cu or Ni-P plated glass beads (JP-A-63-317541), reduction-plated copper powder of Au and Ag with hydrazine (JP-A-56).
-150101) and the like are known. These conductive powders have a low specific resistance of 10 -4 to 10 -5 Ω · cm and are excellent in conductivity. Also, they have a smaller specific gravity than metal powders, so they do not easily settle or separate in paints. Moreover, flake-shaped mica and glass beads have the advantage that they have better dispersibility than metal powder.
【0004】一方,酸化チタン粉末に導電性酸化物を被
覆した導電性粉末も公知である。例えば,SnO2被覆酸
化チタン(特開平4−154621号),RuO2被覆酸
化チタン(特開昭58−225503号),ZnO被覆
酸化チタン(特開昭57−6762号)などである。こ
れらの導電性粉末は,粉末粒子の平均粒径が1.0μm
以下と微細であり,粉末の色調が白色ないし透明である
ことから種々の色調に着色しやすいため,繊維やカーペ
ット類等の帯電防止用組成物において好適に使用されて
いる。On the other hand, a conductive powder obtained by coating a titanium oxide powder with a conductive oxide is also known. Examples thereof include SnO 2 -coated titanium oxide (JP-A-4-154621), RuO 2 -coated titanium oxide (JP-A-58-225503), and ZnO-coated titanium oxide (JP-A-57-6762). These conductive powders have an average particle size of 1.0 μm.
It is fine as shown below, and since the color tone of the powder is white or transparent, it is easy to be colored in various color tones, so that it is preferably used in antistatic compositions such as fibers and carpets.
【0005】[0005]
【発明が解決しようとする課題】しかし,何れにせよA
uやAgをめっきする場合は製造コストが高いといった問
題が生じる。また,マイカやガラスなどに無電解めっき
法により金属を被覆した導電性粉末は,金属の被覆量が
40〜60mass%と多いために比重が大きい。更に,C
uやNi−Pなどによって形成された皮膜は必ずしも耐食
性に優れておらず,実用的でないといった問題がある。However, in any case, A
When u or Ag is plated, there arises a problem that the manufacturing cost is high. Further, the conductive powder obtained by coating a metal on mica or glass by an electroless plating method has a large specific gravity because the coating amount of the metal is as large as 40 to 60 mass%. Furthermore, C
A film formed of u, Ni-P or the like does not necessarily have excellent corrosion resistance and is not practical.
【0006】一方,酸化チタンに導電性酸化物を被覆し
た導電性粉末は,比抵抗がかなり高く,金属めっきを施
した導電性粉末に比べると導電性が相当に劣り,また,
粒状の微細粉末であるために樹脂バインダーや溶剤中へ
混合させる量を相当多くしないと良い導電性が得られな
いといった問題がある。On the other hand, the conductive powder obtained by coating titanium oxide with a conductive oxide has a considerably high specific resistance and is considerably inferior in conductivity as compared with the conductive powder plated with metal.
Since it is a granular fine powder, there is a problem that good conductivity cannot be obtained unless the amount of the fine powder is mixed into the resin binder or the solvent.
【0007】本発明は,導電性に優れながらも,比重が
小さくて塗料中などにおいて沈降・分離を起こすことが
なく,しかも,耐塩水性,耐酸性雨性,耐腐食ガス性な
どの耐食性に優れ,かつ,導電性の経時的変化も少ない
導電性粉末を低コストで製造できる方法を得ることを目
的としている。The present invention is excellent in conductivity, has a small specific gravity and does not cause sedimentation / separation in paints, and has excellent corrosion resistance such as salt water resistance, acid rain resistance, and corrosion gas resistance. Moreover, it is an object of the present invention to obtain a method capable of producing a conductive powder at a low cost, which has a small change in conductivity over time.
【0008】[0008]
【課題を解決するための手段】本発明によれば,アルミ
ナ,酸化亜鉛,酸化チタン,酸化チタン被覆マイカ,マ
イカなどの含水率が小さく,非磁性の金属酸化物からな
り,かつ,平均粒径が0.1〜100μmの粉末粒子の
表面にスパッタリング法により3〜20mass%量のチタ
ンを被覆するチタン被覆導電性粉末の製造方法が提供さ
れる。According to the present invention, alumina, zinc oxide, titanium oxide, titanium oxide-coated mica, mica, etc. are made of a non-magnetic metal oxide having a low water content and an average particle size. There is provided a method for producing a titanium-coated conductive powder, wherein the surface of powder particles having a particle size of 0.1 to 100 μm is coated with 3 to 20 mass% of titanium by a sputtering method.
【0009】以下に,本発明の製造方法の構成について
詳述する。The structure of the manufacturing method of the present invention will be described in detail below.
【0010】(金属酸化物の種類)本発明において使用
される金属酸化物としては,含水率が小さく,かつ,非
磁性のものが適している。例えば,アルミナ,酸化亜
鉛,酸化チタン,酸化チタン被覆マイカ,マイカなどは
含水率が小さく,かつ,非磁性であるので,本発明にお
いて金属酸化物として好適に使用される。アルミナとし
ては,例えばαアルミナが好適である。(Type of Metal Oxide) As the metal oxide used in the present invention, those having a low water content and being non-magnetic are suitable. For example, alumina, zinc oxide, titanium oxide, mica coated with titanium oxide, mica, and the like have a low water content and are non-magnetic, and therefore are preferably used as the metal oxide in the present invention. As alumina, for example, α-alumina is suitable.
【0011】しかし,含水率が大きい金属酸化物,例え
ばCa(OH)2,γアルミナ,シリカなどは粉末粒子の表
面にチタンをスパッタリング法によって被覆するために
高真空とした際に,脱水現象を起こすため,使用できな
い。また,磁性のある金属酸化物,例えば酸化鉄MIO
(マイカ状酸化鉄)などはスパッタリング装置に付属さ
れている磁石に吸着されてしまうので,使用できない。However, metal oxides having a high water content, such as Ca (OH) 2 , γ-alumina and silica, cause dehydration phenomenon when a high vacuum is applied to coat titanium on the surface of powder particles by sputtering. It cannot be used because it occurs. Also, magnetic metal oxides such as iron oxide MIO
(Mica-like iron oxide) cannot be used because it is adsorbed by the magnet attached to the sputtering system.
【0012】(粉末粒子の平均粒径)金属酸化物からな
る粉末粒子の平均粒径は0.1〜100μmの範囲,好
ましくは1〜20μmの範囲が良い。平均粒径が0.1
μm未満となるような粉末を用いた場合は,導電性を良
くするためにはチタンの被覆量を相当に多くしなければ
ならなくなる。一方,粉末粒子の平均粒径が100μm
を超えるような粉末を用いた場合は,塗料やフィルムな
どの帯電防止組成物を製造した際に,導電性粉末の分散
状態が不均一になりやすいといった不都合を生ずる。(Average Particle Diameter of Powder Particles) The average particle diameter of the powder particles made of a metal oxide is in the range of 0.1 to 100 μm, preferably 1 to 20 μm. Average particle size is 0.1
When a powder having a particle size of less than μm is used, the coating amount of titanium must be considerably increased in order to improve conductivity. On the other hand, the average particle size of the powder particles is 100 μm
When a powder exceeding the above range is used, there arises such a problem that the dispersed state of the conductive powder is likely to be non-uniform when an antistatic composition such as a paint or a film is produced.
【0013】なお,金属酸化物からなる粉末粒子の形状
は特に限定が無く,球状,粒状,フレーク状,ウィスカ
ー状など何れも使用できる。マイカ粉やAl2O3ウィス
カー等は,本発明において特に好適に使用される金属酸
化物である。The shape of the powder particles made of metal oxide is not particularly limited, and any of spherical, granular, flake, and whisker shapes can be used. Mica powder, Al 2 O 3 whiskers and the like are metal oxides which are particularly preferably used in the present invention.
【0014】(チタンの被覆方法)本発明の製造方法に
あっては,以上のような金属酸化物からなる粉末粒子の
表面にスパッタリング法によりチタンを被覆する。スパ
ッタリング法によるチタンの被覆は,例えば実開平2−
14360号や特願平1−74770に開示された公知
の方法によって実施することが可能である。即ち,・金
属酸化物からなる粉末を,不活性雰囲気中で気流ジェッ
トミル処理して一次粒子に分散し,・該分散処理して得
た微粉末を不活性雰囲気中で減圧加熱処理し,・該加熱
処理した微粉末をスパッタリング源であるチタンを納め
た回転容器に仕込み,該容器を回転させて微粉末の流動
層を形成し,・容器を回転させた状態で流動微粉末にチ
タンをスパッタリングすることにより被覆する。(Titanium coating method) In the production method of the present invention, titanium is coated on the surface of the above-mentioned powder particles of the metal oxide by the sputtering method. Titanium coating by the sputtering method is, for example,
It can be carried out by a known method disclosed in Japanese Patent Application No. 14360 or Japanese Patent Application No. 1-74770. That is, powder of metal oxide is subjected to air flow jet mill treatment in an inert atmosphere to disperse into primary particles, and fine powder obtained by the dispersion treatment is subjected to reduced pressure heat treatment in an inert atmosphere, The heat-treated fine powder is charged into a rotary container containing titanium as a sputtering source, and the container is rotated to form a fluidized bed of fine powder. ・ Titanium is sputtered on the fluidized fine powder while the container is rotated. To coat.
【0015】(チタンの被覆量)粉末粒子の表面に被覆
するチタンの量は,チタン被覆導電性粉末に対して3〜
20mass%の範囲,好ましくは5〜15mass%の範囲と
するのが良い。チタンの被覆量が3mass%未満では導電
性が著しく劣るチタン被覆導電性粉末となってしまう。
一方,チタンの被覆量が20mass%を超えると,導電性
は優れるもののチタン被覆導電性粉末の比重が重くな
り,また,製造コストも高くなる。(Amount of Titanium Coated) The amount of titanium coated on the surface of the powder particles is 3 to 3 with respect to the titanium-coated conductive powder.
The range is 20 mass%, preferably 5 to 15 mass%. When the coating amount of titanium is less than 3 mass%, the titanium-coated conductive powder has extremely poor conductivity.
On the other hand, when the amount of titanium coating exceeds 20 mass%, the specific gravity of the titanium-coated conductive powder increases, but the manufacturing cost also increases, although the conductivity is excellent.
【0016】本発明において,チタンの被覆量を3〜2
0mass%と極めて低くできるのは,スパッタリング法に
よりチタンの被覆を行っていることに起因しているもの
と考えられる。図1において1は金属酸化物の粉末粒子
を示している。ここで,無電解めっき法によりNi−P
を被覆した場合,先ず被覆量が3〜20mass%と低い段
階では粉末粒子1の表面にNi−P皮膜2が島状に付着
するに過ぎず,優れた導電性は得ることができない。そ
して,更にめっきを行うことによってこのNi−P皮膜
2のそれぞれが徐々に成長し,やがて被覆量が40〜6
0mass%となったときに初めて粉末粒子1の表面全体が
連続した皮膜3に覆われるようになる。このように無電
解めっき法によりNi−Pを被覆した場合は,粉末粒子
1の表面に40〜60mass%の皮膜3を形成することに
よって初めて良好な導電性を持った導電性粉末を得るこ
とが可能となる。粉末粒子1の表面全体をNi−Pめっ
きの皮膜3で完全に被覆するためには,通常は200オ
ングストローム以上の膜厚のNi−Pが必要であると考
えられており,無数にある粉末粒子の全部の表面を20
0オングストローム以上の厚さの皮膜で覆うためには,
極めて多量のNi−Pが必要である。加えて,粉末粒子
である酸化物よりも皮膜であるNi−Pの方が比重が大
きいことも相まって,無電解めっき法によってマイカや
ガラスなどにNi−Pを被覆した場合は,得られた導電
性粉末は著しく重いものとなってしまい,樹脂バインダ
ーや溶剤中で沈降・分離しやすいといった欠点がある。In the present invention, the coating amount of titanium is 3 to 2
It can be considered that the reason why it can be extremely reduced to 0 mass% is that titanium is coated by the sputtering method. In FIG. 1, 1 indicates powder particles of metal oxide. Here, the Ni-P is formed by the electroless plating method.
First, when the coating amount is as low as 3 to 20 mass%, the Ni-P coating 2 only adheres to the surface of the powder particles 1 in an island shape, and excellent conductivity cannot be obtained. Then, by further plating, each of the Ni-P coatings 2 gradually grows, and eventually the coating amount becomes 40 to 6
Only when it reaches 0 mass%, the entire surface of the powder particle 1 is covered with the continuous film 3. Thus, when Ni-P is coated by the electroless plating method, it is possible to obtain the conductive powder having good conductivity only by forming the coating 3 of 40 to 60 mass% on the surface of the powder particle 1. It will be possible. In order to completely cover the entire surface of the powder particle 1 with the Ni-P plated film 3, it is generally considered that Ni-P having a film thickness of 200 angstroms or more is necessary. 20 on all surfaces
To cover a film with a thickness of 0 Å or more,
Very large amounts of Ni-P are required. In addition, the specific gravity of Ni-P, which is a film, is larger than that of oxide, which is a powder particle, and when the mica or glass is coated with Ni-P by an electroless plating method, the conductivity obtained is The characteristic powder becomes extremely heavy and has the drawback that it tends to settle and separate in a resin binder or solvent.
【0017】しかし,スパッタリング法によりチタンを
被覆した場合は,被覆量が20mass%以下と比較的少な
いチタン皮膜4が粉末粒子1の表面に島状に付着した段
階で,チタン皮膜4によって粉末粒子1の表面が部分的
に還元されるようになる。例えば,粉末粒子1がAl2O
3であれば,粉末粒子1の表面において, 2Ti+Al2O3 → Ti2O3+2Al で示される反応がおきることにより,粉末粒子1の表面
に,Ti2O3からなるチタンの低次酸化物と還元された
Alの金属部分5が形成される。同様に,粉末粒子1が
ZnOであれば,粉末粒子1の表面において, Ti+ZnO → TiO+Zn で示される反応がおきることにより,粉末粒子1の表面
に,TiOからなるチタンの低次酸化物と還元されたZn
の金属部分5が形成される。更に,粉末粒子1がマイカ
である場合も同様に,マイカはXY2〜3(Si,Al)4O
10(OH,F)2の化学式で示される組成を有する一群の
層状アルミノケイ酸塩からなるため,チタンによって還
元され,粉末粒子1の表面にチタンの低次酸化物と還元
された金属部分5が形成される。However, when titanium is coated by the sputtering method, when the titanium coating 4 having a relatively small coating amount of 20 mass% or less is attached to the surface of the powder particle 1 in an island shape, the titanium coating 4 is used to form the powder particle 1. Surface is partially reduced. For example, powder particle 1 is Al 2 O
If 3 , the reaction represented by 2Ti + Al 2 O 3 → Ti 2 O 3 + 2Al occurs on the surface of the powder particle 1, so that the lower oxide of titanium composed of Ti 2 O 3 is formed on the surface of the powder particle 1. And a metal part 5 of reduced Al is formed. Similarly, if the powder particles 1 are ZnO, the reaction represented by Ti + ZnO → TiO + Zn occurs on the surface of the powder particles 1, and the powder of the powder particles 1 is reduced with the lower oxide of titanium composed of TiO 2. Zn
A metal part 5 of is formed. Further, when the powder particles 1 are mica, the mica is also XY 2 to 3 (Si, Al) 4 O.
Since it is composed of a group of layered aluminosilicates having a composition represented by the chemical formula of 10 (OH, F) 2 , it is reduced by titanium, and the lower oxide of titanium and the reduced metal portion 5 are formed on the surface of the powder particles 1. It is formed.
【0018】従って,アルミナ,酸化亜鉛,マイカなど
はそれ自体は電気的には絶縁体であり,常温下では10
12Ω・cm以上といった極めて大きな比抵抗を示すが,こ
れら金属酸化物からなる粉末粒子の表面にスパッタリン
グ法によりチタンを被覆した場合は,AlやZnなどの金
属がチタンによって還元されることによって,チタンの
被覆量が20mass%以下と比較的少ない段階において,
粉末粒子の表面にAlやZnなどの金属とチタン及びチタ
ンの低次酸化物の連続層が生成されると考えられる。そ
して,チタンの低次酸化物であるTiOやTi2O3などは
常温下では比抵抗が10-3Ω・cmレベルであって,アル
ミナ,酸化亜鉛,マイカなどに比べれば一種の導電体と
扱うことができるから,こうして形成されたAlやZnな
どの金属とチタン及びチタン酸化物の連続層は優れた導
電性を備えており,チタンの被覆量が20mass%以下と
比較的少ないにもかかわらず,良好な導電性を持った導
電性粉末を得ることが可能となる。Therefore, alumina, zinc oxide, mica, etc. are electrically insulators themselves, and are 10 at room temperature.
It has an extremely large resistivity of 12 Ω · cm or more, but when titanium is coated on the surface of powder particles made of these metal oxides by the sputtering method, the metals such as Al and Zn are reduced by titanium. At the stage where the coating amount of titanium is relatively small, 20 mass% or less,
It is considered that a continuous layer of a metal such as Al or Zn and titanium or a lower oxide of titanium is formed on the surface of the powder particles. The low-order oxides of titanium, such as TiO and Ti 2 O 3 , have a specific resistance of 10 −3 Ω · cm level at room temperature and are a kind of conductor compared to alumina, zinc oxide, mica, etc. Since it can be handled, the continuous layer of metal such as Al and Zn thus formed and titanium and titanium oxide has excellent conductivity, and the titanium coating amount is 20 mass% or less, which is relatively small. Therefore, it is possible to obtain a conductive powder having good conductivity.
【0019】なお,以上のような作用は,粉末粒子全体
が金属酸化物である場合に限らず,表面付近だけが酸化
され,内部は酸化されていない金属の状態であるアルミ
や亜鉛などの金属粉末に関しても,同様に起こりえる。
粉末粒子全体が金属酸化物であるものにチタンをスパッ
タリング法によって被覆した場合は,粉末粒子の表面に
形成されたAlやZnなどの金属とチタン及びチタンの低
次酸化物の連続層のみを電気が流れることになるが,表
面付近だけが酸化され,内部は酸化されていない金属の
状態であるアルミや亜鉛などの金属粉末にチタンをスパ
ッタリング法によって被覆した場合は,表面だけではな
く,粉末粒子の内部でも電気が流れることができるの
で,比抵抗が10-6Ω・cmレベルの極めて導電性の良い
粉末を得ることが可能となる。The above action is not limited to the case where the entire powder particle is a metal oxide, and the metal such as aluminum or zinc is in a state where only the surface is oxidized and the inside is not oxidized. The same is true for powders.
When titanium is coated on the whole powder particles with metal oxide by the sputtering method, only the continuous layer of metal such as Al and Zn and titanium and lower oxides of titanium formed on the surface of the powder particles is electrically charged. However, when titanium is coated on the metal powder such as aluminum or zinc, which is in a state of metal that is oxidized only in the vicinity of the surface and not oxidized inside, by the sputtering method, not only the surface but powder particles Since electricity can flow inside the powder, it is possible to obtain a powder having a specific resistance of 10 −6 Ω · cm and excellent conductivity.
【0020】かくして,本発明方法により,金属酸化物
からなる粉末粒子にチタンをスパッタリング法によって
被覆して得られたチタン被覆導電性粉末は,その表面に
金属チタンとチタンの低次酸化物と金属の還元物を主成
分とする皮膜が形成されることから,従来のCuやNi
−Pなどがめっきされた導電性粉末に比べてはるかに優
れた耐食性を示す。Thus, according to the method of the present invention, the titanium-coated conductive powder obtained by coating the powder particles of the metal oxide with titanium by the sputtering method has metal titanium, a low-order oxide of titanium and a metal on the surface thereof. Since a film composed mainly of the reduced products of Cu is formed,
It shows much better corrosion resistance than the conductive powder plated with -P or the like.
【0021】また,比重に関していえば,次のことがい
える。例えば,比重が2.8のマイカに比重が約8.9の
Ni−Pを無電解めっきにより50mass%量被覆した場
合,得られる導電性粉末の比重は約5.9となる。しか
し,同じ比重が2.8のマイカに10mass%の量のチタ
ンをスパッタリング法によって被覆した場合,得られる
導電性粉末の比重は約3.0となる。従って,本発明に
よれば,マイカの比重に近い極めて軽い導電性粉末を製
造することができる。Regarding the specific gravity, the following can be said. For example, when mica with a specific gravity of 2.8 is coated with 50 mass% of Ni-P with a specific gravity of about 8.9 by electroless plating, the specific gravity of the conductive powder obtained is about 5.9. However, when mica having the same specific gravity of 2.8 is coated with titanium in an amount of 10 mass% by the sputtering method, the specific gravity of the conductive powder obtained is about 3.0. Therefore, according to the present invention, it is possible to manufacture an extremely light conductive powder having a specific gravity close to that of mica.
【0022】なお,酸化チタン被覆マイカからなる粉末
粒子を用いた場合には,特開平4−173955号にも
示されているように,チタンをスパッタリング法によっ
て被覆することにより,銀色,青色,緑色,銅色,赤
色,赤紫色,金色に発色する粉末を製造でき,この粉末
は着色顔料としても優れた性能を示すことが知られてい
る。これらの粉末も100〜10-1Ω・cmの高い導電性
を有しており,着色導電性粉末として,実用的価値が特
に高いものである。When powder particles made of titanium oxide-coated mica are used, as shown in Japanese Patent Laid-Open No. 173955/1992, titanium is coated by a sputtering method to obtain silver, blue, green. It is known that a powder that develops copper color, red color, magenta color, and gold color can be produced, and that this powder exhibits excellent performance as a coloring pigment. These powders also have a high conductivity of 10 0 ~10 -1 Ω · cm, as a coloring conductive powder, practical value is particularly high.
【0023】[0023]
【実施例】以下,実施例に基づいて本発明を更に詳細に
説明する。先ず,図2,図3をもとにしてスパッタリン
グ装置の構成を説明する。The present invention will be described in more detail based on the following examples. First, the structure of the sputtering apparatus will be described with reference to FIGS.
【0024】スパッタリング室10は直径が500mm,
高さが300mmの円筒形状に構成される。スパッタリン
グ室10の前後側面には,何れもスパッタリング室10
の円筒軸上に位置しながら互いに別体である回転軸11
と回転軸12が嵌入される。スパッタリング室10はこ
れら回転軸11と回転軸12に対して磁気シール13,
14を介して回転自在に支持される。スパッタリング室
10の下方は駆動ロール15及び従動ロール16によっ
て支持され,駆動ロール15にモーター17の動力がベ
ルト18で伝達されることによりスパッタリング室10
は回転駆動される。The sputtering chamber 10 has a diameter of 500 mm,
It has a cylindrical shape with a height of 300 mm. On the front and rear side surfaces of the sputtering chamber 10, the sputtering chamber 10
Rotating shafts 11 that are separate from each other while being positioned on the cylindrical axis of
And the rotary shaft 12 is fitted. The sputtering chamber 10 has a magnetic seal 13 for the rotary shaft 11 and the rotary shaft 12,
It is rotatably supported via 14. The lower part of the sputtering chamber 10 is supported by a driving roll 15 and a driven roll 16, and the power of a motor 17 is transmitted to the driving roll 15 by a belt 18 so that the sputtering chamber 10
Is driven to rotate.
【0025】回転軸11の先端には,スパッタリング室
10の内部において二機のスパッタリング源20,20
が互いに対峙して装着される。これらスパッタリング源
20,20は何れも,スパッタリング室10の回転によ
って生ずる粉末21の流動層に指向するように,垂直方
向から僅かに傾斜して設けられる。スパッタリング源2
0,20は,例えば回転軸11に二極マグネトロンを取
り付けた構成であり,その取り付けネジを調整すること
により粉末21の流動層との距離が調節可能である。ま
た,図示はしないが,回転軸11の内部にはスパッタリ
ング源20,20に高周波電流を供給するための電線が
埋設される。At the tip of the rotary shaft 11, two sputtering sources 20, 20 are provided inside the sputtering chamber 10.
Are installed facing each other. Each of these sputtering sources 20 and 20 is provided so as to be slightly inclined from the vertical direction so as to be directed to the fluidized bed of the powder 21 generated by the rotation of the sputtering chamber 10. Sputtering source 2
Reference numerals 0 and 20 are, for example, a configuration in which a two-pole magnetron is attached to the rotating shaft 11, and the distance between the powder 21 and the fluidized bed can be adjusted by adjusting the attachment screw. Although not shown, electric wires for supplying a high-frequency current to the sputtering sources 20, 20 are embedded inside the rotary shaft 11.
【0026】回転軸12は,スパッタリング室10の内
部に粉末21を導入する導入管22を兼ねる。導入管2
2の先端部23は,スパッタリング室10の内部におい
て下方に湾曲し,スパッタリング室10の底面近くに開
口する。なお,この先端部23もスパッタリング室10
の回転によって生ずる粉末21の流動層に指向すべく,
垂直方向から僅かに傾斜して設けられる。The rotating shaft 12 also serves as an introduction pipe 22 for introducing the powder 21 into the sputtering chamber 10. Introductory pipe 2
The second tip 23 is curved downward inside the sputtering chamber 10 and opens near the bottom of the sputtering chamber 10. The tip portion 23 is also the sputtering chamber 10
To direct to the fluidized bed of powder 21 caused by the rotation of
It is provided with a slight inclination from the vertical direction.
【0027】導入管22の内部には,排給気管25が介
在する。排給気管25にはバルブ26,27を介して排
気管28,29が接続されると共に,バルブ30を介し
て不活性ガスの給気管31が接続される。排気管28,
29は機械的真空ポンプからなる主排気系と,クライオ
ソープションポンプ,ターボ分子ポンプ,メカニカルブ
ースターポンプ等と冷却トラップとの組み合わせからな
る高度排気系に連通される。なお,スパッタリング室1
0の内部の雰囲気に曝される導入管22及び排給気管2
5は何れもスパッタリングによって金属が被覆されにく
い黒鉛製のパイプで構成される。An exhaust air supply pipe 25 is provided inside the introduction pipe 22. To the exhaust air supply pipe 25, exhaust pipes 28 and 29 are connected via valves 26 and 27, and an inert gas supply pipe 31 is connected via a valve 30. Exhaust pipe 28,
Reference numeral 29 is connected to a main exhaust system including a mechanical vacuum pump and an advanced exhaust system including a combination of a cryosorption pump, a turbo molecular pump, a mechanical booster pump, and a cooling trap. In addition, sputtering room 1
Introduction pipe 22 and exhaust pipe 2 exposed to the atmosphere inside 0
Each of 5 is composed of a graphite pipe which is hard to be coated with metal by sputtering.
【0028】導入管22の上流側には,バルブ34を介
して減圧加熱処理室35が配置される。この減圧加熱処
理室35において,減圧加熱処理された金属酸化物の粉
末21が,導入管22を通ってスパッタリング室10に
導入される。実施例の減圧加熱処理室35は直径が30
0mm,高さが150mmの円筒形状に構成され,その底面
36が漏斗状に形成される。底面36の中心にモータ3
7の稼働で駆動されるスクリューフィーダ38が装置さ
れる。減圧加熱処理室35の胴部壁面にはヒータ40が
内装される。また,減圧加熱処理室35の天井面にはフ
ィルタ41を介して主排気管42と高度排気管43が接
続される。これら主排気管42と高度排気管43も同様
に,機械的真空ポンプからなる主排気系と,クライオソ
ープションポンプ,ターボ分子ポンプ,メカニカルブー
スターポンプ等と冷却トラップとの組み合わせからなる
高度排気系に連通される。A reduced pressure heat treatment chamber 35 is arranged upstream of the introduction pipe 22 via a valve 34. In the reduced pressure heat treatment chamber 35, the metal oxide powder 21 subjected to the reduced pressure heat treatment is introduced into the sputtering chamber 10 through the introduction pipe 22. The reduced pressure heat treatment chamber 35 of the embodiment has a diameter of 30.
It has a cylindrical shape with a height of 0 mm and a height of 150 mm, and its bottom surface 36 is formed in a funnel shape. At the center of the bottom surface 36, the motor 3
The screw feeder 38 driven by the operation of 7 is installed. A heater 40 is installed on the wall surface of the body of the reduced pressure heat treatment chamber 35. Further, a main exhaust pipe 42 and an advanced exhaust pipe 43 are connected to the ceiling surface of the reduced pressure heat treatment chamber 35 via a filter 41. Similarly, the main exhaust pipe 42 and the advanced exhaust pipe 43 also have a main exhaust system consisting of a mechanical vacuum pump and an advanced exhaust system consisting of a combination of a cryosorption pump, a turbo molecular pump, a mechanical booster pump, etc. and a cooling trap. Communicated.
【0029】導入管22の途中には分岐管45が接続さ
れ,スパッタリング室10と流体ジェットミル46がバ
ルブ47を介して連通される。流体ジェットミル46は
モーター48の稼働で高速回転駆動されるプロペラ50
を備える。A branch pipe 45 is connected in the middle of the introduction pipe 22, and the sputtering chamber 10 and the fluid jet mill 46 are communicated with each other via a valve 47. The fluid jet mill 46 is a propeller 50 driven by a motor 48 to rotate at high speed.
Equipped with.
【0030】流体ジェットミル46と,先に説明した減
圧加熱処理室35は,バルブ51を介して循環管52で
連通される。循環管52には,バルブ51の上流側にお
いて,排出管53がバルブ55を介して接続される。排
出管53は粉末21を捕集するトラップ56に連通され
る。トラップ56は粉末21を捕集するための円筒形フ
ィルタ57と排気管58を備える。The fluid jet mill 46 and the above-described reduced pressure heat treatment chamber 35 are connected by a circulation pipe 52 via a valve 51. A discharge pipe 53 is connected to the circulation pipe 52 on the upstream side of the valve 51 via a valve 55. The discharge pipe 53 communicates with a trap 56 that collects the powder 21. The trap 56 includes a cylindrical filter 57 for collecting the powder 21 and an exhaust pipe 58.
【0031】以上の如く構成されたスパッタリング装置
において,アルミナ,酸化亜鉛,酸化チタン,酸化チタ
ン被覆マイカ,及びマイカのそれぞれからなる粉末21
の500gを,先ずスパッタリング室10に投入し,減
圧加熱処理室35とスパッタリング室10を導入管22
で連通しない状態にして,減圧加熱処理室35を2×1
0-5Torrに減圧した。そして,排給気管25を介してア
ルゴンガスをスパッタリング室10に徐々に供給し,粉
末21を流体ジェットミル46に搬送した。In the sputtering apparatus configured as described above, powder 21 composed of alumina, zinc oxide, titanium oxide, titanium oxide-coated mica, and mica, respectively.
First, 500 g of the above is charged into the sputtering chamber 10, and the reduced pressure heat treatment chamber 35 and the sputtering chamber 10 are introduced into the introducing pipe 22.
2 × 1 in the reduced pressure heat treatment chamber 35 with no communication
It was reduced to 0 -5 Torr. Then, the argon gas was gradually supplied to the sputtering chamber 10 through the exhaust gas pipe 25, and the powder 21 was conveyed to the fluid jet mill 46.
【0032】流体ジェットミル46において,回転する
プロペラ50にアルゴンガス流によって搬送された粉末
21を衝突させて,一次粒子に分散させた後,その粉末
21を循環管52に通して減圧加熱処理室35に捕集し
た。減圧加熱処理室35内において2×10-3Torrに減
圧しつつ,ヒータ40で200℃に加熱し,乾燥処理と
脱ガス処理を30分間行った。In the fluid jet mill 46, the powder 21 carried by the argon gas flow is made to collide with the rotating propeller 50 to disperse the powder 21 into primary particles, and then the powder 21 is passed through a circulation pipe 52 to form a reduced pressure heat treatment chamber. Collected at 35. While reducing the pressure to 2 × 10 −3 Torr in the reduced pressure heat treatment chamber 35, the heater 40 was heated to 200 ° C., and the drying treatment and the degassing treatment were performed for 30 minutes.
【0033】次に,予めアルゴンガス雰囲気に置換して
おいたスパッタリング室10に導入管22を通して粉末
21を導入した。その後,スパッタリング室10を回転
数5rpmで回転させながら,スパッタリング室10内を
2×10-3Torrに減圧し,電力3kw,周波数13.56M
Hzの条件のマグネトロン方式によるスパッタリングを施
し,粉末21に対してチタンの被覆を行った。この操作
により,1時間で約0.1mass%量のチタンを被覆する
ことができた。Next, the powder 21 was introduced through the introduction tube 22 into the sputtering chamber 10 which had been previously replaced with an argon gas atmosphere. Then, while rotating the sputtering chamber 10 at a rotation speed of 5 rpm, the pressure inside the sputtering chamber 10 was reduced to 2 × 10 −3 Torr, the power was 3 kw, and the frequency was 13.56 M.
Sputtering was performed by a magnetron system under the condition of Hz, and the powder 21 was coated with titanium. By this operation, about 0.1 mass% of titanium could be coated in 1 hour.
【0034】その後,スパッタリングを中止し,流体ジ
ェットミル46における分散処理と,減圧加熱処理室3
5における減圧加熱処理を行い,再びスパッタリング室
10に粉末21を導入し,1時間のスパッタリング操作
によって再びチタンを被覆した。この工程を数工程繰り
返し,合計で1.0〜30.0mass%量のチタンを被覆し
た導電性粉末をそれぞれ製造した。After that, the sputtering was stopped and the dispersion treatment in the fluid jet mill 46 and the reduced pressure heating treatment chamber 3 were performed.
Then, the powder 21 was introduced into the sputtering chamber 10 again, and titanium was coated again by the sputtering operation for 1 hour. This process was repeated several times to produce conductive powder coated with titanium in an amount of 1.0 to 30.0 mass% in total.
【0035】以上のようにしてスパッタリング法を用い
て導電性粉末を製造し,最後に,排給気管25を介して
アルゴンガスをスパッタリング室10に徐々に供給し,
アルミナ,酸化亜鉛,酸化チタン,酸化チタン被覆マイ
カ,及びマイカにチタンを被覆した導電性粉末をトラッ
プ56に捕集した。As described above, the conductive powder is manufactured by using the sputtering method, and finally, the argon gas is gradually supplied to the sputtering chamber 10 through the exhaust gas pipe 25,
Alumina, zinc oxide, titanium oxide, mica coated with titanium oxide, and conductive powder obtained by coating mica with titanium were collected in the trap 56.
【0036】得られた各導電性粉末を200kg/cm2の
圧力で成形して直径25mm,厚さ10mmの圧粉体を製造
し,直流比抵抗を測定した。その測定結果と,各導電性
粉末の製造に用いた粉末種類,粉末製造メーカー,粉末
平均粒径,チタンの被覆量を表1に示す。なお,アルミ
ナは昭和電工株式会社製のアルミナ粉末(AL−45−
1)を用いた。また,比較例としてチタンを被覆してい
ない各粉末の直流比抵抗も表1に併せて示した。Each of the conductive powders obtained was molded under a pressure of 200 kg / cm 2 to produce a powder compact having a diameter of 25 mm and a thickness of 10 mm, and the direct current resistivity was measured. Table 1 shows the measurement results, the type of powder used in the production of each conductive powder, the powder manufacturer, the powder average particle size, and the titanium coating amount. Alumina is an alumina powder manufactured by Showa Denko KK (AL-45-
1) was used. Table 1 also shows the DC specific resistance of each powder not coated with titanium as a comparative example.
【0037】[0037]
【表1】 [Table 1]
【0038】表1の結果から,本発明方法によって製造
されたチタンの被覆量が3〜20mass%である実施例の
導電性粉末の比抵抗は,7×101〜5×10-2Ω・cm
となり,実施例の導電性粉末の導電性が優れていること
が分かる。From the results shown in Table 1, the specific resistance of the conductive powder of the example produced by the method of the present invention, in which the amount of titanium coated is 3 to 20 mass%, is 7 × 10 1 to 5 × 10 −2 Ω · cm
Thus, it can be seen that the conductive powders of the examples have excellent conductivity.
【0039】次に,表1に示した実施例1〜20の各導
電性粉末,及び比較例1〜15の各粉末をそれぞれ10
0gづつ,アクリル塗料ベース(関西ペイント製No.
2026,樹脂を40mass%含む)250gを800ミ
リリットル容量のステンレス鋼製容器に入れて,200
0rpmで回転する撹拌翼で1時間分散させた。各アクリ
ル塗料を厚さ1.0mmの透明アクリル板に,ドクターブ
レードを用いて,乾燥塗膜厚が約25μmとなるように
塗装し,常温で乾燥させた。こうして得られた各塗装板
の表面電気抵抗を表2に示す。Next, each of the conductive powders of Examples 1 to 20 and the powders of Comparative Examples 1 to 15 shown in Table 1 was used 10 times.
0 g each, acrylic paint base (Kansai Paint No.
2026 (containing 40 mass% resin) 250 g in a stainless steel container of 800 ml capacity,
Dispersion was carried out for 1 hour with a stirring blade rotating at 0 rpm. Each acrylic paint was applied to a transparent acrylic plate having a thickness of 1.0 mm using a doctor blade so that the dry coating film thickness was about 25 μm, and dried at room temperature. Table 2 shows the surface electric resistance of each coated plate thus obtained.
【0040】[0040]
【表2】 [Table 2]
【0041】表2の結果から,本発明実施例の導電性粉
末を混ぜた塗料は導電性が優れていることが分かる。な
お,実施例の導電性粉末は塗料中などにおいて沈降・分
離を起こすことがなく,また,耐塩水性,耐酸性雨性,
耐腐食ガス性などの耐食性にも優れていた。From the results shown in Table 2, it can be seen that the paint containing the conductive powder of the present invention has excellent conductivity. In addition, the conductive powders of the examples do not cause sedimentation and separation in paints, etc., and are resistant to salt water, acid rain, and
It was also excellent in corrosion resistance such as corrosion gas resistance.
【0042】[0042]
【発明の効果】本発明の製造方法によれば,導電性に優
れながらも,比重が小さくて塗料中などにおいて沈降・
分離を起こすことがなく,しかも,耐塩水性,耐酸性雨
性,耐腐食ガス性などの耐食性に優れ,かつ,導電性の
経時的変化も少ない導電性粉末を低コストで製造でき
る。本発明方法によって製造される導電性粉末は,外装
建材,内装建材,家電製品,自動車,船舶等の塗料や繊
維などの帯電防止組成物に広く活用できる。EFFECTS OF THE INVENTION According to the manufacturing method of the present invention, even though it is excellent in conductivity, it has a small specific gravity, so that it does not settle in a paint or the like.
Conductive powder that does not cause separation, has excellent corrosion resistance such as salt water resistance, acid rain resistance, and corrosion gas resistance, and has little change in conductivity over time can be manufactured at low cost. The conductive powder produced by the method of the present invention can be widely used for antistatic compositions such as coating materials and fibers for exterior building materials, interior building materials, home appliances, automobiles, ships and the like.
【図1】従来方法と本発明方法にかかる導電性粉末の断
面図FIG. 1 is a sectional view of a conductive powder according to a conventional method and a method of the present invention.
【図2】スパッタリング装置の正面図FIG. 2 is a front view of a sputtering device.
【図3】図2A−A断面矢視図FIG. 3 is a cross-sectional arrow view of FIG. 2A-A.
1 粉末粒子 2,3 Ni−P皮膜 4 チタン皮膜 5 チタンの低次酸化物と還元された金属部分 1 Powder Particles 2, 3 Ni-P Film 4 Titanium Film 5 Low-Order Oxide of Titanium and Reduced Metal Part
Claims (1)
チタン被覆マイカ,マイカなどの含水率が小さく,非磁
性の金属酸化物からなり,かつ,平均粒径が0.1〜1
00μmの粉末粒子の表面にスパッタリング法により3
〜20mass%量のチタンを被覆するチタン被覆導電性粉
末の製造方法。1. Alumina, zinc oxide, titanium oxide, titanium oxide-coated mica, mica, etc., which are made of non-magnetic metal oxides with a low water content and have an average particle size of 0.1 to 1
3 by sputtering method on the surface of powder particles of 00 μm
A method for producing a titanium-coated conductive powder, which comprises coating titanium in an amount of -20 mass%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8575394A JPH07272533A (en) | 1994-03-31 | 1994-03-31 | Manufacture of titanium covered conductive powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8575394A JPH07272533A (en) | 1994-03-31 | 1994-03-31 | Manufacture of titanium covered conductive powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07272533A true JPH07272533A (en) | 1995-10-20 |
Family
ID=13867624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8575394A Withdrawn JPH07272533A (en) | 1994-03-31 | 1994-03-31 | Manufacture of titanium covered conductive powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07272533A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100805954B1 (en) * | 2006-02-16 | 2008-02-21 | 첨단메탈코팅주식회사 | The rust preventing method of the sinter metal product |
JP2016076339A (en) * | 2014-10-03 | 2016-05-12 | 日立化成株式会社 | Conductive particle |
-
1994
- 1994-03-31 JP JP8575394A patent/JPH07272533A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100805954B1 (en) * | 2006-02-16 | 2008-02-21 | 첨단메탈코팅주식회사 | The rust preventing method of the sinter metal product |
JP2016076339A (en) * | 2014-10-03 | 2016-05-12 | 日立化成株式会社 | Conductive particle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100537130B1 (en) | Conductive Powder and Making Process | |
CN1189177A (en) | Oxidized coloured aluminium pigments, process for their production and their use | |
WO1993019131A1 (en) | Platelet-like colored pigments and process for producing the same | |
EP0484108B1 (en) | Pigment and process for producing the same | |
CN109423637A (en) | A kind of preparation method of high conductive material | |
JPH07272533A (en) | Manufacture of titanium covered conductive powder | |
JP3766161B2 (en) | Coated powder, silver-coated copper powder and method for producing the same, conductive paste and conductive film | |
JP4108340B2 (en) | Conductive silica-based particles | |
JPH08259847A (en) | Coated inorganic powder and its production | |
CN104616721B (en) | A kind of high adhesion force conductive silver paste | |
JPS5991160A (en) | Charged aqueous powdery slurry anode electrodeposition | |
JP4046785B2 (en) | Non-conductive carbonaceous powder and method for producing the same | |
JPS5941489A (en) | Method for electroplating particulate material | |
CN1359988A (en) | Process for preparing conducting light colour flaky pigment | |
JPH0375633B2 (en) | ||
JP2020111799A (en) | Surface-treated metal powder and conductive composition | |
JPH10158540A (en) | Silver color metallic pigment excellent in weather resistance and brilliance | |
CN1269980C (en) | Nano level sheet copper zinc alloy powder and its producing method | |
JPH04173955A (en) | Production of colored nacreous mica rigment | |
JPH10121102A (en) | White conductive composite powder | |
CN113526985A (en) | Preparation method of superlattice ceramic atomizing core | |
JP2002008438A (en) | Fibrous electrical conductive filler | |
JP4575656B2 (en) | Conductive powder | |
JPH07133374A (en) | Electroconductive flaky barium sulfate filler and its production | |
JPH05170425A (en) | Production of composite particle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010605 |